Suppose integers \(n \geq 1 \) and \(\sigma \geq 2 \) are given, together with \(n \) distinct points \(z_1, \ldots, z_n \), in the complex plane. Define \(\Phi_M = \Phi_M(\sigma; z_1, \ldots, z_n) \) to be the class of rational functions

\[
\phi_{p,q}(z) = \frac{g_p(z)}{h_q(z)}
\]

(where \(g \) and \(h \) are polynomials of degree \(p \) and \(q \), respectively) such that \(\phi \) when iterated converges with order \(\sigma \) at each \(z_i \), \(i = 1, \ldots, n \). Then if \(M < \sigma n \), \(\Phi_M \) is null; if \(M = \sigma n \), \(\Phi_M \) contains exactly \(\sigma n \) elements. For every \(p + q + 1 = M \), we show how to construct all the elements of \(\Phi_M \) by expressing, for each choice of \(p \) and \(q \) which satisfies \(p + q + 1 = M \), the coefficients of \(g_p \) and \(h_q \) in terms of arbitrarily chosen values. In fact, these coefficients are expressed in terms of generalized Newton sums

\[
S_{j,k}^n = S_{j,k}^n(z_1, \ldots, z_n), \quad 1 \leq j \leq n, \quad k \geq n
\]

which we show may be calculated by recursion from the normal Newton sums \(S_{j,k}^n \). Hence, given a polynomial \(f_n(z) \) with \(n \) distinct (unknown) zeros \(z_1, \ldots, z_n \), we may construct all \(\phi_{p,q}(z) \) which converge to the \(z_i \) with order \(\sigma \) in the case \(\sigma = 2 \), the choice \(p = n \), \(q = n - 1 \), yields the Newton-Raphson iteration

\[
\phi_{n,n-1} \in \Phi_{2n}
\]

yields the Schröder and König iterations are shown to be elements of \(\Phi_{n,n-1} \) and \(\Phi_{2(n-1)(n-1)+2} \), respectively. We show by example that there exist cases in which \(\Phi_{2n} \) has an undesirable property (attractive cycles) not shared by other iterating functions in the same class.