Problem
The Maximum Number of Runs in a String

Bill Smyth

1 Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1
smyth@mcmaster.ca
www.cas.mcmaster.ca/cas/research/algorithms.htm

2 Digital Ecosystems & Business Intelligence Institute
and Department of Computing, Curtin University, GPO Box U1987
Perth WA 6845, Australia
smyth@computing.edu.au

Given a nonempty string \(u \) and an integer \(e \geq 2 \), we call \(u^e \) a repetition; if \(u \) itself is not a repetition, then \(u^e \) is a proper repetition. Given a string \(x \), a repetition in \(x \) is a substring \(x[i..i+e|u|-1] = u^e \), where \(u^e \) is a proper repetition and neither \(x[i+e|u|..i+(e+1)|u|] \) nor \(x[i-|u|..i-1] \) equals \(u \). We say the repetition has period \(|u|\) and exponent \(e \); it can be specified by the integer triple \((i, |u|, e)\). It is well known [2] that the maximum number of repetitions in a string \(x = x[1..n] \) is \(\Theta(n \log n) \), and that the number of repetitions in \(x \) can be computed in \(\Theta(n \log n) \) time [2, 1, 10].

A string \(u \) is a run iff it is periodic of (minimum) period \(p \leq |u|/2 \). Thus \(x = abaabaabaabaab = (aba)^4ab \) is a run of period \(|aba| = 3 \). A substring \(u = x[i..j] \) of \(x \) is a run or maximal periodicity in \(x \) iff it is a run of period \(p \) and neither \(x[i-1..j] \) nor \(x[i..j+1] \) is a run of period \(p \). The run \(u \) has exponent \(e = \lfloor |u|/p \rfloor \) and possibly empty tail \(t = x[i+ep..j] \) (proper prefix of \(x[i..i+p-1] \)). Thus

\[
\begin{array}{c}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\end{array}
\]

\[
x = b a a a b a a b a a b a b a
\]

contains a run \(x[3..12] \) of period \(p = 3 \) and exponent \(e = 3 \) with tail \(t = a \) of length \(t = |t| = 1 \). It can be specified by a 4-tuple \((i, p, e, t) = (3, 3, 3, 1)\).

and it includes the repetitions \((aab)^3\), \((aba)^3\) and \((baa)^2\) of period \(p = 3 \).

In general it is easy to see that for \(e = 2 \) a run encodes \(t+1 \) repetitions;
for $c > 2$, p repetitions. Clearly, computing all the runs in x specifies all the repetitions in x. The idea of a run was introduced in [9].

Let r_x denote the number of runs that actually occur in a given string x, and let $\rho(n)$ denote the maximum number of runs that can possibly occur in any string x of given length n. A string $x = x[1..n]$ such that $r_x = \rho(n)$ is said to be run-maximal.

In [7, 8] it was shown that there exist universal positive constants k_1 and k_2 such that

$$\frac{\rho(n)}{n} < k_1 - k_2 \log_2 n / \sqrt{n},$$

but the proof was nonconstructive and provided no way of estimating the magnitude of k_1 and k_2. In [7], using a brute force algorithm, a table of $\rho(n)$ was computed for $n = 5, 6, \ldots, 31$, giving also for each n an example of a run-maximal string; for every n in this range, $\rho(n)/n < 1$ and $\rho(n) \leq \rho(n-1) + 2$. In [5] an infinite sequence $X = \{x_1, x_2, \ldots\}$ of strings was described, with $|x_{i+1}| > |x_i|$ for every $i \geq 1$, such that

$$\lim_{i \to \infty} \frac{r_{x_i}}{|x_i|} = \frac{3}{2\phi},$$

where $\phi = \frac{1 + \sqrt{5}}{2}$ is the golden mean. Moreover, it was conjectured that in fact

$$\lim_{n \to \infty} \frac{\rho(n)}{n} = \frac{3}{2\phi}.$$ \hspace{1cm} (1)

Recently a different and simpler construction was found [6] to yield another infinite sequence X of strings for which the ratio $r_{x_i}/|x_i|$ approached the same limit; in addition, it was shown that for every $\epsilon > 0$ and for every sufficiently large $n = n(\epsilon)$, $\frac{3}{2\phi} - \epsilon$ provides an asymptotic lower bound on $\rho(n)/n$.

In 2006 considerable progress was made on the estimation of an upper bound on $\rho(n)/n$:

* $\rho(n)/n \leq 5.0$ [12];
* $\rho(n)/n \leq 3.48$ [11];
* $\rho(n)/n \leq 3.44$ [13];
* $\rho(n)/n \leq 1.6$ [3].

Thus the problem may be stated as follows:

Is conjecture (1) true?

If not, then characterize the function $\rho(n)/n$.

Help may be found in recent work studying the limitations imposed on the existence and length of runs in neighbourhoods of positions where two runs are known to exist [4, 14].
References