
http://researchrepository.murdoch.edu.au/27561/

Copyright: © 1998 Charles Babbage Research Centre
It is posted here for your personal use. No further distribution is permitted.
THE COVERS OF A CIRCULAR FIBONACCI STRING

Costas S. Iliopoulos
Department of Computer Science
King’s College London, University of London
e-mail: csi@dcs.kcl.ac.uk
School of Computing
Curtin University of Technology
e-mail: csi@cs.curtin.edu.au

Dennis Moore
School of Computing
Curtin University of Technology
e-mail: moore@cs.curtin.edu.au

W. F. Smyth
Department of Computer Science & Systems
McMaster University
e-mail: smyth@mcmaster.ca
School of Computing
Curtin University of Technology
e-mail: smyth@cs.curtin.edu.au

ABSTRACT

Fibonacci strings turn out to constitute worst cases for a number of computer algorithms which find generic patterns in strings. Examples of such patterns are repetitions, Abelian squares, and “covers”. In particular, we characterize in this paper the covers of a circular Fibonacci string \(C(F_k) \) and show that they are \(\Theta(|F_k|^2) \) in number. We show also that, by making use of an appropriate encoding, these covers can be reported in \(\Theta(|F_k|) \) time. By contrast, the fastest known algorithm for computing the covers of an arbitrary circular string of length \(n \) requires time \(O(n \log n) \).
1. Introduction

For any nonnegative integer \(k\), a Fibonacci string \(F_k\) is defined as follows: \(F_0 = b\), \(F_1 = a\), while for \(k \geq 2\), \(F_k = F_{k-1}F_{k-2}\). The number of elements in \(F_k\) is called its length, denoted by \(f_k = |F_k|\), where of course \(f_k\) is a Fibonacci number. For every pair of integers \(i\) and \(j\) satisfying \(1 \leq i \leq j \leq f_k\), \(F_k[i..j]\) denotes a substring of \(F_k\); when \(i = j\), we write \(F_k[i..i] \equiv F_k[i]\), the element at the \(i^{th}\) position in \(F_k\).

Fibonacci strings are important in many contexts [B86], but our main interest in them here will be as examples of the worst case behaviour for algorithms which compute repetitions or (in some well-defined sense) “approximate” repetitions in arbitrary given strings. If \(x\) is a string of length \(n\) which contains a substring \(x[i..j] = u^m\) for some greatest integer \(m \geq 2\), then \(u^m\) is said to be a repetition in \(x\) if and only if \(u\) is nonempty and not itself a repetition. Thus \(F_5 = abaababa\) contains the four repetitions \(F_5[1..6] = (aba)^2\), \(F_5[3..4] = a^2\), \(F_5[4..7] = (ab)^2\), and \(F_5[5..8] = (ba)^2\). Note also that, according to this definition, \(x = a^n\) contains only the single repetition \(a^n\). There are three well-known algorithms which compute all the repetitions in a given string \(x\) of length \(n\) [AP83, C81, ML84]; each of these algorithms executes in time \(\Theta(n \log n)\), a bound that is known to be lowest possible [ML84]. Thus \(\Theta(n \log n)\) is an upper bound on the number of repetitions which can possibly occur in any string \(x\), and, as Crochemore has shown [C81], this bound is in fact achieved by the Fibonacci strings. In fact, the squares in a Fibonacci string have recently been completely characterized [IMS95].

The idea of a repetition can be weakened in the following way: if for some greatest integer \(m \geq 2\), \(y = u_1u_2 \ldots u_m\) is a substring of \(x\) such that for every integer \(i \in 2..m\), \(u_i\) is a permutation of \(u_1\), then \(y\) is said to be a weak repetition in \(x\). (In the case that \(m = 2\), \(y\) is sometimes called an Abelian square.) Clearly every repetition is a weak repetition, and, in addition to the four repetitions listed above, \(F_5\) also contains the weak repetitions \(F_5[2..5] = (ba)(ab)\) and \(F_5[3..8] = (aab)(aba)\). There is only one known algorithm [CS95] to compute all the weak repetitions in a given string \(x\). This algorithm requires \(\Theta(n^2)\) time and, as shown in [CS95], \(F_k\) in fact contains \(\Theta(f_k^2)\) weak repetitions, thus again achieving the upper bound.

The idea of a repetition can be generalized in another way. If every position of a given string \(x\) of length \(n\) lies within an occurrence of a substring \(u\) within \(x\), then \(u\) is said to be a cover of \(x\). If, in addition, \(|u| < n\), we call \(u\) a proper cover of \(x\). For example, \(x\) is always a cover of \(x\), and \(u = aba\) is a proper cover of \(F_5\). We see that if \(x = u^m\) is a repetition, then it follows that \(u\) is a cover of \(x\). There exists a linear time algorithm to compute all the covers of \(x\) [MS95], and it is not difficult to show

1
that x has at most $O(\log n)$ covers; it follows from Lemma 2.5 of [IMS95] that F_k has $\lfloor (k-3)/2 \rfloor = \Theta(\log f_k)$ proper covers, and so here also F_k attains the upper bound.

The *circular string*, denoted $C(x)$, corresponding to a given string x, is the string formed by concatenating $x[1]$ to the right of $x[n]$. It turns out also to be of interest to compute the covers (of length at most $|x|$) of a circular string $C(x)$ [IMP93], but, surprisingly, the number of covers of $C(x)$ can greatly exceed the number of covers of x. In this paper we characterize the covers of $C(F_k)$ and, as a byproduct, show that they are $\Theta(f_k^2)$ in number. Notwithstanding this fact, the algorithm described in [IMP93] reports $\Theta(n^2)$ covers in $\Theta(n \log n)$ time by making use of an appropriate encoding of the output. As we shall see, in the particular case $x = F_k$, the covers of $C(F_k)$ can actually be reported in time $\Theta(f_k)$ provided a certain encoding of the output is acceptable to the user.

2. Characterizing The Covers

Our results are based on two fundamental lemmas already proved in [IMS95]:

Lemma 2.1 For any integer $k \geq 2$, let

$$P_k = F_{k-2}F_{k-3} \cdots F_1.$$ \hspace{1cm} (2.1)

Then $F_k = P_k \delta_k$, where $\delta_k = ab$ if k is even, and $\delta_k = ba$ otherwise.

Proof Easily proved by induction; see Proposition 1 of [L81] and Lemma 2.8 of [IMS95]. \hfill \Box

In order to state the second lemma, we introduce the idea of a “rotation” of a given string x of length n: for every integer $j \in \{0..n-1\}$,

$$R_j(x) = x[j+1..n]x[1..j]$$

is called the jth rotation of x. We observe that $R_0(x) \equiv x$ and that $C(x) = C(R_j(x))$ for every value of j; thus $R_j(x)$ is a cover of $C(x)$.

Lemma 2.2 For every integer $k \geq 2$, $F_k \neq R_j(F_k)$ for any integer $j \in 1..f_k - 1$.

Proof See Lemma 2.6 of [IMS95]. \hfill \Box

A third technical lemma also turns out to be useful.
Lemma 2.3 For every integer \(k \geq 2 \), \(F_{k-2} \) covers \(F_k \) with exactly 3 occurrences: as prefix of \(F_k \), as a suffix of \(F_k \) and at position \(f_{k-2} + 1 \). These are the only occurrences of \(F_{k-2} \) in \(F_k \).

Proof One can see that

\[
F_k = F_{k-1}F_{k-2} = F_{k-2}F_{k-3}F_{k-5}F_{k-4}.
\]

Thus three occurrences of \(F_{k-2} \) actually cover \(F_k \) (see Fig. 1(a)). That there are no other occurrences of \(F_{k-2} \) in \(F_k \) follows from the observation that any other occurrence of \(F_{k-2} \) would necessarily equal a rotation \(R_j(F_k) \), \(j > 0 \), in contradiction to Lemma 2.2. Observe that in \(C(F_k) \), the first occurrence of \(F_{k-2} \) and the second occurrence of \(F_{k-2} \) are preceded by \(\delta_k = \delta_{k-2} \), while the third occurrence of \(F_{k-2} \) is preceded by \(\delta_k - 1 \). See also Theorem 2.2 of [IMS95].

![Fig. 1](image)

The circle represents the cyclic string \(C(F_k) \).

A circular string \(C(x) \) has \(n \) possible representations: \(x[i..n]x[1..i-1] \) for \(i \in \{1, \ldots, n\} \) (see [IS92]). Here, we use the convention that the first position of \(C(x) \) is the position that a (randomly chosen) occurrence of \(x \) starts and that the positions in \(C(x) \) increase clockwise. Note that in general, the string \(x \) may be the prefix of more than one representation (see [IS]). It also convenient to use \(x^{(h)} \), \(h = 1, 2, \ldots \) to denote the \(h \)-th occurrence of a substring \(s \) in \(C(x) \). For example \(F_{k-2}^{(2)} \) occurs at position \(f_{k-2} + 1 \) of \(C(F_k) \) and \(F_{k-2}^{(3)} \) occurs at position \(f_{k-1} + 1 \) of \(C(F_k) \) (see Fig. 1(a)).

In establishing our results, we employ the following strategy:

- Making use Lemmas 2.1, 2.2, and 2.3, we first show that every cover \(u \) of \(C(F_k) \) is necessarily a substring of \(F_k \) as defined in (2.1); that is, \(u \) cannot contain occurrences of both \(\delta_k \) and \(\delta_{k-1} \).
- We then show that a string \(u \) of length less than \(f_k \) is a cover of \(C(F_k) \) if and only if it is a cover of \(C(F_{k+1}) \); thus, for each value of \(k \), we need concern ourselves only with those proper covers of length at least \(f_k \).
• Finally, we characterize the covers of $C(F_k)$ of length at least f_{k-1}.

This latter result then enables us easily to count all the proper covers of $C(F_k)$.

Lemma 2.4 Every proper cover of $C(F_k)$ is a substring of P_k.

Proof The lemma is trivially true for $k \leq 3$ and true by inspection for $k = 4$. We suppose then that $k \geq 5$ and further that u is a cover of $C(F_k)$, but not a substring of P_k. Hence $u \geq f_k/2$. Since u is not a substring of P_k, one occurrence of u in $C(F_k)$, say u^*, must contain a nonempty prefix of F_k as a suffix (see Fig. 1(b)). (We exclude the case $u = F_k[1..f_k-1] = F_k[2..f_k]$, clearly an impossibility.) Let j be the starting position of u^*.

(a) Case of u^* containing no occurrence of F_{k-2} (see Fig. 2(a)). Since $F_k = F_{k-2}F_{k-3}F_{k-2}$, it follows that

$$u = u^* = F_{k-2}[j..f_{k-2}]F_{k-2}[1..i],$$

for integers $i \in \{1, \ldots, f_{k-2} - 1\}$, $j \in \{2, \ldots, f_{k-2}\}$. But since $F_k = F_{k-2}F_{k-2}F_{k-3}F_{k-4}$, we see that therefore u must be a substring of F_k^2, hence of P_k, a contradiction.

(b) Case of u^* starting at position $f_{k-1} + 1$ (see Fig. 2(b)). In this case u^* contains an occurrence of F_{k-2} and $u^* = F_{k-2}u'$, where u' is a prefix of F_k. But

$$F_k = F_{k-1}F_{k-2} = P_{k-1}\delta_{k-1}F_{k-2},$$

by Lemma 2.1, and so $F_{k-2}F_k = P_k\delta_{k-1}F_{k-2}$. Hence u^* is a prefix of $P_k\delta_{k-1}$ and since, as above, $u \neq F_k[1..f_k-1]$, we arrive again at the contradiction that u is a substring of P_k.

(c) Case of u^* starting at position $j < f_{k-1}$ (see Fig. 2(c)). Then we have $u^* = u'F_{k-2}u''$ for some nonempty u' and $u'' = F_k[1..i]$, for some integer

\[
\begin{tabular}{cccc}
\includegraphics[width=0.2\textwidth]{fig2a} & \includegraphics[width=0.2\textwidth]{fig2b} & \includegraphics[width=0.2\textwidth]{fig2c} & \includegraphics[width=0.2\textwidth]{fig2d} \\
(a) & (b) & (c) & (d)
\end{tabular}
\]

Fig. 2

The circle represents $C(F_k)$, the internal arc represents u^*.
\[i \in \{1, \ldots, f_{k-1} - |u'| - 2\}. \] Observe by Lemma 2.1 that \(u' \) has suffix \(a \) if \(k \) is even, suffix \(b \) otherwise. But this case is impossible, since any other occurrence of \(u \), say \(\hat{u} \), must take the form (see Lemma 2.3)

\[\hat{u} = u' F_{k-2}^{(h)} u''', \quad h = 1, 2 \]

again by Lemma 2.1, \(u' \) has suffix \(b \) if \(k \) is even, suffix \(a \) otherwise.

(d) Case of \(u^* \) starting at position \(j > f_{k-1} \) (see Fig. 3(d)). Then we have

\[u^* = u' F_{k-2} u'' \]

for nonempty strings \(u' \) and \(u'' \). But then another occurrence of \(u \) must be (see Lemma 2.3)

\[\hat{u} = u' F_{k-2}^{(2)} u''', \]

whose final term \(u''' \) contains \(\delta_k \) in the same position that \(u'' \) contains \(\delta_{k-1} \). Thus this case also is impossible, and so we conclude that if \(u \) is a cover of \(C(F_k) \), it must also be a substring of \(P_k \). \(\Box \)

The proof of our first main lemma was lengthy, but it will simplify the proof of the remaining results:

Lemma 2.5 A proper substring \(u \) of \(F_k \) is a cover of \(C(F_k) \) if and only if it is a cover of \(C(F_{k+1}) \).

Proof We consider the string \(C(F_k^2) \) and in particular the occurrences of \(P_k \) at positions \(1 \) and \(f_{k+1} + 1 \) of \(C(F_k^2) \) (see Fig. 3(a)):

\[P_k = F_k^2[1..f_k - 2]; \]
\[P_k = F_k^2[f_{k+1} + 1..f_{2k}] F_k^2[1..f_{k-1} - 2]. \]

\[\ldots (2.2) \]

Fig. 3

The circles of (a), (b) and (c) represent the string \(C(F_k^2) \).

The circle of (d) represents the string \(C(F_{k+1}) \).
Suppose first that u is a cover of $C(F_k)$, hence also a cover of $C(F_k^2)$. Note that $C(F_{k+1})$ and $C(F_k^2) = C(F_{k+1}F_{k-2})$ differ only by the suffix F_{k-2} (compare Fig.
3(a) and 3(d)); thus it will suffice to show the following:

(a) If u occurs at position $j \in \{1, \ldots, f_{k+1}\}$ in $C(F_k^2)$ (see Fig. 3(b)), then u also occurs at the same position in $C(F_{k+1})$. This is trivially true for the occurrences that terminate within F_{k+1}. This is also true for the occurrences that terminate beyond F_{k+1} (see Fig. 3(b)); this follows from the fact that u is shorter than P_k (Lemma 2.4), and P_k (and thus u', the suffix of u beyond F_{k+1}) occurs at positions 1 and $f_{k+1} + 1$.

(b) If u occurs at position $j \in \{f_{k+1} + 1, \ldots, 2f_k\}$ in $C(F_k^2)$ (see Fig. 3(c)), then u also occurs at the positions $j - f_{k+1}$ in $C(F_{k+1})$; this follows from the fact P_k occurs at positions 1 and $f_{k+1} + 1$ in $C(F_{k+1})$ (see Fig. 3(c)).

A straightforward reversal of the above argument shows also that it is sufficient.

We can now complete the picture by characterizing the covers of F_k which are not proper covers of F_{k-1}:

Theorem 2.1 Let u be a cover of F_k such that $f_{k-1} \leq |u| \leq f_k$. Then u is one of the following:

(a) $R_j(F_k)$, for every integer $j = 0, 1, \ldots, f_k - 1$.

(b) $R_j(F_k[1..f_{k-1} + h])$, for every integer $h = 0, 1, \ldots, f_{k-2} - 2$ and every integer $j = 0, 1, \ldots, f_{k-2} - h - 2$;

Proof Note first that (a) is immediate: it merely asserts that every rotation of F_k is a cover of $C(F_k)$. To prove (b), we consider the string $C(F_k^2)$ and in particular the occurrences of P_k at positions 1, $f_{k-1} + 1$, and $f_k + 1$ (see Fig. 4).

![Fig. 4](image)

The circle represents the string $C(F_k^2)$. 6
One can easily see that every string $P_k[1..i]$ is a cover of $C(F_k)$ for every integer $i \in \{f_{k-1}, \ldots, f_k - 2\}$. Indeed, it is further clear that every substring of P_k of length i is in fact a cover of $C(F_k)$: these are exactly the strings specified in (b).

This result, together with Lemma 2.5, may be used to count the proper covers of $C(F_k)$. From Theorem 2.1(a) we see that the proper covers of lengths $|u| = f_k - 2, f_k - 3, \ldots, f_{k-1}$ may be counted as

$$1 + 2 + \cdots + f_{k-2} - 1 = \binom{f_{k-2}}{2}.$$

Letting ν_k denote the number of proper covers of F_k, Lemma 2.5 then provides the recurrence relation

$$\nu_k = \nu_{k-1} + \binom{f_{k-2}}{2} \quad \text{(2.3)}$$

with initial condition $\nu_3 = 0$. Solving (2.3) then yields the result that $\nu_k \in \Theta(f_k^2)$:

Theorem 2.2 For every integer $k \geq 4$, the number of proper covers of $C(F_k)$ is given by

$$\nu_k = f_k(f_k - 3 - 1)/2 + (k - 1) \mod 2.$$

Finally, we observe that the proper covers of $C(F_k)$ can easily be reported in $\Theta(f_k)$ time by a simple encoding of the output. For example, to specify all the covers described in Theorem 2.1(a), it suffices to give for each length $i = f_{k-1} + h$ the number of rotations of $P_k[1..i]$ that are to be counted as covers. In fact, if it is acceptable to specify only the range of i together with the corresponding range of j, then only a constant number of outputs are required for each value of k, and so a total of only $\Theta(\log f_k)$ outputs are necessary.

REFERENCES

ACKNOWLEDGEMENTS

The work of the first author was supported in part by SERC grants GR/F 00898 and GR/J 17844, NATO Grant No. CRG 900293, ESPRIT BRA Grant No. 7131 for ALCOM II, and MRC Grant No. G 9115730. The work of the third author was supported in part by Grant No. A8180 of the Natural Sciences & Engineering Research Council of Canada and by Grant No. GO-12778 of the Medical Research Council of Canada.