Isospora serinuse n. sp. (Apicomplexa: Eimeriidae) from a domestic canary (Serinus canaria forma domestica) (Passeriformes: Fringillidae) in Western Australia

Rongchang Yang, Belinda Brice, Aileen Elliot, Una Ryan

PII: S0014-4894(15)30034-5
DOI: 10.1016/j.exppara.2015.08.020
Reference: YEXPR 7123

To appear in: Experimental Parasitology

Received Date: 6 May 2015
Revised Date: 19 August 2015
Accepted Date: 24 August 2015

Please cite this article as: Yang, R., Brice, B., Elliot, A., Ryan, U., Isospora serinuse n. sp. (Apicomplexa: Eimeriidae) from a domestic canary (Serinus canaria forma domestica) (Passeriformes: Fringillidae) in Western Australia, Experimental Parasitology (2015), doi: 10.1016/j.exppara.2015.08.020.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Evolutionary relationships of *Isospora serinuse* n. sp. inferred by distance analysis of 18S rRNA sequences.
Isospora serinuse n. sp. (Apicomplexa: Eimeriidae) from a domestic canary (Serinus canaria forma domestica) (Passeriformes: Fringillidae) in Western Australia

Rongchang Yanga*, Belinda Briceb, Aileen Elliota, Una Ryana

aSchool of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, 6150.

bKanyana Wildlife Rehabilitation Centre, 120 Gilchrist Road, Lesmurdie, Western Australia 6076.

*Corresponding author: Rongchang Yang
Mailing address: School of Veterinary and Life Sciences, Murdoch University, Murdoch, Western Australia, Australia, 6150. Phone: 61 89360 2495. Fax: 61 89310 4144.
E-mail: R.Yang@murdoch.edu.au
Abstract

A new species, *Isospora serinuse* n. sp. (Apicomplexa:Eimeriidae) is described from a single domestic canary (*Serinus canaria forma domestica*) (subspecies *S. c. domestica*) in Western Australia. Sporulated oocysts of *Isospora serinuse* n. sp. are spherical or subspherical, 25.5 (24.4-27.0) × 23.5 (22.0-24.8) µm, with a shape index (length/width) of 1.09; and a smooth bilayered oocyst wall, 1.2 µm thick (outer layer 0.9 µm, inner 0.3 µm). A polar granule is present, but a micropyle and oocyst residuum are absent. The sporocysts are lemon-shaped, 18.9 (17.8 – 20.2) × 11.8 (10.6 -13.0) µm, with a shape index of 1.6. Stieda and substieda bodies are present, the Stieda body being a small crescent shape and the substieda being indistinct. Each sporocyst with four vermiform sporozoites arranged head to tail. A sporocyst residuum is present and composed of numerous granules of different sizes that are scattered among the sporozoites. Morphologically, the oocysts of *Isospora serinuse* n. sp. were different from those of all known valid *Isospora* spp.

Molecular analysis was conducted at 3 loci: the 18S and 28S ribosomal RNA and two separate regions of subunit I of the mitochondrial cytochrome oxidase (COI) gene (designated COIa and COIb). At the 18S locus, *Isospora serinuse* n. sp. exhibited 97.5% similarity to *Isospora* sp. Tokyo from a domestic pigeon (*Columba livia domestica*) in Japan. At the 28S locus, *I. serinuse* n. sp. exhibited 94.9% similarity to *I. anthochaerae* n. sp. from a red wattlebird (*Anthochaera carunculata*) in Australia. At the COIa locus, *I. serinuse* n. sp. exhibited 95.7% similarity to *I. sospora* sp. ex *Apodemus flavicollis* from a yellow-necked mouse and *I. gryphoni* from an American goldfinch (*Carduelis tristis*) respectively. At the COIb locus, *I. serinuse* n. sp. exhibited 96.7% similarity to an *Isospora* (iSAT4) from a European pied flycatcher (*Ficedula hypoleuca*).

Based on morphological and molecular data, this isolate is a new species of *Isospora*, which is named *Isospora serinuse* n. sp. after its host, the domestic canary (*Serinus canaria forma domestica*).

Keywords: *Isospora*; domestic canary; morphology; phylogeny; 18S rRNA; 28S rRNA; COIa; COIb.
1. Introduction

Canary is the common name for the small passerine bird *Serinus canaria* in the finch family, Fringillidae (Clement et al. 1993). The domestic canary is a domesticated form of the wild canary. Little is known about the origin of canaries as cage birds but it is thought that captive canaries were first collected from the Canary Islands (Wetmore, 1923; Snow and Perrins 1998). Domestic canaries are generally divided into three main groups: Colorbred canaries, Type canaries (including the Australian Plainhead canary) and the Song canaries. The Australian Plainhead canary has its roots in the old style Norwich canaries that originated in Norwich, England and became a popular show variety in Australia (Frank, 2000).

Isospora are the most common coccidian parasites infecting passerine birds (Duszynski et al., 1999). To date, numerous species of *Isospora* has been characterised from passerine birds worldwide (Schrenzel et al., 2005; Berto, et al., 2011; Schoener et al., 2013). In Australia, two species of *Isospora* from honeyeaters (Meliphagidae) have been described; *I. lesouefi* from the endangered regent honeyeater (*Xanthomyza phrygia*), which is endemic to south-eastern Australia (Morin-Adeline et al., 2011) and *I. anthochaerae* from a red wattlebird (*Anthochaera carunculata*) (Yang et al., 2014). Another *Isospora* species, *I. streperae* has been described from a grey currawong (*Strepera versicolour plumbea*) in Western Australia (Yang et al., 2015). Two *Isospora* species (*I. cf. serini* and *I. canaria*) have been morphologically characterized in the canary (*Serinus canaries* Linnaeus) (Box, 1975; Speer and Duszynski, 1975; Berto et al., 2013). Recently, the complete mitochondrial genome sequence of *I. cf. serini* from a domestic canary (*Serinus canaria*) was published (Ogedengbe et al., 2015). To date, no species of *Isospora* has been characterized from the domestic canary in Australia. In the present study, we characterized a new species of *Isospora* from a domestic canary in Western Australia, both morphologically and molecularly, and propose the species name *Isospora serinuse* n. sp.

2. Materials and methods
2.1 Sample collection

An adult domestic canary was admitted to the Kanya Wildlife Rehabilitation Centre (KWRC) in July 2014. The bird appeared to be healthy. It was assumed to be an escaped pet. Faecal samples were collected on the day of admittance to KWRC. Microscopy was performed on a wet mount and this was found to be positive for coccidian oocysts as well as avian gastric yeast (AGY). A portion of collected faeces was also stored at 4°C until DNA extraction was performed. The canary was treated with Toltrazuril (50 mg/ml) at a dose rate of 15 mg/kg, in a single daily dose for a period of 3 days. Amphotericin B (a quarter of a 10mg tablet, crushed) was added to the birds’ drinking water for 20 days. The bird was successfully re-homed 3 weeks later after a clear faecal test. A further faecal sample was collected and tested 6 months later and was found to be negative for both coccidia and AGY.

2.2 Morphological analysis

The presence of oocysts was determined by direct microscopic examination of a faecal suspension in saline. Unsporulated coccidian oocysts were allowed to sporulate in a petri dish containing a thin layer of 2% (w/v) potassium dichromate solution ($\text{K}_2\text{Cr}_2\text{O}_7$). The petri dish was kept at room temperature (20-22°C) and in the dark. Sporulated oocysts were observed using the 100× oil immersion objective of an Olympus CH-2 binocular microscope, in combination with an ocular micrometre.

2.3 DNA isolation

Total DNA was extracted from 200 mg of each faecal sample using a Power Soil DNA Kit (MolBio, Carlsbad, California) with some modifications. Briefly, samples were subjected to four
cycles of freeze/thaw in liquid nitrogen and boiling water to ensure efficient lysis of oocysts before
being processed using the manufacturer’s protocol. A negative control (no faecal sample) was
included.

2.4 PCR amplification of 18S and 28S ribosomal sequences and the COI gene

Generic apicomplexan primers (CRYPTOF 5’-AAC CTG GTT GAT CCT GCC AGT and
CRYPTOR 5’-GCT TGA TCC TTC TGC AGG TTC ACC TAC) were used to amplify the almost
full length 18S rRNA gene as described by Eberhard et al., (1999). The expected PCR product was
~1,702 bp. The PCR reaction contained 2.5 µL of 10 × Kapa PCR buffer, 3 µl of 25 mM MgCl₂,
1.5 µL of 10nM dNTP’s, 10 pM of each primer, 1 unit of KapaTaq (Geneworks, Adelaide, SA), 1
µL of DNA (~50 ng) and 14.9 µL of H₂O. PCR cycling conditions were 1 cycle of 94ºC for 3 min,
followed by 45 cycles of 94ºC for 30 sec, 55ºC for 30 sec and 72ºC for 2 min and a final extension
of 72ºC for 5 min.

The PCR for the 28S rRNA locus was carried out using a nested PCR with the external
primers: 28SExF: 5’-TAC CCG CTG AAC TTA AGC and 28SExR: 5’- CMA CCA AGA TCT
GCA CTA G as previously described (Schrenzel et al., 2005), which produced a PCR product size
of ~1,362 bp. The internal primers (28SInF: 5’ – ACT ATG TTC CCT AGT AAC G and 28SInR 5’-
AAC GCT TCG CCA CGA TCC) were designed for the present study using Primer 3
(http://frodo.wi.mit.edu/) and produced an amplicon size of 1,420 bp. The PCR reaction contained
2.5 µL of 10 × Kapa PCR buffer, 2 µL of 25mM MgCl₂, 1 µL of 10mM dNTP’s, 10 pM of each
primer, 1 unit of KapaTaq (Geneworks, Adelaide, SA), 1 µL of DNA (~50 ng) and 16.9 µL of H₂O.
Both primary and secondary PCR’s were conducted using the same cycling conditions; 1 cycle of
94°C for 3 min, followed by 35 cycles of 94°C for 30 sec, 60°C for 30 sec and 72°C for 90 sec and a
final extension of 72°C for 5 min.
Two separate regions of the subunit I of the mitochondrial cytochrome oxidase (COI) gene (designated COIa and COIb) were amplified (Table 1). For the COIa region, PCR reactions contained 2.5 µL of 10 × Kapa PCR buffer, 1 µL of 25mM MgCl₂, 1 µL of 10mM dNTP’s, 10 pM of each primer, 1 unit of KapaTaq (Geneworks, Adelaide, SA), 1 µL of DNA (for primary reaction) or 1 µL primary PCR product (for secondary reaction) and 16.9 µL of H₂O. Both primary and secondary PCR’s were conducted using the same cycling conditions; 1 cycle of 94ºC for 3 min, followed by 35 cycles of 94ºC for 30 sec, 55ºC for 30 sec and 72ºC for 1 min and a final extension of 72ºC for 5 min. For the COIb region, PCR reaction conditions were the same as for the COIa PCR. Both primary and secondary PCR’s were conducted using the same cycling conditions; 1 cycle of 94ºC for 3 min, followed by 35 cycles of 94ºC for 30 sec, 57ºC for 30 sec and 72ºC for 1 min and a final extension of 72ºC for 5 min.

2.5 Sequence analysis

The amplicons from the second round PCRs were gel purified using an in house filter tip method as previously described (Yang et al., 2013). All the PCR products were sequenced using forward and reverse primers in duplicate, using amplicons from different PCR runs. Any mismatches were confirmed by re-amplifying with pfu (Promega, Sydney, Australia) and repeating the sequencing. An ABI Prism™ Dye Terminator Cycle Sequencing kit (Applied Biosystems, Foster City, California) was used for Sanger sequencing according to the manufacturer’s instructions (with the exception that the annealing temperature was at 58ºC).

The results of the sequencing reactions were analysed and edited using Finch TV® v1.4.0 (http://www.geospiza.com/Products/finchtv.shtml). Sequences were compared to existing Isospora and other coccidian parasite sequences available on GenBank using BLAST searches and aligned with reference sequences with BioEditor (http://bioeditor.sdsc.edu/download.shtml).
2.5 Phylogenetic analysis

Phylogenetic trees were constructed for *Isospora* spp. at the 18S, 28S, COIa and COIb loci with additional isolates from GenBank. Parsimony analyses were conducted using MEGA (Molecular Evolutionary Genetics Analysis software, version 6, Arizona State University, Tempe, Arizona, USA). Neighbor-joining (NJ) and maximum likelihood (ML) analyses were conducted Tamura-Nei based on the most appropriate model selection using ModelTest in MEGA 6. Bootstrap analyses were conducted using 1,000 replicates to assess the reliability of inferred tree topologies.

2.6 Line drawing

Oocyst line drawings were conducted using Inkscape (http://www.inkscape.org/en/).

3. Results

3.1 Description

Diagnosis:

Sporulated oocysts of *Isospora serinuse* n. sp. are spherical or subspherical, 25.5 (24.4-27.0) × 23.5 (22.0-24.8) µm, with a shape index (length/width) of 1.09; and a smooth and bilayered oocyst wall, 1.2 µm thick (outer layer 0.9 µm, inner 0.3 µm). A polar granule is present, but a micropyle and oocyst residuum are absent. The sporocysts are lemon-shaped, 18.9 (17.8 – 20.2) × 11.8 (10.6 -13.0) µm, with a shape index of 1.6. Stieda and substieda bodies are present, the Stieda body being small and crescent-shaped and the substieda being indistinct. Each sporocyst with four vermiform sporozoites arranged head to tail. A sporocyst residuum is present and composed of numerous granules of different sizes scattered among the sporozoites. (Fig. 1a and 1b and Table 2).

Type hosts: domestic canary (*Serinus canaria forma domestica*)

Type locality: Perth (31.9522°S, 115.8589°E), Western Australia.

Prevalence: Unknown

Other hosts: Unknown.
Prepatent period: Unknown.
Site of infection: Unknown
Sporulation time: 48 hours.
Material deposited: DNA sequences have been deposited in GenBank under the accession numbers KR477877 and KR477878, for the 18S and 28S respectively, KR477879 for COIa and COIb sequences.
Etymology: This species is named *Isospora serinuse* n. sp. after its host (*Serinus canaria*) (domestic canary).

3.2 Phylogenetic analysis of *I. serinuse* n. sp. at the 18S locus
A 1,702 bp sequence of 18S rRNA from *I. serinuse* n. sp was aligned with two other *Isospora* spp. sequences from passerine birds; *I. gryphoni* (AF080613) (Olson et al., 1998) and *I. robini* (AF080612) (Carreno and Barta, 1999), one *Isospora* spp. sequence from a domestic pigeon (*Isospora* sp. Tokyo - AB757860), three mammalian *Cyclospora* spp.; *Cyclospora cercopithecii* (AF111184, AF111185), *Cyclospora colobi* (AF061566, AF061568) and *Cyclospora papionis* (AF111187), as well as 25 Eimerian 18S rRNA sequences from GenBank. *Toxoplasma gondii* was used as the outgroup.
Phylogenetic analysis using distance, parsimony and ML revealed that *I. serinuse* n. sp. exhibited 97.5%, 97.4% and 97.0%, similarity with *Isospora* sp. *Tokyo* from a domestic pigeon (*Columba livia domestica*), *I. gryphoni* from an American goldfinch (*Carduelis tristis*) and *I. robini* from the American robin (*Turdus migratorius*) respectively (Fig. 2a). *Isospora anthochaerae* and *I. streperae* were not included in the 18S tree because only shorter sequences (300 bp) were available.
However, a separate phylogenetic analysis that included these two species revealed that the genetic similarity between *I. serinuse* n. sp. and *I. anthochaerae* and *I. streperae* were 98.3% and 91.7%, respectively (Fig. 2b).
3.4 Phylogenetic analysis of *I. serinuse* n. sp. at the 28S locus

A 1,362 bp amplicon from *I. serinuse* n. sp. was obtained at the 28S rRNA locus. Phylogenetic analysis included thirty-one *Isospora* sequences from passerine birds from a single report by Schrenzel et al., (2005) and *I. anthochaerae* (Yang et al., 2014). A 28S sequence from *I. streperae* was also available, but was only 904 bp in length and therefore was not included in the phylogenetic analysis. Analysis revealed that *I. serinuse* n. sp. grouped with *I. anthochaerae* (Fig. 3) with a similarity of 95.0%. Although not included in the tree, the genetic similarity between *I. serinuse* n. sp. and *I. streperae* was 93.7%

3.5 Phylogenetic analysis of *I. serinuse* n. sp. at the COIa locus

A 461 bp amplicon at the COIa locus from *I. serinuse* n. sp. was obtained. Phylogenetic analysis included five sequences from various *Isospora* sp. available in GenBank and forty-one *Eimeria* COI gene sequences. *Toxoplasma gondii* was used as the outgroup. *Isospora serinuse* n. sp. grouped with *Isospora* sp. ex *Apodemus flavicollis* isolate B13 (JQ993711) from a yellow-necked mouse in the Czech Republic with 95.7% similarity. *Isospora serinuse* n. sp. also exhibited 95.9% similarity with *Eimeria tiliquae* (JX839284) from a shingleback skink (*Tiliqua rugosa rugosa*) in Western Australia, 95.7% similarity with *I. gryphoni* (KC346355) from an American goldfinch (*Carduelis tristis*) in Canada and 95.5% similarity with *I. cf. serini* Ogedengbe et al., 2015 from a domestic canary (Fig. 4). A sequence for *I. anthochaerae* was not available for this locus.

3.5 Phylogenetic analysis of *I. serinuse* n. sp. at the COIb locus

A 215 bp amplicon at the COIb locus from *I. serinuse* n. sp. was also obtained. Phylogenetic analysis included COIb sequences from thirteen *Isospora* sp. and forty-one *Eimeria* species.
Toxoplasma gondii was used as the outgroup. *Isospora serinuse* n. sp. formed a separate clade and exhibited 96.7% and 96.6% similarity with *Isospora* sp. ISAT4 (FJ269360) and *Isospora* sp. ISAT1 (FJ269357) respectively, both of which were from an Eurasian blackcap (*Sylvia atricapilla*) in Germany. *Isospora serinuse* n. sp. also showed a high similarity (96.2%) with *I. hypoleuca* (FJ269363) from a European pied flycatcher (*Ficedula hypoleuca*) in Germany. *Isospora serinuse* n. sp. exhibited 95.7% similarity with *I. anthochaerae* and 91.6% with *I. streperae*, both from Western Australia and 95.3% similarity with *I. cf. serini* (Ogedengbe et al., 2015) from a domestic canary at this locus (Fig. 5).

4. Discussion

Sporulated oocysts of *I. serinuse* n. sp. are morphologically different from other *Isospora* species from birds and did not match any other existing documented *Isospora* species from Passeriformes (http://biology.unm.edu/biology/coccidia/passer.html (Accessed on 8 Apr. 2015). For example, oocysts of *I. serinuse* n. sp. are spherical to subspherical and measured 25.5 (24.4-27.0) × 23.5 (22.0-24.8) μm in size with a L/W ratio = 1.09. Oocysts contained a polar granule and an oocyst residuum. Oocysts of *I. canaria* are also spherical and measured 24.4 (21-27.9) × 22.2 (19.0-25.0) μm, with L/W ratio = 1.1, but the oocyst residuum was absent. Oocysts of *I. serini* are smaller (20.1 × 19.2 μm) and the oocyst residuum was also absent. Oocysts of *I. gryphoni* are larger than those from *I. serinuse* n. sp. They measure 30.7 (28.0-34.0) × 29.2 (25.0-33.0) μm with a L/W ratio of 1.05 and contain 2-4 rice-grain-shaped polar bodies (Olson et al., 1998) (Table 2). All five species have two ovoid shaped sporocysts but the sporocysts of *I. serinuse* n. sp. measured 18.9 (17.8 - 20.2) × 11.8 (10.6 -13.0) μm, whereas sporocysts of *I. canaria* measured 17.6 (16.0-20.0) × 10.6 (10.0-12.0). Sporocysts of *I. serini* measured 15.2 × 9.4, *I. gryphoni* measured 22.2 (15.0-25.0) × 13.4 (12.0-14.5) μm and sporocysts of *I. anthochaerae* measured 14.5 (11.0-17.0) ×10.1 (9.0-11.0) μm (Table 2). Each sporocyst of *I. serinuse* n. sp. had four vermiform sporozoites arranged head to tail which is a distinguishing feature of *Isospora* (Barta et al., 2005).
Traditionally, characterization of avian species of *Isospora* has mainly been based on morphological features and host specificity, however this is problematic due to morphological ambiguities and unknown host specificity (Grulet et al., 1982; Levine, 1982). Molecular data are therefore essential to accurately delimit species. In the present study, molecular characterization of *I. serinuse* n. sp. was conducted at three loci (18S, 28S rRNA and COI). Due to the limited availability of sequences for avian *Isospora* species at these loci, the phylogenetic trees were generated with different data sets. The most common locus used for molecular characterization of coccidian parasites is the 18S rRNA gene as evidenced by the large number of coccidian 18S RNA sequences in GenBank, followed by the COI gene, which is highly conserved (Barta, 2001). The COI gene has been shown to have a higher resolving power than the 18S RNA gene in delineating recent speciation events (Ogedengbe et al., 2011). Two sets of nested PCR primers were used in the present study targeting two different regions of the gene (COIa and COIb), at the COI locus (Table 1).

Phylogenetic analysis of 18S rRNA sequences revealed that *I. serinuse* n. sp. exhibited the highest similarity (98.3%) with *I. anthochaerae* from an Australian red wattlebird. At the 28S rRNA locus, *I. serinuse* n. sp. was also most closely related (95.0% similarity) to *I. anthochaerae*. At the COIa locus, a sequence for *I. anthochaerae* was not available and *I. serinuse* n. sp. exhibited the highest similarity (95.9%) with *E. tiliquae*. At the COIb locus, *I. serinuse* n. sp. exhibited 96.7% and 96.6% similarity with two *Isospora* sp. from a Eurasian blackcap and 95.7% similarity with *I. anthochaerae*. For the COIa tree (Fig. 4), *Isospora* sequences were randomly distributed along the tree among other eimerian sequences, whereas for the COIb tree (Fig. 5), all the *Isospora* sequences grouped separately from *Eimeria* sequences with the exception of *E. callospermophili*, which grouped with the *Isospora* sequences. This suggests that the COIb PCR primers may be more reliable for species delimitation of *Isospora* species in future studies.
In the present study, morphological and molecular data were used to describe *I. serinuse* n. sp. found in the faeces of a domestic canary in Western Australia. Future studies are needed to examine if this species has any pathogenic effects and more isolates need to be genetically characterized at multiple loci to better understand the epidemiology of *Isospora* sp. infecting the domestic canary.

Acknowledgments

The authors wish to thank June Butcher and the volunteers at the Kanyana Wildlife Rehabilitation Centre for their commitment and dedication in caring for all the animals admitted to the centre. We are also grateful to the staff at the Wattle Grove Veterinary Hospital, Perth for their expert treatment and care of the wildlife seen at their clinic.
References

Fig. 1a. Nomarski interference-contrast photomicrographs of *Isospora serinuse* n. sp. showing two spheroidal to subspheroidal sporocysts. Scale bar = 20 µm. **Fig. 1b.** Composite line drawing of *Isospora serinuse* n. sp. sporulated oocyst. Scale bar = 10 µm.

Fig. 2a. Evolutionary relationships of *Isospora serinuse* n. sp. inferred by distance analysis of 18S rRNA sequences. Percentage support (>50%) from 1000 pseudoreplicates from distance, ML and parsimony analysis, respectively, is indicated at the left of the support node (‘_’ = Not available). **b.** Phylogenetic relationships of *I. serinuse* n. sp., *I. gryphoni*, *I. robini*, *I. sp. Tokyo No. 1*, *I. streperae* n. sp and *I. anthochaerae* n. sp. (300 bp 18S rRNA sequence only).

Fig. 3. Evolutionary relationships of *Isospora serinuse* n. sp. inferred by distance analysis of 28S rRNA sequences. Percentage support (>50%) from 1000 pseudoreplicates from distance, ML and parsimony analysis, respectively, is indicated at the left of the support node (‘_’ = Not available).

Fig. 4. Evolutionary relationships of *Isospora serinuse* n. sp. inferred by distance analysis of COIa sequences. Percentage support (>50%) from 1000 pseudoreplicates from distance, ML and parsimony analysis, respectively, is indicated at the left of the support node (‘_’ = Not available).

Fig. 5. Evolutionary relationships of *Isospora serinuse* n. sp. inferred by distance analysis of COIb sequences. Percentage support (>50%) from 1000 pseudoreplicates from distance, ML and parsimony analysis, respectively, is indicated at the left of the support node (‘_’ = Not available).
Table 1. Primers and PCR conditions used for amplification of two regions of the mitochondrial cytochrome oxidase (COI) gene.

<table>
<thead>
<tr>
<th>Target region</th>
<th>Position on COI gene</th>
<th>Primers</th>
<th>Sequences</th>
<th>Size (bp)</th>
<th>Annealing</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>COIa</td>
<td>367-386</td>
<td>COIF1</td>
<td>5'-GGTTCAGGTGGTTGGTGAC</td>
<td>805</td>
<td>55</td>
<td>Ogedengbe et al., 2011</td>
</tr>
<tr>
<td></td>
<td>1153-1172</td>
<td>COIR1</td>
<td>5'-AATCCAATAACCAGCACCAG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>401-418</td>
<td>COIF2</td>
<td>5'-TAAGTACATCCCTAAATGTC</td>
<td>461</td>
<td>55</td>
<td>Yang et al., 2013a</td>
</tr>
<tr>
<td></td>
<td>865-884</td>
<td>COIR2</td>
<td>5'-GTCATCATATGRTGCTGCCA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COIb</td>
<td>854-875</td>
<td>COIbF1</td>
<td>5'-GWTCATTAGTGATGGGCACATCA</td>
<td>302</td>
<td>57</td>
<td>Dolnik et al., 2009</td>
</tr>
<tr>
<td></td>
<td>1135-1157</td>
<td>COIbR1</td>
<td>5'-CCAAGAGATAATAACRAARTGCAA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>886-884</td>
<td>COIbF2</td>
<td>5'-GGGCACATCATATGATGAC</td>
<td>257</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1100-1121</td>
<td>COIbR2</td>
<td>5'-ATAGTATGTATCATGARWGGCA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Morphological comparison of *I. serinuse* n. sp. with other *Isospora* species.

<table>
<thead>
<tr>
<th>Coccidia</th>
<th>Hosts</th>
<th>References</th>
<th>Oocysts</th>
<th>Sporocysts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shape</td>
<td>Measurements (um)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Measurem</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wall</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Polar</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>granule</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>residuum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I. anthochaereae</td>
<td>red wattlebird (Anthochaera carunculata)</td>
<td>Yang et al., 2014</td>
<td>subspherical</td>
<td>23.4 x 20.7 (20.0-26.0 x 19.0-22.0)</td>
</tr>
<tr>
<td>I. canaria</td>
<td>canary (Serinus canaria Linnaeus) American goldfinch (Carduelis tristis L.)</td>
<td>Box 1975; Berto et al., 2013</td>
<td>subspherical to ellipsoidal</td>
<td>24.6 x 21.8 (17-30 x 17-30)</td>
</tr>
<tr>
<td>I. gryphoni</td>
<td>canary (Serinus canaria Linnaeus) American goldfinch (Carduelis tristis L.)</td>
<td>Olson et al., 1998</td>
<td>spherical</td>
<td>29.2 x 30.7 (25.0-33.0 x 28.0-34.0)</td>
</tr>
<tr>
<td>I. serini</td>
<td>canary (Serinus canaria forma domestica)</td>
<td>Box 1975; Speer and Duszynski, 1975</td>
<td>spherical to subspherical</td>
<td>20.1 x 19.2 (13.0-23.0 x 13.0-23.0)</td>
</tr>
<tr>
<td>I. serinuse n. sp.</td>
<td>canary (Serinus canaria forma domestica) Grey currawong (Strepera versicolor)</td>
<td>This study</td>
<td>spherical to subspherical</td>
<td>25.5 x 23.5 (24.4-27.0 x 22.0-24.8)</td>
</tr>
<tr>
<td>I. streperae</td>
<td>Grey currawong (Strepera versicolor)</td>
<td>Yang et al., 2015</td>
<td>spherical</td>
<td>23.8 x 22.5 (22-24.5 x 21.8 x 24.5)</td>
</tr>
</tbody>
</table>
I. sp. MS-2003 AY283847 Southern cape sparrow (Passer melanurus)
I. sp. MS-2003 AY283843 Northern house sparrow (Passer domesticus)
I. sp. MS-2003 AY283842 Northern house sparrow (Passer domesticus)
I. sp. MS-2003 AY283841 Northern house sparrow (Passer domesticus)
I. sp. MS-2003 AY283869 Eastern golden-breasted starling (Cosmopsarus regius magnificus)
I. sp. MS-2003 AY283848 Southern cape sparrow (Passer melanurus)
I. sp. MS-2003 AY283870 Eastern golden-breasted starling (Cosmopsarus regius magnificus)
I. sp. MS-2003 AY283846 Northern white-headed buffalo weaver (Dinemellia dinemelli)
I. sp. MS-2003 AY283840 Northern house sparrow (Passer domesticus)
I. sp. MS-2003 AY283869 Eastern golden-breasted starling (Cosmopsarus regius magnificus)
I. sp. MS-2003 AY283848 Southern cape sparrow (Passer melanurus)
I. sp. MS-2003 AY283846 Northern white-headed buffalo weaver (Dinemellia dinemelli)
I. sp. MS-2003 AY283849 Southern cape sparrow (Passer melanurus)
I. sp. MS-2003 AY283853 Guianan turquoise tanager (Tangara mexicana)
I. sp. MS-2003 AY283855 Canary (Serinus canaria)
I. sp. MS-2003 AY283858 Cowbird (Molothrus ater)
I. sp. MS-2003 AY283862 Costa rican orange-billed sparrow (Arremon aurantiirrostris rufidorsalis)
I. sp. MS-2003 AY283844 Himalayan grey-headed bullfinch (Pyrrhula erythaca)
I. sp. MS-2003 AY283845 Himalayan grey-headed bullfinch (Pyrrhula erythaca)
I. sp. MS-2003 AY283839 Northern house sparrow (Passer domesticus)
I. sp. MS-2003 AY283857 Eastern white-starred bush robin (Pogonocichla stellata orientalis)
I. sp. MS-2003 AY283861 Eastern blue-winged sivia (Minda cyanauroptera)
I. sp. MS-2003 AY283852 Sichuan white-browed laughing thrush (Garrulax sannio oblectans)
I. sp. MS-2003 AY283850 Javan ruby-throated bulbul (Pycnonotus melanarius dispar)
I. sp. MS-2003 AY283863 Chinese collared finchbill (Spizixos semitorques semitorques)
I. sp. MS-2003 AY283866 Grosbeak starling (Scissirostrum dubium)
E. papillata GU593706 Chicken (Gallus gallus)
I. antochoeru KE766053 Red Wattled Bird (Anthoecaer a carunculata)
I. serius u. sp. KR477878 Domestic canary (Serinus canaria forma domestica)
E. tenella AP026388 Chicken (Gallus gallus)
Cyclopora cayetanensis EU252544

Goussia balatonica GU593717
Goussia desseri GU593705
98, 97, 100
100, 100, 100
Sarcocystis rieyi GU188426
Frenkelia glareoli AF044251
Cystiospora felis U85790
Besnoitia besnoiti DQ227420
Neospora caninum AF001946
Hammondia hammondi AF101077
T. gondii L25635

Ref: 79, 78, 79
50, 51, 1
100, 100, 100
99, 100, 100
99, 99, 99
99, 99, 99
98, 98, 98
100, 100, 100
99, 97, 100
99, 97, 100
99, 99, 99
99, 99, 99
99, 99, 99
50, 57, 68
68, 71, 66
100, 100, 100
98, 98, 98
100, 100, 100
100, 100, 100
100, 100, 100
100, 100, 100
84, 87, 100
Highlights

- Description of a new *Isospora* species (*I. serinuse* n. sp.) in a domestic canary
- Morphology study distinct to other *Isospora* species from birds.
- Genetic study: 98.3% similar to *I. anthochaerae* (KF766052) at 18S locus.