Australian Institute of Physics

2015 Western Australian Postgraduate Conference

2nd October 2015

9:15am – 4:30pm

University of Western Australia

(Faculty of Science Common Room, Agricultural Central Building)
Solar Selective Absorbing Characteristics and Thermal Stability of TiAlSiN Coatings

M. Mahbubur Rahman¹*, Zhong-Tao Jiang², Zhi-feng Zhou³, Hatem Taha³, Hantarto Widjaja³, Ehsan Mohammadpour¹, Chun Yang Yin³, Nick Mondinos¹, Mohammednoor Altarawneh⁴, Bogdan Z. Dlugogorski⁴

¹Surface Analysis and Materials Engineering Research Group
School of Engineering & Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia

²Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China

³School of Science and Engineering, Teesside University, Borough Road, Middlesbrough, TS1 3BA, United Kingdom

⁴School of Engineering & Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia

* M.Rahman@Murdoch.edu.au

Owing to their many outstanding properties, TiAlSiN coatings have received significant attention as solar selective absorbers for harvesting solar energy in various applications such as thermal solar collectors, solar steam generators and steam turbines for producing the electricity at mid and mid-to high temperatures [1-3]. Although, transition metal nitride based quaternary TiAlSiN coatings are attractive candidates as protective and decorative coatings for cutting tools etc. In this article, unbalanced magnetron sputtered TiAlSiN thin film coatings were deposited on AISI M2 steel substrate and structural stability, surface morphology and solar selective absorption behaviors investigated at various temperatures. The films were characterized via synchrotron radiation X-ray diffraction (SR-XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV-Vis spectroscopy, and FTIR spectroscopy. SR-XRD studies show the existence of multiple polycrystalline phases with good oxidation resistance behaviors of these coatings. Formations of nanocomposite-like fine grain structures were observed from the SEM micrographs with average grain size 25 nm. The XPS study indicated that increasing the annealing temperature also enhanced the degree of surface oxidation of the coatings. The TiAlSiN coatings showed varying solar selectivity as the annealing temperature increased with a solar selectivity \(s = a/E \) of 24.63 obtained by the coating annealed at 700 °C.