MURDOCH UNIVERSITY

SCHOOL OF INFORMATION TECHNOLOGY

Application of the Recommendation Architecture Model for Text Mining

Uditha Ratnayake B.Sc. (Eng.) (Hons)

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University

October 2003
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Uditha Ratnayake

October 2003
Acknowledgement

I am very grateful to Prof. Tamás (Tom) Gedeon and Dr. Graham Mann, my principal supervisors, for their constant support and inspiring guidance. Tom’s expertise and encouragement throughout the research process and the development of the thesis were invaluable. Graham’s constructive feedback, enthusiasm and insight made a huge difference to the progress of the thesis. I also thank Dr. Nalin Wickramarachchi, my supervisor in Sri Lanka, for his advice while I worked in Sri Lanka.

My heartfelt gratitude extends to Andrew Coward for his constructive comments on my work in various phases and for many stimulating discussions. His patience in explaining various concepts of the Recommendation Architecture and the help given for programming the prototype are truly appreciated.

My thanks also extend to my colleagues Alex and Kevin for providing useful advice and moral support during my stay at Murdoch. I am indebted to Madu, my husband, for his continuous support, encouragement and patience. Finally, I would like to thank my mother, father and family members for their encouragement and assistance.
List of Publications

The following publications were derived from this research in applying the Recommendation Architecture for the domain of text mining.

Refereed Journal papers

Refereed Conference Papers

Abstract

The Recommendation Architecture (RA) model is a new connectionist approach simulating some aspects of the human brain. Application of the RA to a real world problem is a novel research problem and has not been previously addressed in literature. Research conducted with simulated data has shown much promise for the Recommendation Architecture model’s ability in pattern discovery and pattern recognition. This thesis investigates the application of the RA model for text mining where pattern discovery and recognition play an important role.

The clustering system of the RA model is examined in detail and a formal notation for representing the fundamental components and algorithms is proposed for clarity of understanding. A software simulation of the clustering system of the RA model is built for empirical studies. In the argument that the RA model is applicable for text mining the following aspects of the model are examined. With its pattern recognition ability the clustering system of the RA is adapted for text classification and text organization. As the core of the RA model is concerned with pattern discovery or identification of associative similarities in input, it is also used to discover unsuspected relationships within the content of documents. How the RA model can be applied to the problems of pattern discovery in text and classification of text is addressed demonstrating results from a series of experiments. The difficulties in applying the RA model to real life data are described and several extensions to the RA model for optimal performance are proposed from the insights obtained from experiments. Furthermore, the RA model can be extended to provide user-friendly interpretation of results. This research shows that with the proposed extensions the
RA model can be successfully applied to the problem of text mining to a large extent. Some limitations exist when the RA model is applied to very noisy data, which are also demonstrated here.
Table of Contents

Chapter 1 Introduction

1.1 A Brief Overview of Four AI Models which Simulate the Localized Learning of the Human Brain ... 2
1.1.1 The Evolutionary Selection Circuits Model and the Theory of Neural Group Selection ... 2
1.1.2 Evolving Connectionist Systems (ECOS) .. 3
1.1.3 CAM Brain (CAM – Cellular Automata Machine) 4
1.2 The Recommendation Architecture .. 4
1.3 Application to Text Mining ... 8
1.4 Motivation for Research ... 9
1.5 Contributions of this Thesis .. 10
1.6 Overview of the Thesis ... 12

Chapter 2 The Recommendation Architecture Model

2.1 Introduction .. 14
2.2 Major Characteristics of the Recommendation Architecture 16
2.3 Functional Overview of the Recommendation Architecture 17
2.3.1 A Formal Notation for the Functional Components 20
2.4 The Clustering System .. 22
2.4.1 A Formal Notation for the Basic Operations 23
2.4.2 Factors which Determine Changes in a Specific Device 26
2.4.3 Growth of the Clustering System .. 27
2.4.4 Overview of the Column Output and the Competitive Function 29
2.5 Summary ... 31

Chapter 3 Information Access and Text Mining

3.1 Introduction to Information Access Systems 32
Advances in Information Retrieval and Filtering

Advances in Retrieval and Filtering Systems Based on Classical Models

Latent Semantic Indexing

Neural Network Models

Retrieval and Filtering for User Requirements

Text Categorization, Clustering and Classification

Text Categorization

Clustering Algorithms

Classification Techniques

Text Mining

Neural Network Models

Recommendation Architecture for Text Mining

Conclusion

Software Simulation of the Recommendation Architecture

Introduction

Overview of the Prototype

Model Experiment

Formation of the Input Space

Clustering Run

Results and Discussion

Conclusion

Modelling the Input Space of the RA for Pattern Discovery and Classification of Text

Introduction

Why is Feature Selection Necessary?

Feature Selection Methods

List of Figures

Figure 2-1 Overview of the 4 layers of the Recommendation Architecture..........................19
Figure 2-2 A Device ...19
Figure 2-3 Layers in one column..20
Figure 4-1 Object model of the prototype ...57
Figure 4-2 Frequency of occurrence of the features in each category.................................61
Figure 4-3 Feature distribution in four input vectors from three different categories...........61
Figure 4-4 Column creation and stabilization performance ..65
Figure 5-1 Feature density of input vectors in relation to frequency of occurrence (TREC data
with Frequency Thresholding method)..76
Figure 5-2 Feature density of input vectors in relation to frequency of occurrence (Newsgroup
data with Frequency Thresholding method) ...82
Figure 5-3 Feature density of input vectors in relation to frequency of occurrence (TREC data
with modified Two-step algorithm)...86
Figure 5-4 Features that were selected for each topic and their frequency of occurrence
(TREC data)...87
Figure 5-5 Feature density of input vectors in relation to frequency of occurrence (Newsgroup
data with modified Two-step algorithm) ...90
Figure 5-6 Features that were selected for each group and their frequency of occurrence
(Newsgroup data)..91
Figure 6-1 Number of columns created for a given number of inputs102
Figure 6-2 Number of columns created for a given number of inputs with Extension-I.........104
Figure 6-3 Part of the output for column 3 showing the relationships between document
vectors and gamma layer device numbers ...125
Figure A-1 Document vector sizes in terms of feature density (Experiment NG-1)..........141
Figure A-2 Document vector sizes in terms of feature density (Experiment NG-2)..........143
Figure A-3 Document vector sizes in terms of feature density (Experiment NG-3).........145
Figure B-1 Frequency of document vectors sizes in terms of feature density..................148
Figure B-2 Features that were selected for each group and their frequency of occurrence for
the training set...149
Figure B-3 Features that were selected for each group and their frequency of occurrence for
the test set ...150
List of Tables

Table 4-1 Precision and Recall for each column by the major category identified..................64
Table 4-2 Column sizes in regular section devices ...64
Table 5-1 Total number of documents acknowledged from each column77
Table 5-2 Some frequent words in the documents accepted by each column and the TREC
 topics that can correspond to the columns ..78
Table 5-3 Columns that respond to a set of document vectors from different categories83
Table 5-4 Precision and Recall for each column by the major document category identified
 (Experiment 1-TREC data)...89
Table 5-5 Precision and Recall for each column by the major document category identified
 (Experiment 2-Newsgroup data)...93
Table 6-1 Topic and the percentage of documents in each topic that responded to column 3
 ..106
Table 6-2 Precision and Recall for each column by the major document category identified
 (Experiments 1 and 2)..106
Table 6-3 Precision and Recall for each column by the major document category identified
 (Experiment 3a)...109
Table 6-4 Precision and Recall for each column by the major document category identified
 (Experiment 3a)...112
Table 6-5 Precision and Recall of each column by the major document category identified
 (Experiment 3b)...112
Table 6-6 Precision and Recall of each column by the major document category identified
 (Experiment 4a)...115
Table 6-7 Precision and Recall of each column by the major document category identified
 (Experiment 4b)...115
Table 6-8 TREC topic labels for the major group discovered by each column and the labels
 assigned to the columns by the extended RA system...119
Chapter 1

Introduction

Despite decades of debate there are good reasons to believe that the different areas of the human brain are specialized to perform different tasks. For example, detection of sound quality is done by auditory cortex and recognizing faces is done by the association area of the visual cortex (Chudler, 2003). Advances in brain scanning technology, such as MRI (Magnetic Resonance Imaging) and CAT (Computed Axial Tomography) have demonstrated these functional specializations vividly. Since the discovery of Brodman’s areas in 1947, research on functional specialization of the human brain has progressed so significantly that it has been fundamental in the formation of new theories of cognition (Edelman and Mountcastle, 1978; Weiss, 1994). Simulation of the localized learning of the brain, and the insights given by cognitive models on the way that neural structures self-organize during the development of the organism in order to be adaptive, and be increasingly skilful, have paved the way for many theories and models in AI.

Following the advances in understanding the brain, there have been many attempts in building AI systems simulating the functioning of the human brain. For example, Edelman created the Darwin models based on the theory of the adaptive functioning of the human brain (Reeke, 1997). The CAM-Brain (CAM - Cellular Automata Machine) (Garis, 1994; Garis, 1995) projects try to evolve a complex system. De Garis proposes neural networks based on cellular automata to be grown and evolved to contain millions of neurons. Kasabov introduces Evolving
Connectionist Systems (ECOS) (Kasabov, 2001a) that evolve in time, in regard to both their structure and functionality. ECOSs are expected to learn and adapt as they operate through interaction with the environment. These systems are discussed in detail for the interested reader in the next section (Section 1.1).

The Recommendation Architecture theory of human cognition proposed by Coward is a computational approach based on the concept of the cortex as a pattern extraction hierarchy with functional specialization (Coward, 1990; Coward, 1997; Coward, 2000). The Section 1.2 introduces the Recommendation Architecture.

1.1 A Brief Overview of Four AI Models which Simulate the Localized Learning of the Human Brain

1.1.1 The Evolutionary Selection Circuits Model and the Theory of Neural Group Selection

‘The Evolutionary Selection Circuits Model’ and ‘the Theory of Neural Group Selection’ theories are based on the fundamental concept that the neural connections in the human brain are made in real time through evolutionary or selectionist processes. According to these theories somatic selection is the mechanism that establishes the connection between the structure and function of the human brain.

The Evolutionary Selection Circuits Model (Conrad 1974, 1976 quoted in Weiss, 1994) is a part of the extensive work focussing on the differences between the information processing capabilities of biological systems and conventional computers. A few computational specifications based on the ESCM have been presented and have been successfully applied for robot-control (Pattee, 2002). The Hypernetwork, presented as a model for physical realization of evolvable hardware, is an example of
an interaction based model that has learning capabilities which is based Conrad’s
theory on evolutionary adaptability (Segovia-Juarez and Colombano, 2001).

According to the Theory of Neural Group Selection or Neural Darwinism
(Edelman, 1992; Edelman and Mountcastle, 1978) consciousness can be explained by
Darwinian selection and evolution of neural states. A series of computational models,
have been constructed to test the theory’s main ideas. Darwin I, II, and III are
simulations for robot control while Darwin IV is a working robot. Moreover, a few
other models have been proposed based on this theory for real world applications.
One successful application is for pattern classification for face recognition (Huang et
al., 1998) and another is for adaptive lexicon formation (Vogt, 1997).

1.1.2 Evolving Connectionist Systems (ECOS)
The evolving connectionist systems (ECOS) (Kasabov, 2001a) are modular
connectionist architectures that facilitate modelling of evolving process and
knowledge discovery. The key characteristics of this system are that, it evolves its
structure and functionality from a continuous input data stream in an adaptive,
modular way over its lifetime. The Evolving Fuzzy Neural Network (EfuNN) model
is presented as one possible way of implementing connectionist modules for the
ECOS architecture (Kasabov, 2001a; Kasabov et al., 2001). DENFIS is another
implementation which focuses more on developing the dynamic features making it
suitable for online-adaptive systems (Kasabov, 2002). Two successful real world
applications of EFuNNs are spoken word classification and time series prediction for
Mackey-Glass data (Kasabov, 2001a). These implementations face two major
problems due to the localized learning paradigm (Kasabov, 2002). One is that local
generalization requires more training data than the models which use global
generalization. The other is that some positive examples may never be used for training. Since the learning process creates partitioned regions these regions may not cover the whole input space.

1.1.3 CAM Brain (CAM – Cellular Automata Machine)

CAM brain (Garis, 1994; Garis, 1995) is based on the use of evolvable/programmable hardware. The key idea has been to use cellular automata based neural networks which grow under evolutionary control at nano-second speeds. It is based on evolutionary engineering which makes it possible to evolve systems that function as desired when they are too complex to be manually designed. CAM brain machines (1st generation) have had the capability of evolving 1000 neuron neural circuit a few seconds and then updating the neural signalling of 64000 of these modules interconnected in a 1 GB of RAM (Garis, 2003). These systems also face the two problems of requiring a large number of examples for training and not using some important training data due to localized learning. Another weakness in this technique is the generation of more modules than are necessary to solve a problem (Dinerstein et al., 2003).

1.2 The Recommendation Architecture

According to Coward, the human brain can be regarded as a combination of special purpose networks which primarily functions by detection of repetitions of information (Coward, 1990).

The Recommendation Architecture model has been proposed for solving *operationally complex problems*. A system that can solve a operationally complex problem is defined as one that has a large number of potentially conflicting objectives,
a large number of possible behaviours, many different conditions to determine appropriate behaviour at any time and a fast response time (Coward, 2001a). Automatic information systems such as telecommunication networks and aircraft simulators where no human intervention occurs are examples of functionally complex systems. The most complex current computer systems are built with thousands of millions of transistors and execute programs with tens of millions of lines of source code producing millions of state changes per second. For practical reasons the functionality of such large, complex systems must be divided into thousands of software modules. When such systems are designed to execute on von Neumann Architecture based machines, several hard issues must be thoroughly addressed. These include getting a precise requirement definition, handling the requirement change throughout the life cycle, coping with the adverse affects of these changes, dividing the system functionality into modules to be designed by several people, tracing functionality errors from a system problem, handling the problems that often occur in synchronizing tasks, and generating results quick enough to respond in real time.

A primary requirement of the systems designed for solving complex problems is the ability to learn. Neural learning and evolutionary learning have been the two popular learning paradigms (Weiss, 1994). In conventional neural learning, the connection weights of the basic devices of à priori designed neural-type network structure are modified. It is known that there is a strong connection between the structure (size and connectivity) and function of a neural network. The affect of the network design to learning is considered to be the major weakness in neural-learning. In evolutionary learning, evolutionary operators (mutation, recombination, and
selection) are applied to elements that represent specific points in a search space. The

Evolutionary Selection Circuits Model (Pattee, 2002; Conrad 1974, 1976 quoted in Weiss, 1994) and the **Theory of Neuronal Group Selection (neural Darwinism)** (Edelman and Mountcastle, 1978; Edelman, 1992) are selective theories in neuroscience which are claimed to be more efficient than natural evolution. Both have been used in separate computational approaches for robot control. These two learning concepts, i.e. neural learning and evolutionary learning, have also been combined into hybrid approaches for evolutionary design and training of neural networks, which are said to overcome the weaknesses in conventional neural network design and training. The CAM-Brain projects (Garis, 1995), for example, are based on such automated

evolutionary neural network design and training.

In contrast with these learning paradigms, Coward (Coward, 1997) proposes a new mechanism of learning for the Recommendation Architecture. He argues that a key requisite for learning in intelligent systems is the ability to cater for ambiguity in information exchanged while maintaining an adequate context for the information exchanged. For example, in conventional software systems the division of memory and processing have a specific context for information exchange between modules. It would be either instructions or data, which are unambiguously defined. (e.g. if x = a do : { } where x is information received from another module). The ubiquitous division between memory and processing is necessary to maintain such specific contexts for information exchange between modules. This limitation of using total unambiguous meaning leaves no room to modify functionality. Conversely, components in the Recommendation Architecture exchange partially ambiguous information which enables modification of the functionality of its components.
clarify, the components in the RA select, record and subsequently detect any repetition of patterns. These patterns are selected by a process which finds for patterns which are as operationally useful as possible but in the absence of \textit{a priori} guidance which always include some random element. Once a pattern is recorded it is not subsequently changed in order to preserve adequate meaning.

It is strongly argued that learning in the human brain is carried out by associating new patterns with previous experiences and also that the later learning does not cause extensive loss of earlier learning (Squire, 2003) (Butters 1984, Butters and Stuss, 1989 as quoted in Hodges, 2003). Once a pattern is learnt, it leaves a large area sensitized for recognizing familiarity and associating similarities of input patterns. Learning occurs by finding previous experiences in new experiences, adding a (generally small) set of additional conditions found within the new experience. The Recommendation Architecture model is designed to mimic such learning (which will be addressed in Chapter 2).

The functional architecture of the Recommendation Architecture can be visualized as a modular, hierarchical, connectionist model in which the outputs of one layer become inputs of the next layer. The Recommendation Architecture has several unique characteristics that differentiate it from a conventional feed forward neural network. In the Recommendation Architecture model, learning is carried out by associating new patterns with old patterns gathered during previous experiences of the system. Learned patterns are not overwritten later preventing extensive loss of previous memory (Coward et al., 2003). A constructive network is built upon the reception of inputs so there is no limit to the growth of memory. The model consists
of two functionally separated sub-systems called the \textit{clustering system} and the \textit{competitive system}. The clustering system divides its input experience into a limited number of clusters (or \textit{columns} as these are called in the Recommendation Architecture), each indicating different (sometimes partially overlapping) repetitions of input.

The Recommendation Architecture offers a sound underlying theory and a simple functional architecture. The unique learning paradigm in the RA must be able to solve complex real word problems though it needs extensive experimentation to prove. The capabilities of the Recommendation Architecture model have been explored for a number of problems with statistically generated data (Coward, 2000; Coward, 2001a). Coward also reports on successful application of the RA to simulated telecommunication traffic for network management (Coward et al., 2001b). These experimental results have shown much promise for the Recommendation Architecture model’s ability in pattern discovery and pattern recognition. However the application of the Recommendation Architecture to \textit{real world data} has not been addressed in the literature so far. In this thesis it is proposed to investigate the applicability of the Recommendation Architecture for a real world problem with real data, namely text mining.

1.3 Application to Text Mining

Being able to detect unknown patterns in text data sets is becoming an increasingly important concern due to the wide availability of large text collections and the need to extract hidden knowledge in them. Data mining is the process of knowledge discovery in databases. Text mining is a specific sub-field of data mining. Text mining
encompasses the broad field of organizing, retrieving, filtering and visual exploration of textual documents. This thesis examines the aspects of text organization with classification and pattern discovery and visual representations of text patterns. Classification is an important aspect in text mining, which aids in organizing large amounts of text. Text classification aims at uncovering the semantic similarities between various documents (Iwayama and Tokunaga, 1995). Organizing collections of text also adds a new dimension to retrieval by making it possible to locate pieces of relevant or similar information that the user was not explicitly looking for. Especially with the vast popularity of the World Wide Web, information searching techniques have become more and more user centred and more personalized. When considering how far the current information access systems cater for current user interests and what capabilities these methods should have to cater for evolving user interests, they seem to have almost reached their limit. A comprehensive literature survey in Chapter 3 reviews the problem of text mining and discusses why the Recommendation Architecture offers yet a better solution.

1.4 Motivation for Research

Despite the great potential that Recommendation Architecture shows, it has never before been tested for applicability to different real-life problems. All of the experimental applications of the Recommendation Architecture model so far have been with artificially generated statistical data. The major purpose of this research is to test the viability of this novel intelligent system being applied to a real world problem.
Text mining is a challenging task due to its large-scale nature and the inherent uncertainty even for human beings. Especially in large free-form text collections that contain no associated intelligent indexing information, it is difficult to base text retrieval or analysis on search-oriented mainstream methods. Many approaches from the fields of information retrieval and machine learning have been proposed for various tasks in text mining such as pattern discovery and classification (Mitchell, 1997; Yang and Liu, 1999). Research conducted with simulated data has shown much promise for the Recommendation Architecture model’s ability in pattern discovery and pattern recognition, which makes the Recommendation Architecture a natural candidate for modelling such a system.

1.5 Contributions of this Thesis

The following are the major contributions of this thesis.

- By experimenting with different document corpora, the capabilities and limitations of the Recommendation Architecture model as applied to text mining with real world data are explored in Chapters 5 and 6. One such capability is pattern discovery within text collections. Another is its potential in document classification. How the Recommendation Architecture model can be adapted for pattern discovery and classification of text is demonstrated experimentally in Chapter 5.

To carry out empirical studies,

- A reference implementation of the clustering system of the Recommendation Architecture model is implemented using the C++ language. The aim is to provide for efficient execution of simulations on a standard desktop computer (Chapter 4).
An existing feature selection method that gives *à priori* guidance to the input space about the major document categories (topics) is modified to suit classification. In Chapter 5, the Recommendation Architecture model is successfully applied for document classification using this method for feature selection.

- Three major limitations of applying the Recommendation Architecture algorithm for text mining have been identified in Chapter 6. To overcome these limitations, three extensions to the Recommendation Architecture model are proposed (Extensions I, II and III). There are two scenarios of column imprinting which result in excessively generic columns (acknowledging documents from too many topics) and too specific columns (acknowledging too few documents). To overcome these problems two algorithms are introduced to increase the recognition accuracy of the columns through a mechanism of self-correction. The third extension, a modification to an existing algorithm, is introduced to increase the sensitivity of the clustering system to overcome the low acknowledgement of documents by created columns. This to be achieved by way of recognizing the frequency of occurrence of features in the input vectors (Chapter 6).

- A method is introduced to automatically label the discovered patterns represented by the columns of the system. The descriptive label consists of words (features) in the input document vectors. This facilitates the human identification of patterns in text discovered by the system (Chapter 6).
• A post-processing system is introduced for analysis and provision of user-friendly interpretation of the clustering system output (Chapter 6).

• A formal notation is developed to describe the functional architecture of the Recommendation Architecture model (Chapter 2).

1.6 Overview of the Thesis

In Chapter 2, the Recommendation Architecture model is introduced. A functional description of the architecture is given with a discussion of its characteristics. A formal notation is developed to clearly describe the components and the algorithms.

Text mining is a growing area of research. Chapter 3 describes how text mining relates to information retrieval, filtering and classification techniques. It is argued that existing text mining approaches are an improvement over traditional information access methods. How the Recommendation Architecture model can be applied for further improvements is explained.

Chapter 4 presents the development of a C++ reference implementation for the Recommendation Architecture model and demonstrates its capabilities with artificially generated data.

Approaches to modelling the input space of the Recommendation Architecture model is investigated in Chapter 5. The problem of feature selection is discussed and two feature selection methods are examined. Experiments are used to demonstrate unguided pattern discovery and document classification with the use of these feature
In Chapter 6 the adoption of the Recommendation Architecture model to pattern discovery in text is examined. Some heuristics that depend on the input space for parameter selection for the Recommendation Architecture model are presented first. Then three extensions are proposed for improving clustering performance. Performance is evaluated for using the standard criteria of average precision and recall, and issues regarding existing performance evaluation measures are discussed. A further extension and a separate post-processing system to present the output in a way to make human interpretation easier are then introduced.

Finally, Chapter 7 draws some conclusions on the research and outlines the directions that can be considered for future experimentation.
Chapter 2

The Recommendation Architecture Model

The Recommendation Architecture (Coward, 1990; Coward, 1997) is the principal model under study in this work. In this chapter, the major characteristics of the Recommendation Architecture (RA) are examined (Section 2.1). So far there has been no formal notation to describe the RA model in literature. In Section 2.2, a formal notation is proposed to clarify the description of the functional components and the functional architecture of the RA (Ratnayake and Gedeon, 2003a). The RA model consists of two functionally separate subsystems, namely the clustering system and the competitive system. Of these two subsystems, the clustering system is investigated in detail as the current work is mainly focused on application of the clustering system.

2.1 Introduction

The Recommendation Architecture model simulates the functional specialization and the learning aspects of the human brain. Prior research has shown that the human brain is subject to architectural constraints as are electronic systems due to natural pressures (Coward, 2000). Some of the requirements of the human brain are to:

- be able to self construct from blueprint information (of DNA);
- be able to recover quickly from construction errors, failures and damage; and
- be able to modify its own functionality, or learn.

According to Coward, these requirements force certain architectural constraints on the neural circuitry of the brain. The RA model is bounded by similar architectural
constraints in its design. For example, only certain types of modular separations and certain types of relationships between modules are allowed in order to limit the excessive use of resources in terms of memory and processing. Coward points out a number of architectural constraints on electronic systems and how the RA model addresses them. These constraints and proposed solutions give an understanding of the principles underlying the model.

One constraint is that the system should be constructable from design information using a given construction process. This gives rise to the requirement that the system be made up from a large number of devices with slight variations, taken from a relatively small pool of different basic devices.

Another constraint is that to diagnose and repair system level failures, there must be a simple logical path to follow to the component level, at which repair can be accomplished. Moreover, the changes in the component level should not create undesirable changes in the system level. This condition requires system functionality to be organized into a simple functional architecture where functionality is separated into modules. These modules should be subdivided into components and sub components and so on until the basic functional device is reached. It is also likely that the component complexity can be minimized if information exchange between components is minimized. Simple functional separation is achieved by making sure that the repetitions recorded on a single device will have similar functional interpretations recommending similar responses for similar objects or conditions seen.

Information exchanged are neural network type activations
2.2 Major Characteristics of the Recommendation Architecture

Two key features of the RA model are that the functionality is not defined by design, and the system components exchange partially ambiguous information.

The system defines its own functionality depending on the given inputs, a set of basic actions and a few internal operational measures for success and failure conditions. Were the functionality to be defined by design, if the system needs changes without changing the inputs, some pre-defined conditions for system operation must be modified. Modifications of this nature may introduce undesirable side effects to those functions which rely on the original conditions (Coward, 2001a). Coward argues that in such a situation, for a system to be flexible for change, the system functionality should not be defined by design. To make functional changes practical, the RA is built with a set of hierarchical modules, and information exchange between the modules is kept to a minimum.

If the system defines its functionality heuristically it is necessary to define component functionality heuristically. Therefore the components cannot use direct consequence information such as an output from one component as an input to another. If a component changes the inputs it receives, it may change a part of its output behaviour without knowing the components that use its output. In such a situation it is difficult to maintain an unambiguous context or 100% confidence that the expected output is within a specified subset of possible outcomes for the information exchanged. To overcome this problem, modules in the RA exchange partially ambiguous information. ‘Partially ambiguous’ means that the currently appropriate outcome has only a certain probability of lying within the specified
Thus the output from a module is a recommendation rather than an instruction. Since any input may generate many recommendations these must be resolved into a single recommendation.

The ability to modify its functionality heuristically and the exchange of partially ambiguous information enable learning in the RA. Retaining earlier learning when exposed to new learning environments is a special feature in the RA. More work is being done to prove that catastrophic forgetting does not happen in the RA (Coward et al., 2003) as in the neural networks based on multi-layer perceptron (MLP) memories. Among many other research that investigate overcoming the problem of catastrophic forgetting in MLP memories (Kasabov et al., 2001), the Adaptive Resonance Theory (ART) extensively addresses this issue. Distributed ARTMAP (dARTMAP) (Carpenter et al., 1998) based and on Adaptive Resonance Theory (ART) claim to have been successful in application of ART for the purpose of retaining earlier memory.

2.3 Functional Overview of the Recommendation Architecture

In simple terms, the functional components of the RA detect ambiguous repetitions and generate corresponding recommendations. Since information exchanged between modules is ambiguous, the module output cannot be interpreted as instructions but as recommendations for system actions\footnote{Pre-defined behaviours}. In this scenario several recommendations may compete for acceptance which suggests the need for a selection scheme. Therefore the model is primarily separated into two subsystems: the clustering system, which generates recommendations and the competitive system which selects the appropriate action. The clustering system is a modular hierarchy, which functions by detecting
functionally ambiguous repetition of input patterns. Detection of information combinations activate recording of information. There is a *change management activity* in the clustering system which ensures that changes to such recorded information combinations are gradual and minimal. The competitive system uses consequence feedback to associate the outputs with a set of predefined actions. The detection of outputs from the clustering system trigger selection of the module or modules giving output, and device weights are changed accordingly reflecting to what extent the outputs correspond to expected actions. Coward draws a resemblance between the clustering system and the cortex of the human brain (Coward, 1990). Studies on cortical areas clearly show the structuring of the cortex into layers and columns (Heeger et al., 2003). The function of the competitive system is compared to the functions of thalamus, basal ganglia, and cerebellum. The thalamus functions as a relay station for information from diverse brain regions on its way to cortex. The function of the Basal ganglia are not completely understood but there is evidence suggesting that the competing action recommendations are resolved into a ‘single action concept’ at the Basal ganglia. Coordination of the movement sequence according to the ‘single action concept’ is done in the cerebellum (Molavi, 2003).

An implementation of the Recommendation Architecture model can be visualized as a set of layered columns which constitute the clustering system and a common layer which functions as the competitive system (Figure 2-1). The layers are:

1. Alpha layer selects the inputs which will be allowed to influence (accepted into) the column.
2. Beta layer recommends *imprinting* of additional repetitions in all layers if it
has a sufficient level of activity

3. Gamma layer is the output identification layer and any output from gamma layer inhibits *imprinting* in all layers.

4. Fourth layer is the competitive system or behavioural layer

A column extends across the first 3 layers. Columns taken together form the clustering system and the competitive system is embedded in the fourth layer. All layers are similar in construction, but functionally different.

Each layer as shown in Figure 2-3 consists of a collection of interconnected devices. A *device* (Figure 2-2) is the basic unit that records information. In a device, information is recoded in the input connections and in its threshold. All the inputs
contribute the same weight. Learning is carried out by imprinting devices, which includes addition of new connections and gradual adjustment of thresholds. How imprinting is done exactly is explained in Section 2.3.1.2 after introducing all the components (Figure 2-2 and Figure 2-3).

Figure 2-3 Layers in one column

2.3.1 A Formal Notation for the Functional Components

Consider a set of documents mapped to binary vectors according to a set of selected features. A document corpus, DocCorp is represented by a set of appropriately selected words called the feature set F with cardinality n. A document d in DocCorp is represented by a binary input vector dv, with each bit denoting presence or absence of a particular feature f in d, where $f \in F$. Thus,

$$dv = \{f_i\}, \text{ } i=1,\ldots, \text{ } n \text{ where } f_i \text{ is 1 when } f_i \text{ is in } d, \text{ and 0 otherwise}$$
A device has a set of input connections called the *response space* R, a threshold t and a binary output o. Response space comprises of two types of connections: regular connections and virgin connections. Regular connections R_r detect the presence of known conditions in the input. These are the inputs that the device has responded to before and they function as permanently imprinted connections. Virgin connections R_v enhance the detection of new conditions or function to sensitize the device to respond to inputs similar to those which the device already responds to. A device fires (produces an output) if the number of input signals to regular connections is significant, and with or without virgin connections, exceeds the threshold of the device. A device xd is denoted as:

$$xd \langle R, t, o \rangle$$

where $R = \{R_r, R_v\}$

There are two types of devices: regular devices rd and virgin devices vd. Regular devices have patterns already imprinted and virgin devices have provisional connectivity for new patterns to be imprinted.
Thus, the set of all devices in layer \(l \) is \(lD_r \cup lD_v \) and for simplicity this is denoted as \(lD \) with an index set \(I \). The accessor function " → " is defined in \(lD \) to access the input connections (R), output connection (o) and threshold (t) of each of the devices in \(lD \). Thus, the input connections (R), output connection (o) and threshold (t) of the \(i \)th device in \(lD \) are expressed as \(lD \rightarrow Ri \), \(lD \rightarrow oi \) and \(lD \rightarrow ti \) respectively.

A layer responds to a set of inputs activations \(xR \), where \(xR \) is \(lD \rightarrow Ri \) and the response spaces of layers \(\alpha \), \(\beta \) and \(\gamma \) are defined as \(\alpha R \), \(\beta R \) and \(\gamma R \) respectively.

A layer produces a set of outputs \(xO \) and the outputs of layers \(\alpha \), \(\beta \) and \(\gamma \) are defined as \(\alpha O \), \(\beta O \) and \(\gamma O \) respectively.

\[
xO = \{i \in I \mid lD \rightarrow oi = 1\}
\]

The three layers \(\alpha \), \(\beta \) and \(\gamma \) in column \(c \) are denoted as

\[
\alpha \{aD_r, aD_v, aR, aO\}^c
\]

\[
\beta \{bD_r, bD_v, bR, bO\}^c
\]

\[
\gamma \{yD_r, yD_v, yR, yO\}^c
\]

The three layers of a column are configured as follows:

- \(\alpha R \) responds to the set of binary vectors in the document corpus DocCorp and a set of management signals \(M_{\beta \text{excit}} \) and \(M_{\gamma \text{inhib}} \)
- \(\beta R \) responds to the set \(\alpha O \) and a set of management signals \(M_{\beta \text{excit}}, M_{\beta \text{inhib}} \) and \(M_{\gamma \text{inhib}} \)
- \(\gamma R \) responds to the set \(\beta O \) and a set of management signals \(M_{\beta \text{excit}} \) and \(M_{\gamma \text{inhib}} \)
The management signals M, include both inhibitory and excitatory signals. How these are generated is explained in Section 2.4.2. Excitatory signals decrease the thresholds of devices thereby increasing the likelihood of firing, whereas inhibitory signals inhibit device firing. By changing device thresholds they perform global management functions such as selecting the repeating inputs, intra-column activity management like modulating thresholds, and inter-column activity management like increasing thresholds for all other columns if a gamma device fires in a particular column.

A column consisting of the three layers described above is the functional module in the system and is denoted as: \(c(\alpha, \beta, \gamma) \)

A set of columns is called a Region \(RG \).

\[RG = \{ c_i \} \]

With the column input \(dv \), if the column output is \(\gamma O \), and \(\gamma O \neq \emptyset \), then \(dv \) is said to be acknowledged by the column.

2.4 The Clustering System

The clustering system has two main functional objectives. One is to generate output based on the detection of repeating input patterns. The other is to manage the evolution of clustering in a way that simple functional construction is maintained. Since local modules take decisions locally on what inputs to accept, a management process is necessary to minimize global information exchange.

The system operates in two phases: the wake period and the sleep period. In
the ‘wake’ period detection of incoming inputs and recording of repetitions of inputs take place. In the ‘sleep’ period the system synthesizes for the future including setting of the provisional connectivity to virgin devices. These two phases alternate till the end of inputs presentations. Length of the wake period depends on the number of input presentations to be given within one wake period.

2.4.1 A Formal Notation for the Basic Operations

This formal notation is developed to clarify the explanation of the basic operations of the current implementation of the Recommendation Architecture model (Ratnayake and Gedeon, 2003a).

2.4.1.1 Detection of Familiarity

A regular device \(rd\), acknowledges input set \(P\) corresponding to \(dv\), if \(P\) is adequately similar to the pattern already imprinted in the device. Similarity is assessed by matching the input set \(P\) with the response space \(R\) of the device. When the number of matching input connections in \(R\) exceeds the threshold \(t\) of the device, the device is said to be firing.

\[
\text{device fire} (rd, P) = \begin{cases}
1, & \text{if } |R \cap P| > t_{rd} \wedge |R_r \cap P| > t/2_{rd} \\
0, & \text{otherwise}
\end{cases}
\]

The guard condition, \(|R \cap P| > t/2_{rd}\) ensures that an imprinted device fires only if the new pattern has adequate similarity to the original pattern imprinted, i.e. regular connections exceed half of the threshold.
2.4.1.2 Possible Changes to the System Based on Detection

a) Creation of a Regular Device

A suitable input P is received by a virgin device and converts it into a regular device. In this conversion process called imprinting, all the inactive inputs are deleted and a permanent threshold t, is set slightly below the current active input count.

\[
\text{imprint virgin device (vd, P)}
\]

\[
\text{if } t < |R \cap P| \text{then}
vd \langle R, o, t \rangle \Rightarrow rd \langle \{R \cap P\}, o, |R \cap P| - 1 \rangle
\]

Here, the operator ‘⇒’ denotes conversion. \(vd \langle R, o, t \rangle\) becomes a regular device with a response space ‘\(\{R \cap P\}\)’, output ‘o’ and a threshold ‘\(|R \cap P| - 1\)’.

b) Adding Inputs to an Existing Device

In response to an input set P, a regular device \(rd\) progressively adjusts itself to recognize inputs similar to P. This is achieved by converting its virgin connections, which match the input P, to regular connections.

\[
\text{imprint regular device (rd, P)}
\]

\[
\text{if } ((t < |R \cap P|) \text{ and } (|R_v \cup (R_v \cap P)| < \text{“max. regular connection limit”}))
rd \langle R, o, t \rangle \Rightarrow rd \langle \{R_v \cup (R_v \cap P)\}, o, t \rangle
\]

After a device is initially imprinted it does not accept additional connections unless it is in the alpha layer.

c) Decreasing the Threshold of a Device

If a column has sufficient \(\beta\) layer activity but fails to produce \(\gamma\) layer output, the thresholds of the devices in each layer \(l\) are reduced in anticipation of \(\gamma\) output. The thresholds of virgin devices are initially set at notional infinity \(T\), so only a
combination of inputs having a high proportion similar to the regular connections in
the device causes it to fire. If excitatory signals on regular connections are present and
out weigh inhibitory signals, the threshold of the device is made to gradually decrease.
The minimum threshold for devices is \(t_{min} \), generally set to 5.

\[
decrease\ threshold(xd, l)
\text{if } (\|\beta\| > \text{min. } \beta \text{ layer activity limit}) \text{ and } (\|\gamma\| < \text{min. } \gamma \text{ layer activity limit})
\text{for each } vd_i \in \mathcal{D}_V
vd_i \langle R, o, t \rangle \Rightarrow vd_i \langle R, o, t' \rangle, \text{ where } (t_{min} \leq t' < t)
\]

d) Addition of a New Column

A new column \(C_{new} \) is created only when a sufficient level of response is produced
from the last created column. Its purpose is to ensure a new column is created to
identify a sufficiently significant pattern in the input space. Inputs received while a
column is being created are recorded to ensure their contribution in creating the next
column. \(\mathcal{F} \) is the collection set which holds the frequently appearing input vectors
that do not contribute to output from any existing column.

\[
create\ column()
\text{if } (|\alpha_{last-column}| > \text{min. responses to create a new column}) \text{ and }
(|\mathcal{F}| > \text{min. inputs required to create a column})
\text{then } initialize\ column
\]

\[
initialize\ column()
\text{create } c_{new}(\alpha, \beta, \gamma) \text{ such that,}
\alpha_R \subseteq \mathcal{F} \ (\alpha_R \text{ selected with a statistical bias to the most frequently occurring inputs in } \mathcal{F})
\beta_R \subseteq \alpha_O \ (\beta_R \text{ is a randomly selected subset})
\gamma_R \subseteq \beta_O \ (\gamma_R \text{ is randomly selected subset})
\text{add } c_{new} \text{ to } \mathcal{R}G
\]
If there are many columns and more than one column has enough beta subset activity to trigger imprinting, the inhibitory signals between subsets will limit imprinting to the columns with the strongest activity. No guidance is required for creation of the column structure as the clustering system can simply find portfolios of patterns which frequently occur in input states. New columns can be added without limit to the system.

2.4.2 Factors which Determine Changes in a Specific Device

There are three factors that contribute to state changes in devices. These factors depend on the overall activity in beta layers and gamma layers.

a) Overall activity in the beta layer of the same column

Devices in every layer receive excitatory signals M_{betexcit} from a subset of the beta layer of the same column. This specific beta layer subset has inputs only from the regular devices in the beta layer of the same column. Therefore firing of this subset is taken as reflecting the overall firing of the layer.

For column c_j,

$$M_{\text{betexcit}} \subseteq \beta O \text{ Where } \beta(\beta R, \beta D, \beta R, \beta O)^C$$

b) Whether overall activity in the beta layer of a column is greater than that in other columns

Devices in the beta layer receive inhibitory signals from the equivalent beta layers in other columns. This type of inhibitory connectivity and excitatory connectivity (from the above condition) to a beta layer subset promotes competition, as imprinting is only done in the column where the beta layer activity is strongest.
For column \(c_j \),
\[
M_{\text{inhb}} = \beta_1O \cup \beta_2O \cup \ldots \beta_{j-1}O \cup \beta_{j+1}O \ldots \cup \beta_nO
\]
Where \(\beta^{(k)}_{D_r, D_r, R, O} \), \(k = 1, 2, \ldots j-1, j+1, \ldots n \)

c) Overall activity in the gamma level

Devices in every layer receive inhibitory signals from all the devices in the gamma layer of the same column. These signals indicate the overall activity in the gamma layer. Any firing in the gamma layer will stop imprinting in the devices of all layers.

For column \(c_j \),
\[
M_{\text{inhb}} = \gamma O \quad \text{Where} \quad \gamma^{(k)}_{D_r, D_r, R, O}
\]

2.4.3 Growth of the Clustering System

As the patterns in the input are acknowledged, the clustering system grows in number of columns. The growth of the clustering system may be considered as follows. In the first wake period there are no columns to respond to any input. During the first sleep period an initial column is built with the connections in all three layers set up randomly. After creation of the first column, combinations of input that occur frequently when no other column produce output are stored for future use. Inputs to the virgin devices of the first layer (of the later created columns) have a small statistical bias in favour of these input combinations. (In a column that is already operating, inputs to virgin devices are randomly assigned with a 66% statistical bias in favour of inputs that have recently fired.) The system activates at most one new column per wake period if that column has been pre-configured in a previous sleep phase. Whenever a new column is created its layers are configured with random connections. Devices in the initially configured layers are virgin devices, and when a virgin device fires it is converted to a regular device. This regular device will fire in the future if a high proportion of the inputs active at the time of conversion are met...
again. It is now programmed to detect a specific sub-set of information conditions from the input. This conversion process is called *imprinting with a combination* or *information recoding*.

Once a column is built, the incoming inputs are compared with the alpha layer to see whether there is any similarity to the connections in the devices. The alpha and beta layers receive only excitatory input signals. These excitatory input signals will cause the virgin devices in all layers to reduce their thresholds enabling them to fire. When gamma layer devices begin to fire, inhibitory signals from that layer will cut off further imprinting. At this point, devices in the alpha layer record some combinations of input characteristics which actually occur in the input space. Beta layer devices record a combination of alpha layer outputs, and gamma layer devices record a combination of beta layer outputs. The complexity of combinations in terms of the number of characteristics contributing for the combination increases from alpha to gamma. The probability of any combination occurring in any future state therefore decreases from alpha through gamma.

When an input vector is presented there are four possible effects on a column:

1. The column can produce a gamma output without imprinting any new devices.
2. If there is no significant firing in the alpha layer but if there is another column available, then the input is presented to that column.
3. If there is significant firing in the beta layer though not in the gamma layer, it means there is some similarity in the input space for the past state of that column which produced output. Therefore, virgin device thresholds are decreased first in the gamma layer, then in both gamma and beta layers and
finally in all three layers to achieve a gamma output. This addition of new devices will expand the range of the states to which the column will respond in the future. Devices can be added without limit to the layers of a column.

4. If there were significant firing in the alpha layer but not in the beta layer it would not allow imprinting in that column. This condition means that the input state is uncertain as to the similarity of the inputs state to the past states.

If a significantly different new pattern arrives where no existing column produce significant output from the alpha layers it would be stored and would contribute for a new column to be created in the next sleep period.

2.4.4 Overview of the Column Output and the Competitive Function

The number of columns created after a few wake and sleep periods does not have a direct relation to the number of cognitive categories of objects. The system heuristically divides the repeating inputs to a set of columns. Because of the use of ambiguous information, strictly separated learning and operational phases are not necessary. After a few wake-sleep periods the system continues to learn while outputs are being generated in response to early experiences. The system becomes stable as the variation in input diminishes.

A column output indicates the degree of similarity between the current input vector and the past input vectors for which the column produced output. If a similar state occurs the column will always reflect the output generated by the past occurrence. The degree of difference between the current and past states is reflected in the identities of the specific gamma layer devices. If column outputs should be different for similar input patterns then more repetition information should be
provided through additional inputs. The additional inputs will aid the system to better identify the differences in input patterns.

The competitive function, which is the fourth layer in the hierarchy, has a set of predefined behavioural outputs or actions depending on the input domain used. Each such action has a corresponding device in the fourth layer. Each fourth layer device receives initial inputs from the columns. Such a device is assigned a small weight which will be changed in response to the resulting feedback from its output which is also called the ‘consequence feedback’. If the consequence is positive the weights of all active inputs are increased, and if the consequence is negative the weights of all active inputs are decreased. After a few cycles of feedback, behaviour converges to the most appropriate one for different combinations of column outputs. At this point, inputs from columns with relatively small weights are deleted. When a new column output is generated only those from columns already providing inputs will be added. Such new inputs will be assigned the average weight for inputs from the same column.

Columns are not directly changed by consequence feedback, as changes in response to the consequence of one type of behaviour could degrade another type of behaviour using the same column output. However if there are often negative consequences following output from a specific column, that column's outputs do not adequately discriminate between small but functionally significant differences. Then the column can be triggered to imprint more gamma devices which may enable discrimination between small but important differences in the input conditions.
2.5 Summary

The Recommendation Architecture consists of two functionally separated subsystems called the clustering system and the competitive system. The clustering system is a set of columns consisting of three layers of basic devices. It is a modular hierarchy, which functions by detection of repeating patterns in the input space. The input to the clustering system is a binary vector denoting the presence and absence of characteristics in the input space. The competitive system is a common layer of devices receiving inputs from all the columns. The RA is made to operate in two alternate phases: wake and sleep. During the wake period inputs are accepted and the devices are imprinted across the layers as a path is discovered to the output. The clustering system primes for acceptance of additional similarities in existing and new patterns during the 'sleep' mode. In time, a long sequence of input vectors is organized to a limited set of condition portfolios corresponding to the columns. In summary, the clustering system recognizes objects with some familiarity, and also sensitises the devices to accommodate partially ambiguous patterns.

The formal notation presented here is developed to aid understanding of the RA model. The next chapter (chapter 3) argues the applicability of the RA system for the problem of text mining. Then the fourth chapter describes the reference implementation of the clustering system addressing the issues regarding its implementation and performance.
Chapter 3
Information Access and Text Mining

The tremendous growth in the volume of textual information available on the Internet, digital libraries, and news sources give rise to the problem of how a user can access required information effectively and efficiently. This problem has led to extraordinary advances in retrieving, organizing, navigating and summarizing information. These advanced techniques help users to discover meaningful information going far beyond simple document retrieval and classification. Especially with the vast popularity of the World Wide Web, information searching techniques have become more and more user-centred and ever more personalized. This chapter first briefly examines the existing techniques of information access and the emergence of the field of text mining (in Section 3.1). How far the current information access systems cater for user interests and what capabilities these systems need to cater for evolving user interests are investigated in Sections 3.2, 3.3 and 3.4.1. Finally in Section 3.4.2, the question of why the Recommendation Architecture model can be applied to provide a better solution to this problem is discussed.

3.1 Introduction to Information Access Systems

There are many established methods that provide different kinds of information access. These methods, ‘information retrieval’, ‘information filtering’, ‘text categorization’, ‘text classification’, ‘text clustering’, ‘data mining’ and ‘text mining’ have different goals. This section briefly discusses what their primary tasks are and the fundamental differences between these methods.
Widely used Information Retrieval (IR) systems relies on the technology that retrieve documents based on the similarity between *keyword based documents* and *query representations*. A retrieval process generally produces a large number of matches, which result in tedious and expensive post retrieval sifting of documents by the user (e.g. popular Internet search engines such as yahoo and google).

Information Filtering (IF) is the process of selecting and distributing relevant documents to relevant people or places. According to Belkin and Croft there are few basic differences between IF and IR: Filtering is concerned with the distribution of texts to groups or individuals whereas IR is concerned with the collection and organization of texts. Filtering is mainly concerned with the selection or elimination of texts from a dynamic data stream whereas IR is concerned with the selection of texts from a relatively static database. Filtering is concerned with long-term changes over a series of information-seeking episodes whereas IR is primarily concerned with responding to the user's queries in texts within a single information-seeking episode (Belkin and Croft, 1992) (e.g. SIFTER is a filtering system proposed for filtering medical documents (SIFTER, 2002; Mukhopadhyay et al., 1996). The systems proposed for ordering Usenet newsgroup postings according to relevance to the user (Yan and Garcia-Molina, 1994; Maltz, 1994)).

Text categorization is the assignment of pre-specified categories to a document. Categories are obtained from a classification scheme where they are expressed numerically or as individual words or as phrases. Organizing large amounts of information into a small number of meaningful clusters is called text classification.
or clustering. Based on the idea that similar documents are relevant for the same query, text classification and categorization are investigated for the effective text retrieval and filtering.

Data mining is primarily regarded as knowledge discovery in databases. The discovered knowledge can be frequently repeating patterns, rules describing properties of the data, classification of the objects in the database etc., where useful information is extracted from a large data collection (Mannila, 1996). Text mining is a specific field of data mining, which encompasses the broad area of providing effective and efficient methods for representing, managing, organizing, searching, and retrieving text. Thus text classification is an important aspect in text mining. According to Kohonen (Kohonen et al., 2000) organizing collections of data also facilitate a new dimension in retrieval, by making it possible to locate pieces of relevant or similar information that the user was not explicitly looking for. Since recently, great attention has been given to research on text mining primarily based on Self-Organizing Maps (SOM) (Kohonen et al., 1996), WebSOM (Lagus, 2000), hierarchical feature maps (Merkl, 1999), and Growing Hierarchical SOM (GHSOM) (Dittenbach et al., 2000a). All these approaches provide exploratory data analysis illustrating properties and relationships among data. The process of finding unsuspected relationships among data is termed as pattern discovery. Pattern discovery within large text collections also aids many text mining aspects such as classification, organizing and visual interpretation of relationships.
3.2 Advances in Information Retrieval and Filtering

Information retrieval is the most established sub-field of text mining where the user can express the information need explicitly and adequately (Lagus, 2000). The core tasks performed by any retrieval system are (i) indexing of terms and (ii) providing the means to search for relevant documents in a text collection. Extensive research has been carried out on information retrieval for more than forty years, and much is known about document and term weighting strategies and how Boolean and ranked queries are evaluated optimizing resources (Salton, 1989; TREC\(^1\), 2003). In contrast to retrieval systems, text filtering systems sift through incoming information to find relevant documents where user needs are represented by user profiles. According to user feedback most filtering systems try to improve user profiles over time. Vector Space model, Probabilistic model and Boolean model are the major classical models (Fuhr, 2000) that have provided the basis for modern retrieval and filtering systems. The vectors-space model is the simplest to use. The assumption that ‘terms’ are orthogonal and hence they are independent, and the lack of theoretical justification for some of the vector manipulation operations controlled by arbitrary chosen parameters, are the major disadvantages of the vector-space based models. The probabilistic model can include ‘term’ dependencies and the model itself determines the major parameters. However, it has the difficulty in finding representative values for the required term occurrence parameters which hinders improvements in retrieval effectiveness. In the conventional Boolean environment, a ranked output of the documents according to query-document similarity cannot be generated. It is often used with many other systems such as vector-space model and fuzzy-sets because of the practical importance of the Boolean query system.

\(^1\) TREC (Text REtrieval Conference) is a series of annual competitions and conferences aimed at encouraging research in information retrieval and filtering.
3.2.1 Advances in Retrieval and Filtering Systems Based on Classical Models

Outputs from most retrieval systems are lists of documents with an estimated relevance to a query. Kretser and Moffat describe a system where locality-based similarity retrieval is performed and the documents are opened at the exact point of maximum similarity (Kretser and Moffat, 1999). This method almost eliminates the task of user having to manually peruse whole documents to find the passages his/her query was matched. Locality based retrieval engine determine the precise location/s where the similarity heuristic has triggered. However query evaluation is very complex since a single term may cause ten to thousand accumulators to be updated. Processing time for short queries in long document have shown to be acceptable though long queries, containing about 43 words in average, has been very high.

Information retrieval and filtering techniques are usually formulated as operations on an \(n \) dimensional vector space where \(n \) is the number of distinct terms in the collection. Each term is given a weight signifying its statistical importance. Yan and Garcia-Molina argue that the most of the work on filtering has focused on the effectiveness and has not addressed the efficiency aspect (Yan and Garcia-Molina, 1994). They propose a new method to improve efficiency of filtering systems based on the vector space model. It uses selective profile indexing to select the significant terms of a profile to make the indexing terms. In the widely used profile indexing method, a profile is indexed by all its terms. In the proposed method they define a threshold for the term weights so that the terms above the threshold are considered significant and the rest are considered as insignificant. Selective Profile Indexing has proved much better in terms of CPU utilization though it requires same amount of disk space as (some times more than) the Profile Indexing method.
According to Bell and Moffat a high performance information filtering system has three main requirements: (i) it must produce meaningful information to the user effectively, (ii) it must handle a large volume of information efficiently, and (iii) it must work sufficiently fast (Bell and Moffat, 1996). They note that none of the existing systems are capable in facilitating all of the three requirements. Therefore they propose a filtering system combining a number of other techniques which is capable of high performance on a typical workstation platform. This system operates on three main phases: indexing, processing significant terms and processing insignificant terms. Selective profile indexing proposed by Yan and Garcia-Molina (Yan and Garcia-Molina, 1994) is used for the latter two phases. All the three phases are estimated to take an average of 7 minutes for 1,000 documents. It is pointed out to be a very good speed for distributing Usenet news groups as it is estimated that Usenet provides 1,000 news articles every 15 minutes. However, still it is necessary to efficiently support updates to profile matrices and support the addition of new profiles. Still this system needs to be implemented for experimental verification.

Though much research has been done to advance retrieval and filtering methods based on the classical models with indexing, studies have shown that document indexing is often inconsistent and incomplete (Belkin and Croft, 1987; Sebastiani, 1999). Human indexers may disagree on terms to use to index documents and may index the same document with different terms at different times. It requires retrieval and filtering algorithms to go beyond simple key word matching and use intelligent methods, which focus on associative similarities instead of exact matching.
3.2.2 Latent Semantic Indexing

Latent Semantic Indexing (LSI) (Dumais et al., 1996; LSI, 2003), is a concept based automatic indexing method. LSI represents terms and documents in high-dimensional space allowing the underlying (“latent”) semantic relationships between terms and documents to be exploited in improving retrieval. This model does not rely on literal matching and consider a term in a document is somewhat an unreliable indicator of the concepts contained in the document. It can retrieve documents that do not contain query words, e.g. it learns that words like ‘laptop’ and ‘portable’ occur in almost similar contexts and queries about one probably retrieve documents about the other as well. LSI is an extension of the vector-space model for information retrieval and is developed using a statistical algorithm called ‘singular value decomposition’ (SVD). Since it is a concept based retrieval method it shows promise in overcoming problems like synonymy\(^1\) and polysemy\(^2\) in keyword based retrieval systems (Zha, 1998; Letsche and Berry, 1997). Dumais argues that LSI improves information access when high recall is necessary, text descriptions are short, user inputs or texts are noisy, or cross-language retrieval is necessary. However some case studies have shown that there are a few disadvantages in LSI. One disadvantage in LSI is the high computational cost in making the document matrix and its SVD for large databases. If the database is modified, the document matrix and all subsequent calculations have to be redone which makes it applicable only to information retrieval in static databases (Berry et al., 1995). Another disadvantage is that the number of factors used must be set according to some heuristic method. If the number of factors is too high no generalization (clustering) may take place, and if the number of factors is too low the model may over-generalize (Carroll et al., 1995).

\(^1\) Failure to retrieve documents discussing the desired concept using synonym terms.

\(^2\) Retrieval of documents that contain query terms but in a different context.
3.2.3 **Neural Network Models**

Neural networks have been shown to be well suited for pattern recognition where inexact matching is required (Calvo, 2001; Tronia and Walker, 1996; Wood and Gedeon, 2001). Pattern recognition aids the classification of an unknown input to one of the known patterns. Though training phases can be computationally intensive and time-consuming, once trained, neural networks can be both fast and efficient offering a good response time. Training for a collection can be performed off-line.

Tronia and Walker propose a neural network solution using Hebbian learning where implicit query expansion is done and the documents are coded as their semantic patterns (Tronia and Walker, 1996). In this method, a user query will not match only those documents which contain the query words but also with documents with similar words. When accessing information through queries it helps users to go beyond the literal terms of their original query. It is done by analyzing the document collection and using the patterns of word occurrence to generalize the initial user query via an implicit thesaurus coded within the neural network.

3.2.4 **Retrieval and Filtering for User Requirements**

Though many techniques and algorithms are on offer for the advancement of retrieval and filtering systems, whether they completely answer the user’s information need is a question to be answered.

In the search paradigm it is assumed that the users know exactly what they are looking for and are capable of expressing their information need very well. A major problem arises when the domain is unknown and the appropriate and specialized vocabulary is difficult to find, so that the query cannot be specified properly which
can cause the user to be overloaded with irrelevant documents. When the information need is vaguely understood and difficult to articulate, it is more appropriate to summarize the available information and display unsuspected relationships among documents (Lagus, 2000). Conventional information retrieval and information filtering systems do not attempt to perform these two tasks.

3.3 Text Categorization, Clustering and Classification

Categorization methods, clustering algorithms and classification techniques provide the means to group documents according to similarities in content. Other than organization itself, grouping of documents prior to retrieval has been investigated for improving performance in retrieval systems. Grouping of documents after retrieval has been shown to aid in better representation of similarities. Sections 3.3.1, 3.3.2 and 3.3.3 discuss the context these grouping terms are used and investigate the type of research being carried out in these areas. By examining these systems I intend to point out the features which will be useful for the reader when differentiating the RA model from them.

Commonly used performance evaluation measures for categorization and classification systems are called recall, precision, F_1 measure and their micro and macro averages. These measures are used in many instances in the next sections for performance comparison of different systems. Recall (r) is the percentage of the correctly classified documents for a given category. Precision (p) is the percentage of the predicted documents for a given category that are classified correctly. The F_1 scores are calculated for a series of binary classification experiments, one for each category, and then averaged across the experiments. It is defined as:
There are two types of averaging methods for presenting average recall, precision and F_1 score. Micro-averaging technique gives equal weight for each document. Therefore these values tend to be dominated by the classifier’s performance on large categories. Macro-averaging technique gives equal weight for each category thus tends to be influenced by the classifier’s performance on small categories.

3.3.1 Text Categorization

Text categorization i.e. assigning an unseen document to a pre-defined category based on its content, involves a large amount of manual work if not done automatically. For example, categorization of medical journal articles according to Medical Subject Headings (MeSH) to form the Medline corpus requires a considerable amount of human resources (Mehnert, 1997). Automatic text categorization relieves the manual effort in categorization and also supports effective retrieval. Therefore a growing number of statistical classification methods and machine learning techniques including neural network models has been applied for text categorization, with a view to automating this process.

To enhance retrieval performance, recently, Lam et al proposed an automatic text categorization method based on the vector space model as the text representation framework (Lam et al., 1999). Here a learning paradigm known as instance-based learning and a document retrieval technique known as retrieval feedback are combined for the experiments on retrieval after categorization. Statistical analysis of the retrieval results shows that retrieval performance improves in terms of effectiveness (using query by query analysis for the test cases) when compared to 17
other strategies. Retrieval results are measured by the 11-point average precision score. Use of the automatic categorization method also achieves a retrieval performance equivalent to the results using manual categorization. However, they admit a limitation in this categorization method which is the inability to add new categories after training. It is limited in design to categories only in the training data set.

Research on statistical methods like decision trees (Apte et al., 1998), Linear Least Square Fit (Yang, 1994), and Naïve Bayes (Fang et al., 2001) has been carried out for text categorization for about a decade in search of accurate, fast and efficient categorization methods. Almost all new methods are compared with these for performance evaluation in classification accuracy.

Dumais et al argue that Support Vector Machines (SVM) are the most accurate method (averaging 92%) when compared to Naïve Bayes, Bays Nets, Decision Trees, and ‘Find Similar’ classifiers in classification accuracy (Dumais et al., 1998). The data set used is the Reuters-21578 collection. This experiment has been done to compare the effectiveness of different inductive learning algorithms in terms of classification accuracy learning speed, and real-time classification speed. When comparing learning speed ‘Find Similar’ is shown to be the fastest (<1 CPU secs/category) and SVM is the next being (<2 CPU secs/category). Though all other models require a large number of labelled training data, SVM is shown to provide stable generalization in performance with fewer positive examples. However, SVMs are not capable of online-incremental training so that addition of new examples

1 11-point average precision: precision is calculated for different values (0.0 – 1.0) of recall and averaged over 11 resulting values.
requires re-learning including previously learned examples (Tan, 2001).

In his recent work Calvo compares a backpropagation (BP) algorithm that minimizes the quadratic error with SVM, K-Nearest Neighbour (KNN) and Naïve Bayes (NB) classifiers (Calvo, 2001). Calvo has chosen Reuter Newswire financial news articles (Reuters 21450) as the data set and compares Micro and Macro averages of the BP network with the performance of SVM, KNN and NB classifiers. For precision and recall, Micro-averages are computed document wise and Macro-averages are computed category wise. Calvo’s results are as good as SVM or KNN with Micro averages but performance is poor when compared with Macro averages. It seems that classifier’s performance on larger categories (having a large number of documents) are good whereas performance on smaller categories are poor.

A neural network model called the Adaptive Resonance Associative Map (ARAM) (Tan, 2001) is an extension of Adaptive Resonance Theory (ART) (Carpenter and Grossberg, 1987) which has been investigated for text categorization. It performs incremental supervised learning of recognition categories (pattern classes) and makes multidimensional maps of binary and analogue patterns. ARTMAP (Carpenter et al., 1991b; Carpenter et al., 1998) and ARAMap both have evolved from Supervised Adaptive Resonance Theory. A distinct feature in ARAM is that earlier learning does not get erased and the meaning of the units does not shift as subsequent learning take place. This feature enables preservation of symbolic rules during training. The Adaptive Resonance Associative Map is designed to utilize user feedback as it can integrate user-defined classification knowledge. Tan claims that the results of his experiment are comparable to SVM, KNN and LLSF when a few
training documents available. When micro-averaging F_1 scores are considered it is as good as other methods whereas comparison of Macro-average scores shows significantly better results than all other methods. Good Macro-average scores show that the performance of the system with the categories containing a smaller number of documents is very good.

3.3.2 Clustering Algorithms

Clustering algorithms which are used to group objects have been developed for various problems in different areas including text clustering. These algorithms can be categorized according to their underlying methodology of the algorithm or the structure of the final solution. Agglomerative and partitional approaches are categorized based on the underlying methodology of the algorithm whereas hierarchical and non-hierarchical solutions are categorized based on the final solution.

From these methods, partitional method has been proven to perform well in large text clustering requiring low computational power. Almost all partitional algorithms use a global criterion function to optimize. Zhao and Karypis evaluate the performance of different criterion functions for the partitional method (Zhao and Karypis, 2002). Theoretical analysis of criterion functions shows that their overall performance depend on the degree that the data set contain clusters of different densities and on the degree that it provides reasonably balanced clusters.

3.3.2.1 Using Clustering to Enhance Retrieval Performance

Many research initiatives have emerged where clustering has been proposed to use prior to searching to enhance retrieval effectiveness. In cluster based search, training documents are partitioned into several clusters before searching (static clustering) and a test document, or a query is compared with each cluster centroid. Since
effectiveness of searching largely depend on the performance of the constructed clusters, selection of the classification method is crucial. Iwayama and Tokunaga propose a probabilistic algorithm called Hierarchical Bayesian Clustering to construct clusters for cluster-based search which he demonstrates to outperform full search, category-based search and non-probabilistic clustering (Iwayama and Tokunaga, 1995). It is shown to have better performance in effectiveness with noisy data when used with cluster based search though not necessarily better than full search. Effectiveness is measured calculating the precision and recall per document, and then summarizing them to a breakeven point at which they become the same value.

Though clustering should improve retrieval results as cluster hypothesis hold (as discussed in (Salton, 1989)), many experiments are reported that retrieval after prior clustering did not perform as well as retrieving the top ranked documents from the collection as a whole (Hearst and Pedersen, 1996). The main problem is that if a query was not a good representative of one of the pre-defined categories, it fails to match any of the existing clusters strongly. To overcome this problem, some experiments are done by grouping previously encountered queries according to their similarity. If the new query does not match a cluster centroid it may in turn be compared with a query group so that a corresponding cluster also can be found. However, Hearst and Pedersen demonstrate with many examples that this approach also fails to make a significant improvement.

Iwayama confirms the effectiveness of the Cluster Hypotheses when used for clustering after retrieval (Iwayama, 2000). Hearst and Pederson also have used clustering to classify retrieved results over a large text collection with performance
improvement (Hearst and Pedersen, 1996). The Scatter/Gather browsing system, proposed by Hearst and Pedersen, clusters retrieved documents into topically coherent groups and present a description of the cluster to the user. This description contains topical terms that characterize each cluster generally and a set of titles that samples a cluster. Scatter/Gather is an interactive system where a non-hierarchical partitioning algorithm called Factionation is optimized for speed. However the ‘Scatter/Gather’ clustering algorithm is independent of the query which makes it doubtful whether users can find the best clusters easily. Iwayama proposes a method of Query-biased clustering where clustering algorithm is modified to incorporate the query directly (Iwayama, 2000).

3.3.3 Classification Techniques

Numerous algorithms and methods have been proposed for unsupervised text classification emerging from number of areas such as statistics, fuzzy logics, neural networks and other AI related models. Statistical methods running on linear time have received much attention and praise due to their high speed of processing. Some statistical classification algorithms have been instantiated by different unsupervised Artificial Neural Networks. Tufis et al demonstrate a novel method in processing documents instead of considering the entire documents for the classification (Tufis et al., 2000). They show that by random sampling of documents, good classification accuracy can be obtained as well as being faster. In this method, for a new text, a characteristics vector is constructed using a randomly extracted set of keywords. The difference between this vector and the vectors in the classifier is computed and the classification of this text is done based on the closeness of its vector to a family of related vectors. This method is sensitive to underlying thesaurus content and structuring. However, given the same training and test data, reference vectors and the
results may change if different thesauri are used. It is suggested that if the concepts are differentiated by the ontology in a computationally meaningful way the classification results could be better.

3.4 Text Mining

Text Mining is a recent advancement in the broad field of information access. The concepts of making information access personalized and catering for evolving user interests make this an important research area. This section examines the prominent text mining techniques and also investigates why the Recommendation Architecture is suitable for applying for text mining.

Grouping of documents according to similarities within them (by way of categorization, clustering or classification) aids organization of large text collections which is one aspect of text mining. Some other aspects such as finding unsuspected relationships among data (pattern discovery) and representing data in novel ways which are both understandable and useful to the user, makes it necessary to go beyond simple classification. Representation of documents depicting relationships among them becomes very useful when the users have no clear idea about how to specify or describe the information that they are looking for. Some neural network approaches based on Self-Organizing Maps as well as the Recommendation Architecture model provide these extra capabilities required for text mining.

3.4.1 Neural Network Models

The Self-Organizing Map (SOM) (Kohonen et al., 1996; Kohonen et al., 2000) is the most prominent neural network model applied for text organization using an unsupervised learning paradigm. SOM provides a mapping of a high dimensional
input space to a 2-D array of nodes with an overall representation of input data similarities. Thus documents on similar topics are located close to each other on the map. SOM facilitates interactive exploration of a document collection where the user looks at individual documents one at a time, but it is organized according to the content in a graphical map display. Hierarchical Feature Maps (Rauber et al., 2000a) and Growing Hierarchical SOM (GHSOM) (Dittenbach et al., 2000a) are attempts to overcome some of the limitations of basic SOMs (Merkl, 1999). The next section examines these models, their benefits and shortcomings.

3.4.1.1 Self-Organizing Map (SOM)
In the SOM model the document space is presented at three basic levels of the system hierarchy: the map, the nodes and the individual documents. The learning process is unsupervised and competitive, and it can be described in terms of input pattern presentation and weight vector adaptation. Each node is assigned an n-dimensional weight vector and the weight vectors have the same dimensionality as the input patterns. As a training iteration starts, an input pattern is presented to the SOM where each node determines its activation usually calculating the Euclidean distance between the weight vector and the input vector. The node with the lowest activation is referred as the winner. Subsequently weight vectors of the winner and the nearby nodes are moved towards the input pattern. This adaptation of the weight vectors is implemented as a gradual reduction of the differences between corresponding items in the input vector and the weight vector. The number of affected nodes is determined by a neighbourhood function. This strategy allows large clusters at the beginning and fine grained input discrimination towards the end of the training process.

WebSOM is an implementation of the SOM model. It provides an overview of
the relationships between data items in the text collection and facilitates interactive browsing. This system has been implemented as a set of WWW pages which can be explored using a browsing tool. WebSOM has been successfully applied for organizing and browsing patent abstracts consisting of US, European and Japanese patents and Internet newsgroups (Kohonen et al., 1996; Lagus, 1998).

A major disadvantage in SOM is that the cluster boundaries are not explicit as separation into clusters is not done automatically. The map shows a single picture of the underlying data and becomes large depending on the number of topics present. It can end up a huge map limiting its usability for display and navigation. Another main deficiency is the use of static network architecture both in terms of number and arrangement of processing units which have to be defined in advance.

3.4.1.2 Hierarchical Feature Maps
In Hierarchical Feature Maps (Merkl and Rauber, 2000), one SOM is used as the first layer and for every unit in this map an independent SOM is added to the next layer. When the first layer is stable, training proceeds to the maps of the second layer. Each map is trained with only that portion of data which is mapped on the respective unit in the higher layer map. They produce a separate cluster of the input data where clusters are gradually refined when moving down along the hierarchy. This system has been demonstrated with full text indexed documents with 1990 CIA World Factbook (Merkl and Rauber, 2000). In this experiment, the hierarchical set up has been determined empirically after a series of runs. The main shortcoming of this model is that the architecture has to be define *a priori*, i.e. the number of layers as well as the size of the map on each layer has to be specified. It also requires a profound insight into underlying document collection before training. This system becomes ineffective
when the precise nature and the topic distribution of a collection are unknown and if some topics are present more prominently than the others (Rauber et al., 2000a).

3.4.1.3 Growing Hierarchical SOMs
To overcome the problem of having to define a fixed architecture in Hierarchical Feature Maps, Growing Hierarchical SOM (GHSOM) has been proposed (Dittenbach et al., 2000b; Dittenbach et al., 2000a). It is an incrementally growing version of Hierarchical feature Maps. In GHSOM each layer in the hierarchy consists of a number of independent SOMs and it is defined as the result of an unsupervised learning process where no prior information is necessary.

In GHSOM, the layer 0 consists of only a single unit with the weight vector initialized to the average of the input data. The training process starts with a map of 2*2 units in layer 1 which is a SOM. After a certain number of training iterations, which is determined by the number of input data to be trained, the unit with the largest deviation between its weight and its input vectors is selected as the error unit. Between this error unit and its most dissimilar neighbour in terms of input space either a new row or a new column of units is inserted. The weight vectors of the new units are initialized as the average of their neighbours. Training process is guided by the quantization error of the units calculated as the sum of distances between the weight vector of a unit and the input vectors mapped onto this unit. Mapping quality of a SOM is based on the mean quantization error (MQE) of all units in the map. The growth of the hierarchy terminates when no further units are available for expansion.

This model allows a separation of clusters mapped onto different branches of the hierarchy. Here the depth of the hierarchy and the size of the various layers are
determined during training. Aimed at exploratory data mining applications, GHSOM has been applied to classify the articles of an Austrian newspaper which shows its ability in graphically representing hierarchical relations in data (Dittenbach et al., 2002).

3.4.2 Recommendation Architecture for Text Mining

When examining the problem of how well the existing information access systems cater for evolving user needs, it can be argued that the capabilities of the RA model offer a better solution in many ways. The capabilities of the Recommendation Architecture in classification, pattern discovery, learning (with functional meaning unchanged) and evolving clusters on user feedback could be used in many areas of text mining to serve the users needs. The RA model cannot be directly compared with clustering algorithms, categorization and classification techniques as the core of the RA model is concerned with pattern discovery or identification of associative similarities in input.

The Recommendation Architecture is capable of finding associative similarities among repeating patterns. If a long series of documents is presented to the clustering system, it can organize its experiences into a hierarchy of repetitions with simple repetitions giving rise to more and more complex repetitions. Repetitions could be of similar complexity for patterns like words, sentences, paragraphs, and documents. These repeating patterns will not correlate exactly with cognitive patterns because the system finds the similarities heuristically. At the end of this process of getting experience, the repetition hierarchy would have found a set of heuristically defined repetitions in the document corpus. As demonstrated in this thesis, the Recommendation Architecture can be adapted to classify documents with a high
precision when *a priori* guidance is given to the input space about the categories expected. It is also capable of unguided automatic pattern discovery in unknown text corpora.

While classifying a document corpus the columns of the Recommendation Architecture continue to grow, since there is no specific training period necessary (unlike most neural network models). Therefore it overcomes the limitations posed by a fixed architecture as in SOM and Hierarchical Feature Maps. After a series of operation (wake/sleep) cycles the system continues to learn while outputs are being generated in response to early experiences. Thus anytime after the training of the system for a particular document corpus any new document belonging to a previously learned category can be correctly positioned. If a set of new documents belonging to one of the already learned categories, but having some slight changes, is given to a particular column, the portfolio of the column is expanded to include the changes. Dynamic adoption is a necessary feature for useful real world clustering of documents. A clustering system is not very useful if it cannot accommodate new items after clustering or the training period ends (Kasabov, 2002).

Most often a text-mining query cannot be effectively articulated, in which case the user can provide some indicator or an example to an RA based system to stimulate it to discover the users information need. For example, another related document can be given to the system as the indicator and the system can be asked to fetch a similar one from the already classified set. As the RA provides indicators of the content which were not specified in advance, but based on finding similarities heuristically, users can ask for another set of documents from the cluster which gives output for a
particular document.

The information gathered during the system execution can be used to describe the columns with labels as well as to find the context for words in the column label, giving a meaning to the created columns. The output of the system also provides a fair amount of information which can be further processed to create a representation to analyse and access the contributing documents for building a column.

When the document collection is organized by the Recommendation Architecture, one document can be in more than one column depending on the similarity of its content to particular columns. This makes clustering in the Recommendation Architecture multi-dimensional, unlike in the SOM based methods where a document has only one fixed position in 2-D space. Thus, the pattern discovery in the RA is more extensive.

3.5 Conclusion

With the nearly exponential growth of available information user needs have also become very complicated and evolving, which forces many information access systems to reach their limits.

It is clear that the usefulness of information retrieval and information filtering systems are limited when the information need is vaguely understood and difficult to articulate and also when it is necessary to discover unsuspected relationships among documents. SOM based methods provide a picture of relationships among document but have their limitations in mostly fixed architectures and large maps.
The Recommendation Architecture can perform significant additional text mining tasks when compared to SOM based methods. Not only does it provide a visual representation of discovered patterns, but also it is capable of classification to classes. Since the output of the system contains a fair amount of information, the system can be further extended to provide user-friendly interpretation of results.
Chapter 4

Software Simulation of the Recommendation Architecture

4.1 Introduction

A reference implementation of the clustering system of the Recommendation Architecture model was built for software simulation. The prototype was designed using object oriented concepts and built using the C++ language for cross platform execution on Apple Macintosh and Microsoft Windows. A prototype system had been implemented previously by Coward using SmallTalk (Coward, 2000; Coward, 2001a). A key motivator for the C++ implementation was to achieve processing speeds necessary for the application of the system to large real world problems. The new reference implementation provides considerable speed advantage for carrying out rapid experiments and to apply the model for large input spaces. C++ implementation also makes the system universally available. This chapter describes a number of aspects of the prototype and issues considered in developing and using it (Ratnayake and Gedeon, 2002a).

The system is implemented as three key subsystems. The first key subsystem implements the pre-processing component. The pre-processing component prepares and maps a document corpus to a suitable input space representation that can be used by the clustering system. Various pre-processing and input space modelling methods that were experimented are described in Chapter 5. The second key subsystem implements the clustering system of the RA model (the subject of this chapter). The
third key subsystem post-processes the gamma layer output from the clustering system to visualize the recognized document clusters. It also implements a labelling scheme for cluster labelling and word context identification. The contributions of this thesis on cluster labelling and other enhancements to presentation of output are discussed in Chapter 6. Pre-processing and post-processing components are implemented as separate modules to allow for flexibility in using the clustering system.

To test the prototype, experiments were carried out with a set of artificially generated data. The experiment presented in this chapter demonstrates the capabilities of the clustering system. By discovering the existing patterns in the input data, the system creates a set of columns and stabilizes. The column output is evaluated calculating the precision and recall measures for each and then averaging them across all columns.

4.2 Overview of the Prototype

The main elements of the RA model were mapped to objects in a C++ program. The basic unit of the RA model, a device, is mapped to a device object and the rest of the higher order constructs such as layer, column and region are implemented as collections of their constituent lower order objects. Figure 4-1 shows the object model of the prototype as a UML diagram. The collections are implemented as multi-dimensional dynamic linked lists providing unlimited dynamic growth of clusters. The prototype for the clustering system of the RA contains approximately 5000 C++ source lines.
Dynamic memory allocation was used to optimize the usage of available RAM. One major characteristic of the RA is that earlier learning is not erased or overwritten as the system gains new experience. Thus the system continues to consume memory as long as it takes to come to a stable state for a particular data set. The implementation makes no limitation on the number of connections added to a device, number of devices to be added to a layer, or the number of columns that can be added to the system. The limitations are imposed solely by the memory availability of the host system.

A document corpus or a document stream is first pre-processed to map each
document to a suitable input vector in a defined input space. Output from the pre-processing stage is a text file, containing integer vectors which indicate the presence or absence of a feature for a particular input file. Input vectors of different document categories are randomly mixed to increase the representational variety of the input space. This aids the learning process in terms of identification of number of patterns early in presentations.

As a collection of documents gets mapped to a set of input vectors they are presented to the clustering system for cluster synthesis and identification. The prototype is implemented in such a way that these input vectors (documents) can be continuously presented to the system as a stream. Unlike traditional artificial neural network models, the RA model does not require a separate learning cycle and the system is capable of taking new inputs indefinitely. The system state can be saved at any time and can be reloaded on subsequent execution.

The clustering subsystem executes in two primary execution cycles – wake and sleep cycles. In the ‘wake’ cycle the system reads in the inputs. When input is being presented, the system starts imprinting columns for repeating input patterns. As the system gains sufficient experience (number of presentations), gamma layer outputs from particular columns appear. Gamma level outputs represent an identified pattern in the input. Columns are developed when similar inputs are exposed to the system and become imprinted, creating a path to the output.

In each ‘sleep’ cycle the system reconfigures the existing columns to be sensitised to inputs similar to already imprinted patterns and creates new initial
columns to be able to recognize new patterns. When new columns are created during
the sleep cycle, the initial connectivity defines the order of complexity of repetitions
at different levels of the RA model. The number of inputs given to a virgin device in
the alpha layer depends on the number of input characteristics present. Typically it is
set at 30% of possible inputs. This system also maintains the memory of the inputs not
responded to by the clustering system during the wake period to be used in statistical
biasing of the virgin device connections during the sleep period. This facilitates
creation of virgin devices that are sensitive to similar future inputs.

There are a number of adjustable configuration settings in this implementation
of the clustering system which defines the initial configuration of the system. These
settings, initial number of devices in each layer, initial number of devices that can be
imprinted, regular imprinting limit in each layer and alpha device threshold reduction
rate, can be specified by design prior to the learning process. These are system level
configuration settings; the nature and the characteristics of the input data set have
little influence on them.

There are also four learning parameters such as ‘the minimum number of alpha
layer devices that must fire before an existing column starts accepting an input vector
(αThreshold)’, ‘minimum device threshold (t_{min})’, ‘minimum responses required to
create a new column (βThreshold)’, and ‘minimum number of inputs required to
create a column or the minimum number of vectors that could remain
unacknowledged without making a new column (Inputs_{min})’. These need to be fine-
tuned based on the nature and characteristics of the input data set. Especially when
applying the model to input vectors that are sparse and have vague category
definitions, these parameter values must be determined through experimentation. From the experimentations of this research a number of heuristics for setting these key learning parameters were identified and these are described in Chapter 6.

4.3 Model Experiment

A model experiment was set up with statistically generated input data for testing and behaviour analysis of the model.

4.3.1 Formation of the Input Space

For ease of visualization and understanding the experiment, the input space was modelled to represent a set of codified colours. Each data point in the input space can be regarded as a shade of a colour from red (RD), green (GR), brown (BR), black (BL), white (WH) and clear (CL). These six colours represent six categories present in the input. Each input vector was a binary vector indicating the presence or absence of a feature in the population. These vectors were statistically generated using 600 possible features. Each category (colour) was defined by a different statistical bias placed on the selection process for characteristics of each category. Thus, each 100 features in an input vector can be thought of as one of the colours and the number of items set to 1 as the level of presence of that colour.
Figure 4-2 Frequency of occurrence of the features in each category

Figure 4-3 Feature distribution in four input vectors from three different categories
A few hundred vectors were created by randomly selecting 100 features with a statistical bias for a particular colour. All duplicate inputs were removed from the input and randomly selected vectors had an average size of 72 features. The frequency of occurrence of the characteristics for each category is illustrated in Figure 4-2. As shown in Figure 4-3, a feature may be shared across multiple categories and this data set was constructed in such a way that a category cannot be determined on the basis of the presence or absence of a few individual characteristics.

Figure 4-3 illustrates a sample of 15 input vectors and how the features 1 – 600 are distributed across the three categories RD, GR and BR. It can be seen that there is a significant overlap of the features constituent of the document vectors in the three categories. Thus it is clear that the relevant features for determining a category of an input vector are a complex combination of inputs.

4.3.2 Clustering Run

The clustering run consists of the system being executed in a sequence of ‘wake’ and ‘sleep’ cycles. In the run, the clustering system was presented with the prepared input vectors from the six colour categories. During a wake cycle, 96 input vectors were presented, representing 16 objects from each colour. The input vectors were not repeated and a total of 3600 unique input vectors were presented to the system during the experiment. To facilitate a comparison analysis using standard ‘precision’ and ‘recall’ measures (definitions are given in Section 4.3.3.1), the input set was presented to the system in two batches. The first 2400 input vectors were regarded as the training set and the remaining 1200 input vectors were regarded as the testing set. This is a useful separation especially when the system is compared to other systems.
The system ran for a total of 24 wake periods and 24 sleep periods with the training set.

4.3.3 Results and Discussion

The clustering system organized the input space into a hierarchy of repetitions including devices, layers of devices and columns of layers. The system became stable after creating 7 columns (Table 4-1). One corresponding column has been created for each of the colours except for BR. Two columns were created for BR. This situation occurs due to the variations identified within the same group initially. As the system proceeds with learning, if there is no considerable variation within the group, those different columns may grow to be similar.

4.3.3.1 Clustering Effectiveness

Effectiveness of the system for classification can be determined with the standard recall and precision measures for each column.

- **Precision** for each column is calculated as:

 \[
 \text{Precision} = \frac{\text{Total number of colour vectors correctly acknowledged by the column}}{\text{Total number of vectors acknowledged by the column}}
 \]

- **Recall** for each column is calculated as:

 \[
 \text{Recall} = \frac{\text{Total number of colour vectors correctly acknowledged by a column}}{\text{Total number of vectors pre-classified as belonging to the major group of the column}}
 \]

Table 4-1 shows the categories discovered and the precision and recall for each column. The system is able to recognize the input from different colour categories with an overall 100% precision. A small number of inputs was unacknowledged by
the system as the recall is less than 100%.

<table>
<thead>
<tr>
<th>Column No.</th>
<th>Major categories discovered</th>
<th>Precision as a %</th>
<th>Recall as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Training set</td>
<td>Test set</td>
</tr>
<tr>
<td>1</td>
<td>BL</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>CL</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>GR</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>RD</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>WH</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>BR</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>7</td>
<td>BR</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 4-1 Precision and Recall for each column by the major category identified

4.3.3.2 Clustering Efficiency

Table 4-2 shows the final size of the layers of the columns i.e. the number of regular section devices created for each layer. The devices in alpha, beta and gamma layers represent the imprinted patterns in each column. The system started with 40 random devices in the virgin section of each layer. Virgin devices are converted to regular devices as and when they are imprinted. Note that each layer comprises of relatively small numbers of devices compressing the input space into a set of efficient representative patterns.

<table>
<thead>
<tr>
<th>Column No.</th>
<th>Alpha Layer</th>
<th>Beta Layer</th>
<th>Gamma Layer</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>34</td>
<td>32</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>32</td>
<td>31</td>
<td>18</td>
</tr>
<tr>
<td>3</td>
<td>26</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>23</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
<td>22</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 4-2 Column sizes in regular section devices

As the columns are created in a sequential fashion, in initial runs several inputs may pass the system unacknowledged as the columns to identify those inputs have not
been created at that time. The system ran for approximately 6 minutes prior to stabilising by creating seven columns and the final set of columns acknowledged 97% of the inputs. Figure 4-4 illustrates the time taken in seconds to create each column and the system to be stable.

![Figure 4-4 Column creation and stabilization performance](image)

4.4 Conclusion

The prototype constructed for the simulation of the Recommendation Architecture Model was introduced in this chapter. A model experiment was carried out with statistically generated input data to evaluate the effectiveness and the efficiency of the clustering system.

This simulation demonstrates that the clustering system can discriminate effectively among complex differences in the input space. Since the system has no *à priori* guidance as to the nature of the relevant combinations it discovers heuristic patterns among the repeating data vectors. As discussed these patterns cannot be determined on the basis of the presence or absence of a few individual characteristics. As the input vectors were never repeated it could be seen that the system can successfully determine associative similarities among input vectors.
Chapter 5

Modelling the Input Space of the RA for Pattern Discovery and Classification of Text

5.1 Introduction

A major issue in the automated pattern classifiers is the problem of selecting a useful subset of features from a large population to represent the existing patterns adequately. This chapter is focused on selecting a suitable feature selection method for applying the Recommendation Architecture for text mining and the effect that various feature selection methods have on effectiveness of pattern classification and discovery (Ratnayake and Gedeon, 2002a; Ratnayake and Gedeon, 2002b). With a known classification of sample documents, a priori guidance can be given to the feature selection process to use the system for pattern classification. If the classifications of the input space are not known, the system can be used for pattern discovery within data. When the system is used for classification (i.e. with prior knowledge of existing the categories), the system performance can be evaluated with standard criteria. Measurements like precision and recall cannot be used without knowing the existing number of documents belonging to a specific category. For unguided pattern discovery of a document corpus (i.e. without prior knowledge of existing the categories) performance evaluation with such criteria is not possible. Essentially, if a discovered pattern is new and does not correspond to an existing category it is difficult to find the actual number of documents that should belong to that group.
This chapter discusses why feature selection is necessary and describes two methods that have been used with the Recommendation Architecture. Experimental results are then presented to demonstrate the application of the Recommendation Architecture for pattern classification and pattern discovery.

5.2 Why is Feature Selection Necessary?

High dimensionality of feature spaces is a key issue in text classification, especially for machine learning approaches. A large number of features in the population may be irrelevant or mutually redundant and can be discarded with minimal loss of discriminatory power.

The choice of features to represent an input space also affects aspects of pattern classification such as accuracy, required learning time, necessary number of examples and cost (Yang and Honavar, 1998).

Accuracy - The characteristics or the features of the input space that describe patterns implicitly define a pattern language. If the language is not expressive enough it may fail to capture the essence of an existing pattern in the information, which is necessary for effective classification or discovery. Consequently the amount of information carried by the features limit the accuracy of the classification function learned regardless of the learning algorithm.

Required learning time – The features of the input space which describe patterns implicitly, define the size of the input space. For pattern classification or discovery, a learning algorithm should explore the entire input space. A large number of irrelevant features can unnecessarily increase the size of the input space thus increasing required learning time.
Necessary number of examples – A large number of features demands a large number of examples to train a classification system to function to a desired accuracy.

Cost – Some applications may have costs and risks associated for each of the features selected. For example in medical diagnosis, a feature set can consists of observable symptoms along with the results of diagnostic tests. Diagnostic tests will inevitably incur a cost which will vary depending on the nature of the test. Thus including more features obtainable from diagnostic test results will make the construction of the data set more expensive.

Feature selection includes several sub-areas which are open research problems (Ye and Liu, 2002; Koller and Sahami, 1996). One is the problem of identifying features related to a class depending on how relevant they are to the class and how related they are to one another. Determining the optimum number of features that is large enough to capture target concepts, but also small enough to efficiently manipulate is another problem. The scope of this thesis with regards to feature selection is limited to examining available methods in order to choose two that sufficiently show the difference in behaviour of the RA when those methods are applied.

5.3 Feature Selection Methods

This section first examines some existing feature selection methods briefly. Then the two methods that have been used for the demonstrated experiments are investigated in detail.
5.3.1 Types of Feature Selection Methods

The majority of the automatic feature selection methods are based on the construction of new features (concepts) by combining lower level features or the removal of non-informative terms according to corpus statistics. These two major types of feature selection methods are further discussed below.

5.3.1.1 Use of Phrases and Concepts in Feature Selection

Many attempts were made to use phrases for text representation or indexing language, as correct phrases improve the specificity of the indexing language and consequently the quality of the text representation. Investigation of phrases in text representation has been an ongoing research area for a long time (Salton and Lesk, 1968; Fagan, 1987; Fagan, 1989). Though many experiments have been carried out on using phrases to improve retrieval effectiveness, the majority of the research has been able to demonstrate very little improvement (Croft et al., 1991; Lewis, 1992).

In ontology-based text clustering, features are mapped to concepts before clustering and each document is represented by a vector of concepts. Since all document sets have more terms than concepts, the sizes of the concept vectors are smaller. Two different methods to construct domain ontology hierarchical structures are proposed by Hotho et al. and Wang et al. (Hotho et al., 2001; Wang et al., 2002). Both teams show that their schemes produce results that are favourably comparable with many other methods. However, ontology based feature mapping requires a significant amount of domain knowledge of the underlying data.

5.3.1.2 Removing Non-informative Terms

Removing non-informative terms relies on the basic assumption that they are not informative for classification and are not influential in overall performance.
Document Frequency Thresholding, Information Gain, Mutual Information, Chi-square and Term Strength are some of the most frequently used statistical methods for removing non-informative terms. These methods use a term-goodness criterion in thresholding to discard terms to reduce the term population of the input space. Yang and Pedersen have assessed the effectiveness of these selection methods with two \(m \)-ary classifiers called k-Nearest Neighbour (kNN) and Linear Least Squares Fit (LLSF) (Yang and Pedersen, 1997). The use of Document Frequency Thresholding, Information Gain and Chi-square methods for feature selection has shown similar effect on the performance of classifiers. Yang and Pedersen have shown the ability to discard 90% or more of the rare words with either improvement or no loss in classification accuracy. The Term Strength method has shown comparable performance with up to 50% term removal in kNN and about 60% term removal in LLSF. The mutual Information method has not shown comparable performance to any of the other methods. By analysing 12 publications that report on use of different methods for term reduction, Sebastiani shows that the comparative evaluations reported by Yang and Pedersen are conclusive in this respect (Sebastiani, 1999).

5.3.2 The Feature Selection Methods Used for the Experiments

This chapter examines two feature selection algorithms to define a suitable input feature space for Recommendation Architecture model for text mining experiments. The first method, Document Frequency Thresholding is the simplest technique for input vector dimensionality reduction. Despite being a simple algorithm, the Document Frequency Thresholding method gives comparable performance to more statistically complicated methods. This method has been successfully used in many Self-Organizing Maps based experiments for text mining (Kohonen et al., 1996; Dittenbach et al., 2002). The aim of the first experiment set reported here is to use an
input feature space with minimum a priori guidance. The Document Frequency Thresholding method does not rely on information of the existing categories as the features are selected based only on their frequency of occurrence in a sample of the document corpus. When the input space has no information on the existing cognitive categories, the clustering system of the RA produces heuristic categories.

As the second feature selection method an existing algorithm called the Two-step Feature selection method (Stricker et al., 1999) is extended in order to select a set of terms that represent each category in the input space. The Two-step Feature selection method uses the information of the existing categories in selecting the features. In this method the most discriminating terms for each category are selected using the corpus frequency to discard the common words without using stop-words. The two-step feature selection algorithm has been applied to TREC (TREC, 2003) data collections with a neural network based classifier (Stricker et al., 1999).

Stemming algorithms remove any attached suffixes or prefixes from words reducing them to their word roots. They are widely used for improving recall by generalizing over morphological variants. However research carried out to determine the effectiveness of stemming algorithms have shown mixed results (Harman, 1991). It is shown that word forms merged by stemming are useful in certain domain discriminations (Riloff, 1995). Word stemming is not used in the experiments demonstrated here. From the empirical studies carried out with stemming, the experiment described in Appendix B shows only a minor favourable affect of word stemming upon the system performance.
Two real-world data sets were used for the experiments; one was a set of Internet newsgroup postings and the other a TREC1 collection (TREC CD 4 and 5) of news articles.

5.3.2.1 Document Frequency Thresholding
The document Frequency Thresholding method is based on two assumptions. Firstly, from a sample word frequency profile of a document corpus, the words with high frequencies are too common across all the categories. Secondly, the words with low frequencies are too rare to represent any category. Using this method, a feature set is selected by removing the highest and lowest frequency words from a word frequency profile at defined threshold values. The threshold is defined by analyzing the distribution of the word frequency and sometimes the number of unique documents that contain the words. In addition a defined list of common stop words that does not carry contextual information (e.g. pronouns, conjunctions, etc.) is typically removed from the word list. The applicability of the Recommendation Architecture for pattern discovery with this method is demonstrated in section 5.4 after discussing the Two-step feature selection method.

5.3.2.2 Modified Two-step Feature Selection Algorithm
The Two-step feature selection method by Stricker et al. uses information about the document categories to select features that represent each group (Stricker et al., 1999). A sample training set of documents with known categories is used to provide \textit{a priori} information to the selection process. This method has been designed for feature selection to be applied in a filtering task where filtering is done one category at a time. Several modifications are proposed in this thesis to the Two-step feature selection method for classification tasks with the Recommendation Architecture model. The

1 TREC (Text REtrieval Conference) is a series of annual competitions and conferences aimed at encouraging research in information retrieval and filtering.
following is the modified algorithm to select a 1000 term feature set with 100 representative features from each category in the corpus.

Modified Two-Step Feature Selection Algorithm

<table>
<thead>
<tr>
<th>Step 1.1</th>
<th>Calculate the corpus frequency for all the words in the training set.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1.2</td>
<td>Calculate the term frequency in all the documents for each category.</td>
</tr>
<tr>
<td>Step 1.3</td>
<td>Calculate the ratio of term frequency by the corpus frequency for each word in each document in a category.</td>
</tr>
<tr>
<td>Step 1.4</td>
<td>For each document select the words with a frequency ratio that was above the given threshold and make a word list. Merge all the selected word lists from the documents for each category.</td>
</tr>
<tr>
<td>Step 1.5</td>
<td>Calculate the frequency for the words in the merged lists for each category.</td>
</tr>
<tr>
<td>Step 1.6</td>
<td>From the most frequently occurring words for each category select the top 300. (A limited number of words (300) were selected from each category to avoid discrimination against categories with relatively smaller number of words.)</td>
</tr>
</tbody>
</table>

This process 1.2–1.6 was repeated for all the categories.

<table>
<thead>
<tr>
<th>Step 2.1</th>
<th>From the selected words from each category remove the duplicates across the categories.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2.2</td>
<td>From the remaining set, the top 100 words from each category were selected to make the feature set. These 100 words frequently occur in one category and rarely occur in others.</td>
</tr>
</tbody>
</table>

As Salton argues, when the feature set is narrow and specific, precision is favoured at the expense of recall whereas when the feature set is broad and non-specific, recall is favoured at the expense of precision (Salton, 1989). Thus it is difficult to select a balanced set of features.

Up to Step 1.3 the original two-step feature selection method was followed. It
was noted that if word-frequencies for each document are organized in the descending order of the ratio and only the words in the top half of each set of words were selected as in the original algorithm, a few categories were left with very few remaining words. In the modified threshold based selection scheme (Step 1.4), words are selected if their frequency ratio was above the given threshold even if they are not in the top half of frequencies for each document. From Step 1.4 most words common to the whole corpus get automatically discarded. With the modified Step 1.6 the rare words also get discarded. As the original Two-step algorithm was used for feature selection for filtering tasks, the number of features selected to represent a category can vary significantly without impacting the filtering tasks of other categories. The original algorithm uses the Gram-Schmidt orthogonalization method to select sets of orthogonal features for each category as the second step. However, when a feature scheme is used to select feature for a classification task, an unequal distribution of the number of representative features for each category has a significant impact on the classification. Therefore the proposed modifications (Steps 2.1 and 2.2) also allocates the feature space equally among the set of categories. The application of this method to the Recommendation Architecture is demonstrated in Section 5.5.

5.4 Unguided Pattern Discovery

This section demonstrates the experiments carried out with the TREC data set and the newsgroup postings. The feature selection for the input space is done with the Document Frequency Thresholding method and the input space has no awareness about the existing categories.
5.4.1 Experiment 1 - TREC data with feature selection using the Document Frequency Thresholding method

The data set consists of a set of 20,000 randomly selected news articles from the Foreign Broadcasting Services (FBIS), Financial Times and the LA Times, from the TREC CD-4 and CD-5 corpora. Though the articles are judged for relevance to 50 topics in the TREC relevance judgements, only 10 topics have a significant number of documents with more than 100 articles each. Therefore these 10 categories with 2500 documents in total were selected for the experiments. The documents were selected from ten topic categories of: 401, 412, 415, 422, 424, 425, 426, 434, 436 and 450, which are nominal codes representing the different topics. These topics as given in the TREC relevance judgment information are: 401 – foreign minorities in Germany, 412 – airport security, 415 – drugs and the golden triangle, 422 – art, stolen, forged, 424 – suicides, 425 – counterfeiting money, 426 – dogs, law enforcement, 434 – economy in Estonia, 436 – railway accidents, 450 – King Hussein and peace.

5.4.1.1 Formation of the Input Space

A set of 50 documents from each category was kept aside as the test set and the rest of the documents were used as the sample set for the feature selection process. No stemming was done and a stop list was used to remove the document tags in the TREC collection. Then a word-frequency profile was generated by counting all the instances of all the words in the corpus and the number of documents in which each word appears. The most common words defined here as the words which appear in more than 230 documents (the average number of documents in each category), the most rare words defined here as the words which appear in less than 20 documents, and the least common words with frequency less than 20, were discarded. From the remaining set, common words remaining were manually removed to get a resulting set of 2600 terms.
The relationship between the size of input vectors in terms of features and the frequency of occurrence of such vectors (in the training set) is summarised in Figure 5-1. As it can be seen from the feature density, most of the input vectors are sparse and have less than 100 features. As 2600 features were selected from 10 topics the average feature density for documents vectors should be closer to 200. There are also a very few that have more than 500 features.

![Figure 5-1 Feature density of input vectors in relation to frequency of occurrence (TREC data with Frequency Thresholding method)](image)

The training set comprises of a set of 2000 document vectors, which have more than 5 entries and consists of 200 vectors from each topic. Vectors from topics that have less than 200 vectors were duplicated once to get the minimum of 200 vectors for each topic. The test set comprises 456 documents, which have more than 5 entries, set aside from the 500 documents without being used for feature selection or for training. Since the minimum threshold of an alpha node is set to five (5), document vectors having less than five entries make no contribution to firing a single device even if they are presented as inputs.
5.4.1.2 Results and Discussion

The input vectors were presented to the system in a series of runs with alternating ‘wake’ and ‘sleep’ periods. Within each ‘wake’ period 50 vectors were presented, representing 5 documents from each topic. The system ran for a total of 100 ‘wake’ periods and ‘sleep’ periods before stabilizing on the training data set. The number of documents acknowledged for 1000 documents from the training set and 456 documents from the test set are shown in Table 5-1.

<table>
<thead>
<tr>
<th>Column No.</th>
<th>Number of Documents acknowledged</th>
<th>Training Set</th>
<th>Test Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>144</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>128</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>144</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>122</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>131</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>101</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>101</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>92</td>
<td>55</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-1 Total number of documents acknowledged from each column

With the column-labelling feature (which will be introduced in chapter 6), Table 5-2 was generated using the most frequently accepted features for each column during the training period, to label the columns. These descriptive words display the properties of each column and also clarify why certain documents belonging to different pre-defined categories are grouped together. The corresponding TREC topics shown are the topics with a high percentage of documents acknowledged by the particular column, and this can be validated by examining the words describing the columns.

The column labels of columns 2, 3, 4, 5, 6, and 7 show a clear relationship with
the TREC topics that give a high percentage of the acknowledged documents for the particular columns. Though words describing columns 1 and 8 have some commonality, words describing column 1 mainly give the idea of accidents and economic situations whereas words describing column 8 give the idea of court cases and criminal investigations.

<table>
<thead>
<tr>
<th>Column no.</th>
<th>Corresponding TREC topics and the % of documents acknowledged</th>
<th>Automatically extracted words for column labelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No significant major categories</td>
<td>companies, business, investigation, cause, death, legal, market, kingdom, company, price, failed, court, parties, accident, died, military</td>
</tr>
<tr>
<td>2</td>
<td>401 - 43.8% (foreign minorities in Germany) 424 - 11.7% (suicides) 425 - 13.3% (counterfeiting money)</td>
<td>attacks, rightwing, increasing, foreigners, compared, asylum-seekers, eastern, killed, interior, living, estimated, rise, danger, investigation, Bonn, cause</td>
</tr>
<tr>
<td>3</td>
<td>415 - 56.3% (drugs and the golden triangle) 425 - 18.8% (counterfeiting money)</td>
<td>narcotics, heroin, Burma, drugs, Thailand, opium, areas, cases, trafficking, control, criminal, seized, province, Asia, organizations, china</td>
</tr>
<tr>
<td>4</td>
<td>450 - 59.8% (King Hussein and peace) 425 - 11.5% (counterfeiting money)</td>
<td>Israel, Washington, Jordan’s, Amman, negotiations, Palestinian, Jordanian, Husayn, participation, deal, terms, Palestinians, Israeli, Arab, agenda, signing</td>
</tr>
<tr>
<td>5</td>
<td>434 - 33.6% economy in Estonia 425 - 17.6% (counterfeiting money)</td>
<td>development, Eurasia, rate, Estonian, Estonia’s, Russian, rapid, supply, market, issued, effect, finance, deal, planning, power, raised</td>
</tr>
<tr>
<td>6</td>
<td>450 - 86.1% (King Hussein and peace)</td>
<td>Amman, Husayn, majesty, Jordan’s, Arabic, Israel, Palestinian, network, developments, negotiations, bilateral, PLO, Washington, role, Al’aqabah, territories</td>
</tr>
<tr>
<td>7</td>
<td>422 - 54.5% (art, stolen, forged) 425 - 15.8% (counterfeiting money)</td>
<td>art, stolen, dollars, paintings, apartment, investigation, theft, dead, calendar, bodies, museum, recovered, road, arrest, control, family</td>
</tr>
<tr>
<td>8</td>
<td>426 - 33.7% (dogs, law enforcement) 425 - 19.6% (counterfeiting money) 424 - 18.5% (suicides)</td>
<td>medical, car, suspect, arrested, allegedly, evidence, knew, declined, investigation, men, court, shot, scene, suspicion, broken</td>
</tr>
</tbody>
</table>

Table 5-2 Some frequent words in the documents accepted by each column and the TREC topics that can correspond to the columns

Column 1 has emerged from articles relating to all topics. As topics 424 -
suicides and 425 – counterfeiting money respond to most of the columns they seem to share a considerable number of features with most of the other topics.

As shown from the experimental results, the clustering system was able to discover some patterns directly matching to the previous TREC patterns without any guidance or \textit{a priori} information about the categories. It is also known that a few documents in the data set were categorized as relevant to more than one topic by the TREC classification, which means some documents in different topics do have similarities. It may be due to this reason that some topics like 424 and 425 tend to appear together most of the time. Only topic 412 – airport security failed to make an impression, probably because the frequency of occurrence of words describing 412 were too low to be selected considering that 412 has only 100 documents to be used for the training set - one of the lowest numbers.

5.4.2 Experiment 2 - News Group data with feature selection using the Document Frequency Thresholding method

This set of experiments was carried out to see how the Recommendation Architecture model can be used with no \textit{a priori} guidance for pattern discovery in a very noisy data set (Ratnayake and Gedeon, 2002a). The variation and the poor quality of the newsgroup postings set pose an interesting challenge to any intelligent classification system. Newsgroups also provide a large collection of pre-classified documents. A number of other experiments also have been carried out with similar sets of data with self-organizing maps (Kohonen et al., 2000; Lagus, 1998; Wood and Gedeon, 2001).

5.4.2.1 Formation of the Input space

A set of 40,000 documents were selected from ten newsgroups: Babylon5 (BL5), books (BKS), computer (COM), movies (MOV), Linux (LNX), Windows2000
WIN), Farscape (FSP), Star Trek (TRK), humour (HMR) and amateur astronomy (AST). These newsgroups were selected so that there was a probability of having some similarity in the words likely to be used. For example, ‘stars’ will be mentioned in both astronomy and science fiction newsgroups. The news group postings contain varied content from short remarks, jokes, questions, elaborate discussions, program code, and ASCII images to longwinded flame wars between individuals. The actual text is often carelessly written, contains spelling errors and of poor style.

The documents were pre-processed to remove advertising documents [spam], multiple inclusions and NTTP header information. A stop list of words such as prepositions, conjunctions, pronouns etc. was removed from the documents. A word-frequency profile was generated by counting all the instances of all the words in the corpus with regard to the number of documents in which each word appears. Due to the noisy nature of the data set and poor results, several sets of features were chosen for experiments, which give different views of the same data.

The first three feature sets were generated with 10,000 documents in the training set by counting the frequency of occurrence of words, pairs of words and a combination of both. Other than depending on the frequency of occurrence, the words were not picked manually allowing any mutually redundant words. For the first feature set (set 1), the set of the most frequent 1,000 words were selected as the representative features. In fact the frequency of occurrence of the 1,000th word was 157 which showed that taking more words below 1,000th position was not likely to contribute much in representing the data set. Another feature set (set 2) was created by taking the most frequently occurring word pairs in sentences. The word pair list was
produced by taking the Cartesian product of the most frequently occurring 500 words. Then a word pair frequency profile was generated by counting all the instances of word pairs within sentences in each document. Again, the most frequent 1,000 word pairs were selected as the representative feature set. The frequency of occurrence of the 1,000\(^{th}\) pair was 38. The last feature set (set 3) was generated by combining the sets 1 and 2 to give a feature set comprising of 2,000 features.

For the next two feature sets a word-frequency profile was generated by counting all the instances of all the words in the corpus with regard to the number of documents in which each word appears. Characteristics sets were selected in such a way that from the sorted word-frequency profile the top 1\% of the words, and from the bottom the words which have a document count of less than 50 were discarded. From the remaining set, two characteristic sets of 1,000 (set 4) and 1,600 (set 5) were chosen after manually removing common words which were not likely to contribute much in representing the data set. The input data vectors were created by parsing each document to produce a corresponding binary vector denoting the presence or absence of a characteristic from the feature sets.

5.4.2.2 Results and Discussion – for feature set 5
All feature sets obtained using the frequency thresholding method display a similarity in the frequency of input vectors when considered in terms of feature density. As the discussion example, the following analysis describes the results of experiment using the feature set 5 (with 1,600 features). Feature densities of input vectors vs. frequency of occurrence for the set 5 are illustrated in Figure 5-2. As shown in the figure, the majority of the input vectors have less than 50 features.
During the clustering run each ‘wake’ period was presented with 100 vectors representing 10 documents from each topic. The analysis of the resulting columns in several runs show that though the system becomes stable after creating 9-10 columns, there is very little distinction between most of the columns.

Initially columns get created with substantial differences but as the time goes by, the uniqueness of most of the columns are lost as the columns begin to acknowledge document vectors from various categories. For example, Table 5-3 (generated from the post-processing system which is described in chapter 6) illustrates a part of the results for a run after 260 ‘wake’ periods and ‘sleep’ periods. Here a file name with the category it belongs is shown with the number of columns it is acknowledged by. For example, document vector 2404_Com is acknowledged by column 2. As seen from Table 5-3 there are no specific columns that acknowledge document vector from only one or two specific categories.
<table>
<thead>
<tr>
<th>File names of document vectors</th>
<th>Responding column numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2404 COM</td>
<td>-</td>
</tr>
<tr>
<td>1120 BKS</td>
<td>1</td>
</tr>
<tr>
<td>2671 TRK</td>
<td>1</td>
</tr>
<tr>
<td>2653 HLS</td>
<td>-</td>
</tr>
<tr>
<td>2654 HLS</td>
<td>-</td>
</tr>
<tr>
<td>2620 WIN</td>
<td>-</td>
</tr>
<tr>
<td>2417 COM</td>
<td>-</td>
</tr>
<tr>
<td>1139 BKS</td>
<td>1</td>
</tr>
<tr>
<td>2684 TRK</td>
<td>1</td>
</tr>
<tr>
<td>2630 WIN</td>
<td>-</td>
</tr>
<tr>
<td>1150 BKS</td>
<td>1</td>
</tr>
<tr>
<td>2671 TRK</td>
<td>-</td>
</tr>
<tr>
<td>1156 BKS</td>
<td>1</td>
</tr>
<tr>
<td>2873 MOV</td>
<td>-</td>
</tr>
<tr>
<td>1165 BKS</td>
<td>1</td>
</tr>
<tr>
<td>1167 BKS</td>
<td>-</td>
</tr>
<tr>
<td>1170 BKS</td>
<td>1</td>
</tr>
<tr>
<td>2956 HLS</td>
<td>-</td>
</tr>
<tr>
<td>2713 LNX</td>
<td>-</td>
</tr>
<tr>
<td>2857 A8T</td>
<td>-</td>
</tr>
<tr>
<td>2860 A8T</td>
<td>1</td>
</tr>
<tr>
<td>2461 COM</td>
<td>-</td>
</tr>
<tr>
<td>2079 FSP</td>
<td>1</td>
</tr>
<tr>
<td>2730 LN9</td>
<td>1</td>
</tr>
<tr>
<td>2467 COM</td>
<td>-</td>
</tr>
<tr>
<td>2080 FSP</td>
<td>1</td>
</tr>
<tr>
<td>2925 MOV</td>
<td>1</td>
</tr>
<tr>
<td>2740 LN9</td>
<td>-</td>
</tr>
<tr>
<td>2476 COM</td>
<td>-</td>
</tr>
<tr>
<td>2477 COM</td>
<td>-</td>
</tr>
<tr>
<td>2943 MOV</td>
<td>-</td>
</tr>
<tr>
<td>2694 WIN</td>
<td>-</td>
</tr>
<tr>
<td>2935 MOV</td>
<td>1</td>
</tr>
<tr>
<td>1221 BKS</td>
<td>1</td>
</tr>
<tr>
<td>1223 BKS</td>
<td>1</td>
</tr>
<tr>
<td>1225 BKS</td>
<td>1</td>
</tr>
<tr>
<td>2970 MOV</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 5.3 Columns that respond to a set of document vectors from different categories
(Each file name that correspond to a document vector is denoted by a number and the category name it belongs to)

The likely cause for this result is the nature of the documents which require further work on context analysis and on logical organization of information. Then the documents can be described in a better form suitable for processing with the clustering system. Without assisted or supervised learning the task of automatically discovering patterns to represent each newsgroup would be extremely difficult as the postings themselves do not contain significant information relevant to their belonging to a particular group. It is a challenge to make the columns sensitive enough to respond to a fair number of documents while keeping their identity.
The experimental results from none of the chosen characteristic sets give significant improvement over the others. Experimental results and discussions for the application of other characteristics sets for the Recommendation Architecture are given in Appendix A.

5.4.3 Summary
The expectation of these two experiments was not a high degree of accuracy in automatic identification of documents into its original categories. Rather, the objective of the experiments was to demonstrate the synthesis of patterns representing some commonality among documents with minimum or no guidance to the input space about existing categories. To this end, analysis of documents in the TREC data set that were recognized by each column reveals interesting patterns whereas the results of the newsgroup data set is difficult to interpret in a meaningful way.

It can be seen that with a data set like TREC, which has less noise, more structure, and the average document is of substantial length (i.e. a document is at least a paragraph of 10 sentences) a simple technique like document frequency thresholding can be used to obtain favourable results. Conversely with a data set like newsgroups which is very noisy and the length of an average document varies between two sentences to a few pages, a better technique is necessary to give some guidance to the input space about the existing patterns.

In the next section, guided pattern discovery with the Two-step Feature Selection method is investigated.
5.5 Guided Pattern Discovery

To select discriminatory features of the available categories, *a priori* guidance on the available categories can be given to the feature selection process. To demonstrate the effect of guided feature selection, the same two data sets used for the unguided feature selection are used here. The same ten topics of the news group data set and the TREC collections are used with the extended Two-Step feature selection method. As the document sets carry information about the membership of documents in all categories and the selection process is biased to identifying these categories, standard measures of precision and recall can be used to evaluate the performance of the clustering.

Following are the formulae used for precision and recall calculation.

Precision for each column is calculated as:

\[
\text{Precision} = \frac{\text{Total number of documents correctly acknowledged by the column}}{\text{Total number of documents acknowledged by the column}} \quad \text{Equation 1}
\]

Recall for each column is calculated as:

\[
\text{Recall} = \frac{\text{Total number of documents correctly acknowledged by a column}}{\text{Total number of documents pre-classified as belonging to the major topic of the column}} \quad \text{Equation 2}
\]

Calculation of recall for a column is meaningful only when a significant percentage of documents belonging to one topic produce output from one column. Where more than one topic produce output from one column it is not possible to calculate how many documents contain the particular pattern which causes the column to be created.
5.5.1 Experiment 1 - TREC data with feature selection using the modified Two-step algorithm

This experiment was carried out with a training set comprising 1,500 document vectors consisting of 150 vectors from each topic. Vectors from topics that had less than 150 vectors were duplicated once to get the minimum of 150 vectors for each topic. The test set comprises of a new set of 1,000 (500 unique vectors duplicated once to make 1,000) document vectors, which are not used for training or feature selection. Features representing the topics in the document corpus were chosen applying the two-step feature selection described in section 5.3.1. A feature set of 1,250 words was selected using 125 words from each topic to represent the 10 topics.

Figure 5-3 Feature density of input vectors in relation to frequency of occurrence (TREC data with modified Two-step algorithm)

Figure 5-3 illustrate the feature density of the input data vectors after selected features were mapped to the training set. Majority of input vectors have less than 50 features which makes the input set very sparse. Distributions of the features in the input for each topic are illustrated in Figure 5-4. It is noticeable from the Figure 5-4 that some features having high frequency of occurrence in one category have a lower frequency in other categories with the full feature set having significant overlap.
There are a few features that have a high frequency of occurrence in several categories. It means that a category cannot be determined on the basis of presence or
absence of a few individual characteristics.

5.5.1.1 Results and Discussion

The document vectors were presented to the system in a series of runs with alternating ‘wake’ and ‘sleep’ periods. Within each ‘wake’ period 50 vectors were presented being 5 documents from each topic. The system ran for a total of 100 ‘wake’ periods and ‘sleep’ periods before stabilizing on the training data set.

The system created eight stable columns. From the eight columns, six (columns 1, 2, 3, 5, 6, 7) produced output mainly from one topic and two columns (columns 4 and 8) produced output from multiple topics (Table 5-4). The documents used are news articles reporting various incidents which are judged as relevant to a given topic. It can be seen that several different topics contain articles that are related, and those articles from different topics get grouped together. For example, topics 424 (suicides), 425 (counterfeiting money) and 426 (dogs, law enforcement) produce the majority of the output from column 4. It can be noted from Figure 5-4 that the number of documents that contain features for topic 426 is very low compared to others and quite a number of features are common for topics 424 and 425. This may be the cause for appearance of 426 as a part of a group with 424 and 425. In the test run, topic 425 (counterfeiting money) also gave considerable output from column 1 which makes the percentage output from topic 412 fairly low. From Figure 5-4 it can be seen that topic 426 also has a fair number of documents which contain features selected from 412 which cause some documents from topic 426 to be acknowledged by column 1.
Table 5-4 Precision and Recall for each column by the major document category identified (Experiment 1-TREC data)

Topic 434 (economy in Estonia) failed to form a stable column. Column 9, which was created several times with topic 434, was automatically discarded as only a very small number of documents were acknowledged by it. From the precision for columns it can be seen that 6 topics and 2 patterns were identified with considerable accuracy. Precision and recall can be further increased with the extensions to the clustering system proposed in the next chapter.

5.5.2 Experiment 2 - Newsgroup data with feature selection using the modified Two-step algorithm

This experiment was carried out to classify newsgroup postings belonging to the 10 different categories described in Section 5.4.2.1. A feature set of 1,000 words was selected using 100 words from each topic to represent the 10 topics applying the modified Two-step feature selection method described in Section 5.3.2.2.

The training data set of 30,000 newsgroup postings was then mapped to 1000-word document vectors. Similarly, the test set of 10,000 newsgroup postings were also mapped to the 1000-word document vectors. These document vectors use the
frequency information of the features (which are normalized to make the maximum frequency 5). (Use of frequency information of the features and normalization are addressed in detail in the next chapter)

Figure 5-5 Feature density of input vectors in relation to frequency of occurrence (Newsgroup data with modified Two-step algorithm)

Figure 5-5 shows the feature density of the input vectors and frequency of occurrence of those input vectors. High frequency of some vector sizes as apparent from the figure has come due to normalizing. (Most vector sizes end up in multiples of 5.) It can be seen from the Figure 5-5 that the majority of the vectors have less than 30 features though 100 are selected from each group. An equal number of documents were selected from each group making the total training set 23,140 documents.

The relationships between the ‘features that were selected for each topic’ and their ‘frequency of occurrence in the input vectors after they were mapped to the training data set’ are illustrated in Figure 5-6.
Figure 5-6 Features that were selected for each group and their frequency of occurrence (Newsgroup data)

It can be seen that groups HMR and BKS have a very low numbers of document vectors containing the selected features. It is also noted that features
selected for LNX appear very often in CMP and WIN groups. Generally all groups contain features that appear in other groups to different extents.

5.5.2.1 Results and Discussion

The following results were obtained after repeated experiments with various parameter adjustments for this data set. The input vectors were presented to the system in a series of runs with alternating ‘wake’ and ‘sleep’ periods. Within each ‘wake’ period 100 vectors were presented representing 10 documents from each topic. The system ran for a total of 639 ‘wake’ periods and ‘sleep’ periods before stabilizing with the training data set. The results from a randomly selected 3,000 input vectors consisting of all groups (300 from each) are used in the calculation of precision and recall for the training set in Table 5-5. The test set comprised of 5,000 document vectors.

Ten columns were created during this run. Seven major groups and three patterns were discovered. Columns 1, 2, 4, 8 and 10 produced output mainly from the newsgroups FSP (Farscape), TRK (Star Trek), BL5 (Babylon 5), BKS (books) and AST (astronomy). MOV (movies) group was acknowledged by columns 3 and 7 probably due to the variations within the category. Documents acknowledged by more than one column with some other group indicate the presence of multiple patterns in documents. Especially the presence of TRK (Start Trek) can be seen in column 9 with MOV (movies) and a very strong presence is indicated in column 4 with BL5 (Babylon 5). In the test set TRK gives 31.4% precision from Column 4 causing the precision of BL5 to fall. Column 3 produced output from the postings of CMP (computer), WIN (Windows 2000) and LNX (Linux) identifying some computer related similarities in the postings. As can be seen from Figure 5-6 it is clear that the
terms selected for group LNX show strong presence in CMP and WIN.

<table>
<thead>
<tr>
<th>Column No.</th>
<th>Major document grouping discovered</th>
<th>Precision as a %</th>
<th>Recall as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training set</td>
<td>Test set</td>
<td>Training set</td>
</tr>
<tr>
<td>1</td>
<td>FSP</td>
<td>93.4</td>
<td>92.5</td>
</tr>
<tr>
<td>2</td>
<td>TRK</td>
<td>88.0</td>
<td>84.4</td>
</tr>
<tr>
<td>3</td>
<td>MOV</td>
<td>93.0</td>
<td>37.5</td>
</tr>
<tr>
<td>4</td>
<td>BL5</td>
<td>68.8</td>
<td>62.0</td>
</tr>
<tr>
<td>5</td>
<td>BL5, TRK</td>
<td>94.7</td>
<td>95.2</td>
</tr>
<tr>
<td>6</td>
<td>Cmp, Win, Lnx</td>
<td>94.0</td>
<td>95.9</td>
</tr>
<tr>
<td>7</td>
<td>MOV</td>
<td>75.8</td>
<td>20.9</td>
</tr>
<tr>
<td>8</td>
<td>BKS</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>MOV, TRK</td>
<td>86.3</td>
<td>36.2</td>
</tr>
<tr>
<td>10</td>
<td>AST</td>
<td>100</td>
<td>96.6</td>
</tr>
</tbody>
</table>

Table 5-5 Precision and Recall for each column by the major document category identified (Experiment 2-Newsgroup data)

Though precision for the training set is quite good, recall for most groups are very low, which emphasises the fact that those columns are responding to different variations within a group. Average precision for columns in the test set is reduced by BKS (books) group failing to appear from column 8 and the low precision in columns where MOV (movies) appears. It can be concluded that the large variations in the data categories tend to make several fine grain columns for different variations in the categories. Therefore, with this data it is hard to expect a high recall from a few large columns. HMR group was created several times with column 11 but was automatically discarded due to very low response probably caused by the very low number of distinct features and the low frequency of occurrence of these features (as shown by Figure 5-6).
5.5.3 Summary

Experimental results suggest that \textit{a priori} guidance on the available categories results in a feature set which discriminates effectively between categories. This in turn results in identification of categories, which are similar to known categories. The system can also discover additional patterns among the categories, which represent some commonality among the documents, which may be pre-classified to different categories.

As the modified two-step feature selection algorithm tries to select a unique set of terms for a topic, the frequency of the terms selected are generally low if a topic has some commonality with one or more other topic/topics. If the general frequency of occurrence of the selected terms is low for a topic, it adversely affects the number of documents that are represented by those terms. This is the probable reason for low recall for some categories in both experiments. Performance evaluation of these experiments with precision and recall are further addressed in the next chapter.

5.6 Conclusion

This chapter presented the effectiveness and applicability of feature selection methods in application of the Recommendation Architecture model for text classification and pattern discovery. Firstly the need for feature selection was argued and several feature selection methods were examined. Two different feature selection methods: the Document Frequency Thresholding method and the Two-step feature selection method were chosen to be used with the RA. Modifications were also proposed for the two-step feature selection method to make it suitable for variable length document groups.
It can be concluded that, \textit{a priori} guidance can be given to select features from the input space in favour of the inputs more likely to provide useful discrimination among the categories. It is demonstrated that, if the cognitive categories of the input space are known, the guided method can be used with the RA where classification to existing classes occurs. Conversely RA can be applied to unguided input space with minimum guidance to the existing categories and let it discover categories among data. Unguided input space presentation may result in previously not defined categories which makes it difficult to evaluate performance with standard criteria.

Both experiments carried out with TREC data collection demonstrated successful results though they were limited by the relatively small qualifying document set in the corpus. Overall newsgroup postings were too noisy for the clustering system of the RA to classify to original newsgroups with a good recall when the uniqueness of the columns is maintained.

Detailed analysis of the selected feature sets for the experiments (with real world data) depicts the sparseness of the most input vectors. Sometimes there can be a few vectors with a large number of terms but not necessarily containing the terms belonging to the topic. These large size vectors strongly influence processing, by making columns too generic to identify a significant pattern. Both these conditions require extensions to the existing implementation of the Recommendation Architecture model for acceptable performance. The next chapter proposes such extensions as well as some further enhancements. Issues in performance evaluation of this kind of systems are also addressed in the next chapter.
Chapter 6

Extending the Clustering System of the RA

This chapter presents several extensions to the existing implementation of RA model to overcome the limitations of its application for document classification. Further enhancements are also presented to aid text mining. Two aspects of text mining are considered here: the organization of documents into clusters, and the presentation of the output revealing relationships within a cluster. The performance of the extended RA system is evaluated and finally the performance evaluation of this type of systems is discussed.

6.1 Introduction

The Recommendation Architecture model includes a number of controllable parameters. The optimal values for four of these parameters depend on the characteristics of the input space. Selection of the values for these parameters is an important issue as the performance and clustering effectiveness of the system largely depend on a good selection. Section 6.2 of this chapter examines the process of selecting optimal values for these parameters.

Real world data sets contain a significant amount of noise or misclassified patterns and usually result in sparse document vectors. If a very sparse vector is the starting point of a column, it will make the system stagnate as there are too few outputs to meet the minimum responses required. Especially if the number of data vectors is limited there will not be many similar vectors to help the column to build-up. Conversely, if a column is created with a very dense input vector containing a
large number of features common to other categories, it will make discrimination of the column very difficult. In Section 6.3, two extensions (Extension-I and Extension-II) are proposed for the Recommendation Architecture for increasing the column effectiveness by overcoming these limitations (Ratnayake and Gedeon, 2002c). Another major problem when applying the RA to sparse input vectors is the very low recall. To increase the number of documents acknowledged by a column without sacrificing the specificity of a column, an extension (Extension-III) for feature intensity recognition (Ratnayake et al., 2002d; Ratnayake and Gedeon, 2003a) is proposed in Section 6.4.

Another extension (Extension-IV) presents a new scheme to label the columns with contributing features (words) by way of a word map in Section 6.5.1. The word maps represent the new patterns that the system has identified and aid a human user to assign meaning to discovered patterns (Ratnayake et al., 2002d).

The proposed post-processing system in Section 6.5.3 uses the output of the clustering system and represents it as traversable clusters. This representation depicts the relationships of documents within a column enhancing the ability for the user to access and read the results (Ratnayake and Gedeon, 2003a). Furthermore, information about the columns that respond to each document is also generated, which makes possible a searching facility. A document is presented to the system to search for a column or columns which acknowledge similar documents.
6.2 Parameter Selection

The columns of the RA are constructed by acknowledging various repetitions that occur within the input data. There are four adjustable parameters that largely influence the column construction process which are investigated in detail below. Two common situations may occur when these parameters are not properly set. Either the system may not create more than a very general single column which acknowledges almost all the documents, or many documents may pass without being acknowledged by a single column. In general, there is no method for selecting good parameter values other than by trial and error because they depend on the input data set. Trial and error involves repeated experimentation using different parameter values, a less than ideal state of affairs.

The parameter ‘\(\alpha \)Threshold’ is the minimum number of alpha layer devices that must fire before an existing column starts accepting an input vector. It has a considerable influence in deciding the uniqueness of the patterns identified by a column. This parameter determines whether or not to accept an incoming vector to an already existing column. An incoming vector which has enough similarity to activate some devices in the alpha layer (i.e. accepted into a column) but does not have enough similarity to produce an output at the gamma layer is given many opportunities to imprint new devices and produce output. By controlling ‘\(\alpha \)Threshold’, the tendency of a highly dense vector (with features common to many other categories) being accepted into a column can be discouraged. A guard condition was introduced to dynamically adjust the value of this parameter by setting it to a percentage of the regular section size of the alpha layer with a minimum value. Generally this value is set to 3 or 5. When the data set is very sparse the optimal percentage is chosen to be
approximately 15% of the regular section size of the alpha layer, for a data set that has average feature density the percentage can be increased to an optimal value of 25% without affecting other algorithms. Especially when the alpha layer size is large, i.e. more than 50 devices, this parameter ensures that only the vectors that can fire more than 25% of the devices in the layer are accepted.

If an imprinted device keeps on failing to fire, its threshold is progressively reduced. The parameter t_{min} or minimum threshold is the lowest value to which a device can reduce its threshold. The default is set to 5, but devices rarely reach this value unless input vectors are very sparse. However, with the newsgroup data, the lowest a device can reduce its threshold had to be set to 4 to allow most of the vectors to contribute to fire a device. The value of this parameter should be used in selecting a document set for training. A training set should always have document vectors which have a minimum of features which is higher than the value of this parameter to ensure contribution to the training process.

The parameter ‘βThreshold’ is the minimum responses required to create a new column’. It defines the amount of beta layer activity expected from the last column during the specified response period to initiate the creation of a new column. If this target is not exceeded the creation of a new column is inhibited. A default of 20% of the number of input vectors presented from one category during a wake period, was chosen for this parameter. By controlling the value of this parameter the rate at which the system stabilizes can be adjusted. The advantage in allowing the system to stabilize slowly is that columns become sensitive to most of the variations in the same category and respond to at least of 20% (default value) from the vectors
targeted at it. When the content of one category has considerable variation and similar vectors are spread out over the data set (for example Movies category in newsgroups can span over other specific movie related categories such as Star Trek) this value can be set low to allow creation of new columns for the variations and accelerate the system stabilization.

The parameter ‘Inputs$_{min}$’ is the minimum number of vectors that could remain unacknowledged without making a new column’. If the last created column produce more than expected minimum responses, a new column can be created if there are input vectors more than Inputs_{min} value. In the experiments with document vectors, a larger number (about 35%) remain unacknowledged due to the large variations in terms of vector size and vector content among the documents in the same category. Setting this parameter to a higher value will stop creation of new columns for slight variations of the same category with very low recall. Moreover it helps to lower the user’s expectation of a very high response from the data set. The value of this parameter does not directly affect the performance as the system will stabilize without reaching the expected response if it is too high, but the problem will be adjusting other parameters forcing the system to reach this value at the cost of overall precision. This parameter value can range from 2% to about 15% of the number of vectors presented for a wake period.

6.3 Increasing Recognition Accuracy

Two scenarios of column imprinting were discovered when applying the RA model to real-world text data. These are due to the vast differences in the feature density of input vectors. Very dense input vectors result in excessively generic columns
acknowledging documents from too many topics) whereas sparse input vectors result in too specific columns (acknowledging too few documents). As there is no provision in the originally proposed system to discard a column once it is created, the system is unable to overcome these two problematic situations. To overcome the limitations imposed by such columns in building the clustering system, Extension-I and Extension-II are proposed to discard sparsely built columns and spurious columns respectively by using a mechanism of self-correction. The following sections discuss these extensions in detail after demonstrating the two problem conditions.

6.3.1 Problem of Very Specific Columns

When a column is initially created with a very sparse vector the RA algorithm automatically discards it if there is no significant beta level activity. However, with real world data a situation can occur where there is a very small set of vectors, which produce enough beta level activity to create a column but not enough to sustain development of that column. That is, when a column is initially created for sparse input vectors with a rare combination of features where there are not enough similar vectors to help the column to build up. The original algorithm will not allow the creation of a new column until the last created column starts giving an output. This situation hinders other columns being created if the last column does not improve, especially if the qualifying data set has a limited number of samples and the same data is presented repeatedly so that there will not be new input vectors to overcome this stagnation.

6.3.1.1 Demonstration of the Problem Condition

This problem condition is demonstrated with an experiment using the newsgroup data set. The modified two-step feature selection method is applied for selecting 1,000 features as described in Section 5.5.2. One hundred input vectors were presented in a
wake period and the system stabilized after 213 wake/sleep periods at the time the results were recorded. Figure 6-1 shows that, due to lack of output produced by column 5, the system has entered to a state of stagnation. Note that no new column has been created for a significant number of inputs after column 5. Only 50-60% of input vectors have been acknowledged by to the five columns and therefore enough inputs that had not been acknowledged by any column were available. Unless there are new input vectors, repeating the same inputs does not move the system out of stagnation.

As shown in Figure 6-1 there have been few attempts instantiating the column 6 but it has not been created. Instantiating a column means that the random connections for the three layers of a new column have been made at a sleep period ready for it to be used in creating a column. For a column to be successfully created three conditions must be met. The main condition is that the previously built column must produce at least the defined minimum responses (more than $\gamma_{Threshold}$) per wake period. When the previously built column gives more than the $\gamma_{Threshold}$, a column is instantiated. The second condition is that, by the time a column is
instantiated an input vector that has not responded to any other column, which also has some heuristically defined similarity to the *alpha layer device connections* of the instantiated column, must be available. Thirdly this vector, that satisfied the second condition, should produce enough beta layer activity in the new column.

6.3.1.2 Extension for Discarding Very Specific Columns - Extension-I

A new algorithm (Extension-I) is added to discard very specific columns. This algorithm uses firing history information of a column and a defined cut-off limit to determine whether a column should be discarded. The cut-off limit (*minOutputTolerance*) is defined based on the minimum responses required (*γThreshold*) per wake period from a column. The extended algorithm for `create column()` with Extension-I is given below.

```
create column-withExtension-I()
For all c ∈ RG
If c has received sufficient inputs
    for each input in one wake period
        If γO in γ(Δc,γDc,γRc,γO)c, |γO| > 0
            Increment γActivityCount
        If γActivityCount < minOutputTolerance
            If there are no initialised columns that are un-imprinted
                initialize column

if (|βOlast - column| > βThreshold and |Fi| > Inputs_min)
    If there are no initialised columns that are un-imprinted
        initialize column
```

The output of the column is observed for a specific period. The observation period for adequate output starts after few wake experiences allowing enough time for the column to be built, i.e. after the column received ‘sufficient inputs’ which is
usually first five wake periods. The column output considered here is the average output produced from that column within a wake period. If the output produced is less than \textit{minOutputTolerance}, that particular column is initialized. Then that column is free to accept a new starting vector (a new pattern). To specify the tolerance limit, the system parameters \(\gamma \text{Threshold} \) (minimum column responses per wake period) and the number of inputs given within a wake period are used.

When Extension-I is applied to the RA in experiment 3a (as demonstrated in Section 6.3.3.), eight stable columns are created by discarding very specific columns as shown in Figure 6-2, compared to five for the same number of inputs which is shown in Figure 6-1.

![Figure 6-2 Number of columns created for a given number of inputs with Extension-I](image)

\textbf{6.3.2 Problem of Very Generic Columns}

In a typical data set there are some vectors that are very dense but do not necessarily contain features of the specific category they belong to. As shown in Figure 5-3 and Figure 5-5 (Chapter 5) there are a few vectors having more than twice the number of features they are generally supposed to contain (i.e. when only 100 features are
selected from a particular category some vectors contain more than 200 features). This means there is very strong presence of features selected for other categories. If such a “too general” vector started the creation of the column, it becomes sensitive to many different types of inputs, which makes it difficult to find corresponding topics for such a column. Moreover, when the input vectors do give output from such a column they will not be regarded as vectors that were left behind. The vectors that are left behind contribute to the creation of new columns because they are used as the starting vectors for newly instantiated columns. There are two ways this situation can affect the growth of the clustering system. The column creation may stop if no input vectors are left behind because they are all acknowledged by one generic column. Otherwise, columns corresponding to some categories may not be created because the generic column is broad enough to acknowledge the vectors belonging to those categories.

6.3.2.1 Demonstration of the Problem Condition
This problem condition is demonstrated with the results of two experiments (Experiments 1 and 2) which are given below. For these experiments the TREC data was used and the modified two-step feature selection method was applied for feature selection. The 1250 features selected as described in Section 5.5.1 are used for preparing the document vectors. Experiment 1 created 9 columns whereas Experiment 2 created 11 columns. From these columns, column 3 in both experiments responded mainly to 6 topics (marked in bold face) making it too generic to identify any known pattern. Table 6-1 summarises the detailed analysis of column 3.

Precisions for the rest of the columns with regard to the major topics to which they belong are summarized in Table 6-2. Except for column 3, for all other columns a major corresponding topic or topics could be found. As shown in Table 6-2, some
topics like 425, 426 and 434 do not contribute to create columns in Experiment 1 neither does topic 426 to create columns in Experiment 2. Since a generic column acknowledges too many documents from different topics, it adversely effects the creation of new columns as described before, which could be the probable case for this output.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of documents responding to Column 3</td>
<td>% of documents responding to Column 3</td>
</tr>
<tr>
<td>401</td>
<td>8.8</td>
<td>6.9</td>
</tr>
<tr>
<td>412</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>415</td>
<td>18.9</td>
<td>19.3</td>
</tr>
<tr>
<td>422</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>424</td>
<td>8.1</td>
<td>8.3</td>
</tr>
<tr>
<td>425</td>
<td>37.2</td>
<td>37.9</td>
</tr>
<tr>
<td>426</td>
<td>11.5</td>
<td>11.7</td>
</tr>
<tr>
<td>434</td>
<td>8.1</td>
<td>8.3</td>
</tr>
<tr>
<td>436</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>450</td>
<td>2.0</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Table 6-1 Topic and the percentage of documents in each topic that responded to column 3

<table>
<thead>
<tr>
<th>Column No</th>
<th>Experiment 1</th>
<th>Experiment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Major corresponding topic/topics</td>
<td>Precision for the column</td>
</tr>
<tr>
<td>1</td>
<td>422</td>
<td>69.2</td>
</tr>
<tr>
<td>2</td>
<td>401</td>
<td>83.6</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>450</td>
<td>56.2</td>
</tr>
<tr>
<td>5</td>
<td>415</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>436</td>
<td>51.9</td>
</tr>
<tr>
<td>7</td>
<td>412</td>
<td>86.2</td>
</tr>
<tr>
<td>8</td>
<td>422</td>
<td>59.3</td>
</tr>
<tr>
<td>9</td>
<td>424</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>N/a</td>
<td>401, 425, 434</td>
</tr>
<tr>
<td>11</td>
<td>N/a</td>
<td>424</td>
</tr>
</tbody>
</table>

Table 6-2 Precision and Recall for each column by the major document category identified (Experiments 1 and 2)
6.3.2.2 Extension for Discarding Very Generic Columns – Extension-II

An extension (Extension-II) is proposed to automatically detect columns that produce more output than the specified cut off tolerance \((\text{maxOutputTolerance})\) within a wake period. To specify the cut-off tolerance the knowledge or the prediction of the distribution of the data are used (such as that 100 input vectors from 10 different topics are presented per ‘wake’ period and how many categories are acceptable for a pattern). For example, if 10 vectors are presented from each category during a wake period, the maximum number of vectors which can respond to a column with a pattern consisting of three categories is 30. If the column output is going over the cut-off limit and if there are no other initiated columns waiting to build up, the column will be initialized. Thus the too imprecise columns are discarded as well as column sizes are controlled without allowing them to grow excessively. The extended algorithm for \(\text{create column()}\) with Extension-II is given below.

```
create column-withExtension-II()
if \(c_{last} \in \text{RG} \) and \(c_{last}\) has received sufficient inputs for each input in one wake period
   if \(\gamma O \in \gamma (D_o, D_r, R, O) \) \(c_{last} \), \(|O| > 0\)
      Increment \(\gamma\)ActivityCount
      If \(\gamma\)ActivityCount > maxOutputTolerance
         if there are no initialised columns that are un-imprinted
            initialize column
   if \(|\delta| - \text{column} > \beta\)Threshold and \(|F| > \text{Inputs}_{\text{min}}\)
      if there are no initialised columns that are un-imprinted
         initialize column
```


The effect of using this algorithm is demonstrated with experiment 3a in Section 6.3.3.

6.3.3 Demonstration of the Solutions for Very Specific Columns and Very Generic Columns (Extensions -I and II) - Experiment 3a

Several experiments were carried out to evaluate the performance of the system with the Extension-I and extension-II for discarding sparsely built and spurious columns. For these experiments TREC data was used and the modified Two-step feature selection method (described in Section 5.3.2.2) was applied for feature selection. As described in Section 5.5.1, 1250 features were selected. Then the documents were mapped to binary vectors denoting the presence or absence of the selected features.

The training set comprised of a set of 1500 document vectors, which had more than 5 entries and consists of 150 vectors from each topic. A few vectors from a few topics were duplicated once to get the minimum of 150 documents from each topic. The test set comprised of a new set of 1000 (500 unique vectors duplicated once to make 1000) document vectors, which have not been used for training or feature selection.

The system created eight stable columns. Column 9 was automatically discarded due to lack of outputs it produced over the observed ‘wake’ periods. From the other eight columns, six columns produced output mainly from one topic and two columns produced output from multiple topics as summarised in Table 6-3. Unlike for Experiment 1 and Experiment 2, corresponding topics could be found for all the columns with the lowest precision for a column being 67% in the training set. All the topics except 434 contribute to creation of columns.
6.4 Increasing Column Sensitivity – Extension-III

The frequency of occurrence of a term in a document, as a feature attribute, carries important information in describing or identifying that document. It is proposed to use this information to enable alpha layer devices to capture additional information about the input documents. Use of this scheme proves to be valuable in increasing column sensitivity when the RA model is applied to text data.

6.4.1 Extension for Feature Intensity Recognition

The basic device of the RA model is sensitive to the absence or presence of a particular feature. It is proposed to extend the basic device to be sensitive to the *intensity* of the input. To support intensity as a feature attribute, the system must be able to discriminate between the function of information recognition and information recording. Inputs are pre-processed to include multiple occurrences of a feature to indicate the intensity of its occurrence. In the RA model, information is recorded or

<table>
<thead>
<tr>
<th>Column No.</th>
<th>Major document topics discovered</th>
<th>Precision as a %</th>
<th>Recall as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Training set</td>
<td>Test set</td>
</tr>
<tr>
<td>1</td>
<td>412</td>
<td>67.0</td>
<td>42.3</td>
</tr>
<tr>
<td>2</td>
<td>401</td>
<td>71.1</td>
<td>65.9</td>
</tr>
<tr>
<td>3</td>
<td>415</td>
<td>84.7</td>
<td>73.0</td>
</tr>
<tr>
<td>4</td>
<td>424, 425, 426</td>
<td>84.4</td>
<td>80.1</td>
</tr>
<tr>
<td>5</td>
<td>422</td>
<td>75.0</td>
<td>46.2</td>
</tr>
<tr>
<td>6</td>
<td>450</td>
<td>75.8</td>
<td>70.0</td>
</tr>
<tr>
<td>7</td>
<td>436</td>
<td>72.6</td>
<td>53.6</td>
</tr>
<tr>
<td>8</td>
<td>424, 425</td>
<td>75.6</td>
<td>64.0</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>75.8</td>
<td>61.9</td>
</tr>
</tbody>
</table>

Table 6-3 Precision and Recall for each column by the major document category identified (Experiment 3a)
imprinted by means of converting a virgin device to a regular device. The original algorithm was modified in a way to count multiple occurrences of a feature for device threshold calculation but the imprinting of a feature in a device was limited to once. This allows the system to recognize the intensity of a feature as an attribute as opposed to treating the multiple occurrences as distinctly different features.

The clustering system was modified to directly accept integer vectors indicating the word occurrence frequency. The processing time is significantly reduced when this is done in the pre-processing stage and only the index numbers indicating the existence and the frequency of words are given.

Several experiments were carried out to evaluate the performance of the system with feature intensity recognition enabled on both Newsgroup and TREC data sets. Four experiments are presented here, which use the Extension-I and Extension-II for discarding sparsely-built and spurious columns. From the four experiments, in Experiments 3a with TREC data (discussed already in Section 6.3.3) and 4a with Newsgroup data, the documents were mapped to binary vectors denoting the presence or absence of the selected features i.e. without Extension-III. Experiments 3b (TREC data) and 4b (Newsgroup data) were done with feature intensity recognition enabled i.e. with Extension-III. (The three extensions, Extension-I, Extension-II, and Extension-III are independent of each other and can be used separately or combined).

To accommodate information on the frequency, integer vectors were formed by counting the frequency of occurrence of each feature (word) in a document to represent it. In the document vector, the index denotes the feature and the content
indicates the frequency of occurrence of that feature. To reduce the discrepancies in
the sizes of the documents, vectors were normalized so that the maximum feature
frequency was 5. Finally, the input vectors were prepared by listing non-zero index
values. If the content of a particular index in the normalized vector was greater than 1,
then multiple copies of that index was written for the input vector. These input vectors
were then presented to the clustering subsystem of the Recommendation Architecture.

6.4.2 Experiments 3a and 3b – Applying the Extended RA to TREC Data

Same TREC data set was used for both experiments. A set of 125 words from each
topic was selected using the extended Two-Step feature selection method to arrive at a
1250 feature set as described in Section 5.5.1. All the documents that were used for
feature selection were mapped to 1250-word document vectors. As described above,
Experiment 3a was given binary vectors whereas Experiment 3b was given integer
vectors with frequency information. The training set comprised of a set of 1500
document vectors, which had more than 5 entries and consists of 150 vectors from
each topic. A few vectors from few topics were duplicated once to get the minimum
of 150 documents from each topic. The test set comprises of a new set of 500
document vectors, which have not been used for training or feature selection.

6.4.2.1 Results and Discussion

This section presents a comparison between the results of Experiment 3a and
Experiment 3b. In Experiment 3a, eight columns were created by the system. From
the eight columns, six columns produced output mainly from one topic and two
columns produced output from multiple topics. Results for the experiment 1 are
summarised by Table 6-3 (which is also presented in Section 6.3.3).
In the experiment 3b, the system created ten stable columns. From the ten columns, eight columns produced output mainly from one topic and two columns produced output from multiple topics as shown in Table 6-5.
In comparison, Experiment 3b with Extension-III, produced ten columns with eight columns uniquely identifying one TREC topic whereas Experiment 3a produced eight columns with only six uniquely identifying TREC topics. The feature intensity recognition extension results in improvement in average systems precision from 61.9% (Experiment 3a) to 65.0% (Experiment 3b) for the test set. It is also interesting to note the improvement in worst-case precision in Experiment 3a topic 412 from 42.3% to 57.6% in Experiment 3b. The recall for the test set in all stand-alone topics show a considerable increase except the very slight decrease for topic 415 from 70% to 68%. In addition to the topics discovered in Experiment 3a, Experiment 3b enables topics 424 and 425 to make individual appearances and for topic 434 also to appear as a part of a pattern (which did not appear in Experiment 3a at all).

In both cases it can be seen that the system was able to cluster most of the documents closely mapping to groupings of the TREC relevance judgment scores. As shown by these experimental results, the use of feature intensity recognition increases the average precision and recall significantly for the test set and also enhances creation of columns for less frequent patterns in the data set.

6.4.3 Experiments 4a and 4b - Applying the Extended RA to Newsgroup Data

Same newsgroup data set was used for both experiments. A set of 100 words from each topic was selected using the extended two-Step feature selection (described in Section 5.3.2.2) arriving at a feature set of 1,000 features as described in Section 5.5.2. The training data set of 30,000 newsgroup postings was then mapped to 1000-word document vectors. Similarly, the test set of 10,000 newsgroup postings were also mapped to the 1000-word document vectors. The document vectors for
Experiment 4a were binary vectors whereas the vectors for Experiment 4b (with Extension-III) were integer vectors with frequency information.

As Experiment 4a uses binary vectors denoting only the presence or absence of a feature, documents having more than ten entries were selected as the training set. Selecting vectors which have a higher number of entries increases the quality of input. An equal number of documents were selected from each group and the resulting set numbered 2000 documents. This set of 2,000 documents was repeatedly presented several times for the training phase as discussed in the next Section (6.4.3.1). In the test set 3,981 documents (i.e. 80% of the total set) had more than five features. As feature intensity is taken into consideration in Experiment 4b, the training set consisted of 23,140 integer vectors, which had more than five features. A few vectors from three groups had to be duplicated to get an equal number of documents in each group. The test set comprised of 5,000 vectors which had more than five features.

6.4.3.1 Results and Discussions
This section compares the results of Experiments 4a and 4b. In Experiment 4a, 100 input vectors were presented in each wake period being 10 documents from each newsgroup. The system ran for a total of 120 wake periods and 120 sleep periods before stabilizing with eight columns. The resulting groups and patterns that were acknowledged by these columns are illustrated in Table 6-6.
<table>
<thead>
<tr>
<th>Column No.</th>
<th>Major document grouping discovered</th>
<th>Precision as a %</th>
<th>Recall as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Training set</td>
<td>Test set</td>
</tr>
<tr>
<td>1</td>
<td>Cmp, Win, Lnx</td>
<td>90.4</td>
<td>95.6</td>
</tr>
<tr>
<td>2</td>
<td>MVS</td>
<td>83.4</td>
<td>94.2</td>
</tr>
<tr>
<td>3</td>
<td>FSP</td>
<td>89.9</td>
<td>90.3</td>
</tr>
<tr>
<td>4</td>
<td>HMR</td>
<td>81.7</td>
<td>71.4</td>
</tr>
<tr>
<td>5</td>
<td>AST</td>
<td>97.0</td>
<td>92.8</td>
</tr>
<tr>
<td>6</td>
<td>BL5</td>
<td>90.3</td>
<td>82.8</td>
</tr>
<tr>
<td>7</td>
<td>MVS, FSP</td>
<td>85.3</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>TRK</td>
<td>95.5</td>
<td>97.7</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>89.2</td>
<td>66.9</td>
</tr>
</tbody>
</table>

Table 6-6: Precision and Recall of each column by the major document category identified (Experiment 4a)

Experiment 4b was carried out by presenting 100 vectors in each ‘wake’ period, being ten documents from each topic. The system ran for a total of 639 ‘wake’ periods and ‘sleep’ periods before stabilizing with the training data set. The results of this experiment are summarized in Table 6-7.

<table>
<thead>
<tr>
<th>Column No.</th>
<th>Major document grouping discovered</th>
<th>Precision as a %</th>
<th>Recall as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Training set</td>
<td>Test set</td>
</tr>
<tr>
<td>1</td>
<td>FSP</td>
<td>93.4</td>
<td>92.5</td>
</tr>
<tr>
<td>2</td>
<td>TRK</td>
<td>88.0</td>
<td>84.4</td>
</tr>
<tr>
<td>3</td>
<td>MOV</td>
<td>93.0</td>
<td>37.5</td>
</tr>
<tr>
<td>4</td>
<td>BL5</td>
<td>68.8</td>
<td>62.0</td>
</tr>
<tr>
<td>5</td>
<td>BL5, TRK</td>
<td>94.7</td>
<td>95.2</td>
</tr>
<tr>
<td>6</td>
<td>Cmp, Win, Lnx</td>
<td>94.0</td>
<td>95.9</td>
</tr>
<tr>
<td>7</td>
<td>MOV</td>
<td>75.8</td>
<td>20.9</td>
</tr>
<tr>
<td>8</td>
<td>BKS</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>MOV, TRK</td>
<td>86.3</td>
<td>36.2</td>
</tr>
<tr>
<td>10</td>
<td>AST</td>
<td>100</td>
<td>96.6</td>
</tr>
<tr>
<td></td>
<td>Average</td>
<td>89.4</td>
<td>62.1</td>
</tr>
</tbody>
</table>

Table 6-7: Precision and Recall of each column by the major document category identified (Experiment 4b)
Compared to the eight columns created in Experiment 4a, Experiment 4b produced ten columns. Having feature intensity recognition does not seem to improve the average system precision of the test set, but it does improve recall for all the categories in the test set. The most probable reason for the poor response in recall of the test set in Experiment 4a is the small number of training documents which failed to create columns with enough variety of connections. As the input vectors were normalized to the frequency of occurrence of features, a larger training set was available for Experiment 4b ensuring a wider distribution of features for device connections.

From these experimental results it can be concluded that feature intensity recognition considerably increase the sensitivity of the columns thereby increasing the number of documents acknowledged by columns. Though overall response of the newsgroup data is low, detailed analysis of the discovered groups reveals some interesting patterns, which are further discussed in Section 6.6.3 using the extension for column labelling that Section 6.5 describes. For example, by looking at the column label it can be seen that column 7 (on books) acknowledges postings mostly about just one particular book series. Therefore it is possible that the test set has no postings on this particular subject which is the cause for no turn up.

6.5 Extending the RA for Text Mining

In situations where a document corpus is unclassified, being able to automatically discover document classes and to be able to label them meaningfully for human identification have wide applications. This section examines the enhancements proposed (Extension-IV) to automatically label the columns and to display the co-
occurrence of frequent words in the column label. This information is used to make a map display which shows the relationships among the features that contribute most in creating and maintaining a column.

Lately, there have been several cluster labelling schemes proposed for Self-Organizing Map (SOM) based research. So far the majority of SOMs have been labelled manually after inspecting the trained Map, which is not feasible when the map size is large (Rauber, 1999). WebSOM, which represents Usenet Newsgroup articles uses the Newsgroup name or the Newsgroup hierarchy name that the majority of the included articles come from. This allows automatic assignment of labels using the pre-classification knowledge of the Newsgroups. Labels are given for regions where words defining a region are computed by a measure of goodness. Goodness is defined by comparing a word’s frequency to other word frequencies in the region and its own relative frequency generally in the collection (Honkela et al., 1997; Lagus, 2000). The disadvantage in this scheme is that it requires the system to have the pre-classification knowledge of Newsgroup names. In the LabelSOM approach no a priori knowledge on the pre-classification is used in labelling. To generate the labels the system considers the vector elements most relevant to the mapping of an input onto a specific unit (Rauber and Merkel, 1999; Rauber et al., 2000a; Rauber et al., 2000b). The main disadvantage in this approach is that clear cluster boundaries are not apparent which requires human inspection to mark the separate groups. Though Rauber claims to define cluster boundaries by combing units sharing a set of labels, it is not clearly stated or shown whether it is done automatically. The labelSOM method has been applied to ‘Growing Hierarchical Self-Organizing Map’ (GHSOM) also but the labels are given for individual map units not for large areas (Dittenbach et al.,
In contrast, the labelling done with the RA model is generated automatically for each cluster and it does not require any prior knowledge of the existing categories of the documents. The next section examines the column labelling scheme in detail.

6.5.1 Automatic Column Labelling – Extension-IV

As the system is presented with input experiences, the clustering system organizes itself into sets of columns identifying similarities among input data. Each column identifies a particular pattern prevalent in the inputs, which is independent of pre-existing classifications. The system keeps a memory of the normalized frequency of each feature, which contributed to firing devices in all columns. The most frequently firing connections in alpha layer devices of a specific column are extracted to use in the column label. The algorithm is also extended to keep a record of the feature pairs that occur together when a device is fired. To find the word pairs that frequently occur together, a method is devised to calculate the frequency at which the two words are presented together as inputs, when a device fires. These feature and feature pair lists are then used as the word map that describes each of the columns.

After word extraction, each column can be labelled by assigning it a word map consisting of single words and word pairs. The collection of single words helps to understand the grouping of the documents and word-pairs help to understand the context of each word. For example, if the three words, car, traffic, stolen are present in a label, knowing that the car-stolen pair occurs more frequently than car-traffic suggests that the topic may be more relevant to car theft than normal car use.

6.5.2 Column Labelling for Experiments 3b and 4b

Table 6-8 shows the labels assigned by the system to each column created in Experiment 3b. It can be seen that some topics contain articles which are common
across multiple TREC topics. The system identifies these documents together as a single group.

<table>
<thead>
<tr>
<th>Column No</th>
<th>TREC topics</th>
<th>Automatically extracted words for column label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>King Hussein and peace</td>
<td>Jordan, Israel, Amman, Arab, Washington, Palestinian, order, military, secretary, role, administration, American</td>
</tr>
<tr>
<td>2</td>
<td>railway accidents</td>
<td>train, cars, freight, crossing, travelling, federal, transportation, hit, tons, front, stop, hospital</td>
</tr>
<tr>
<td>3</td>
<td>foreign minorities in Germany</td>
<td>German, federal, Bonn, violence, party, future, democratic, Europe, military, extremist, social, border, Klaus</td>
</tr>
<tr>
<td>4</td>
<td>drugs and golden triangle</td>
<td>Khun, Burma, Sa, opium, Asia, Thailand, Bangkok, Shan, army, narcotics, order, Rangoon</td>
</tr>
<tr>
<td>5</td>
<td>art, stolen, forged</td>
<td>art, stolen, artist, gallery, painting, dealer, museum, arrested, Dutch, German, French, collection</td>
</tr>
<tr>
<td>6</td>
<td>airport security</td>
<td>airlines, federal, airport, aviation, flight, air, American, administration, Washington, bomb, screening, Scotland</td>
</tr>
<tr>
<td>7</td>
<td>counterfeiting money</td>
<td>counterfeit, order, social, party, crime, arrested, legal, Russia, economy, printing, notes, German</td>
</tr>
<tr>
<td>8</td>
<td>foreign minorities in Germany, counterfeiting money, economy in Estonia</td>
<td>goods, future, efforts, social, federal, Estonian, cooperation, Germany, products, order, party, financial, equipment, industrial, population</td>
</tr>
<tr>
<td>9</td>
<td>suicides</td>
<td>judge, Kevorkian, prosecutor, Michigan, ruled, Jack, jail, deputies, motel, doctor arrested, medical</td>
</tr>
<tr>
<td>10</td>
<td>foreign minorities in Germany, counterfeiting money, dogs, law enforcement</td>
<td>car, officers, German, arrested, federal, dog, search, military, American, incident, party, stolen, suspects, crime, robbery</td>
</tr>
</tbody>
</table>

Table 6-8 TREC topic labels for the major group discovered by each column and the labels assigned to the columns by the extended RA system.

For example, topics 401 (foreign minorities in Germany), 425 (counterfeiting money) and 434 (economy in Estonia) produce the majority of the output from
column 8. The words describing column 8 mainly gives the idea of social and economic situations whereas column 10 producing output from 401 (foreign minorities in Germany), 425 (counterfeiting money) and 426 (dogs, law enforcement) gives the idea of crime, robbery and arrests. Though topics 401 and 425 are combined with another topic in both cases, the words describing the columns clearly show the difference between the two columns.

Two parts of the list of word pairs for Column 1 (which corresponds to TREC topic 450 - King Hussein and peace) and Column 2 (which corresponds to topic 436 – railway accidents) are shown in Table 6-9 with their (normalized) frequencies of occurrence.

For all the columns a similar list is automatically generated which shows the context for words. For example, it can be seen that the word role occurs in the context of a country/region as opposed to military, administrative or secretarial which correspond to the other frequent words in the label map. The normalized frequency of occurrence can be used to select pairs with higher frequencies from the rest.
<table>
<thead>
<tr>
<th>Column 1</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Word 1</td>
<td>Word 2</td>
<td>Frequency</td>
</tr>
<tr>
<td>role</td>
<td>jordan</td>
<td>125</td>
</tr>
<tr>
<td>role</td>
<td>israel</td>
<td>110</td>
</tr>
<tr>
<td>role</td>
<td>amman</td>
<td>109</td>
</tr>
<tr>
<td>role</td>
<td>region</td>
<td>104</td>
</tr>
<tr>
<td>role</td>
<td>washington</td>
<td>103</td>
</tr>
<tr>
<td>role</td>
<td>future</td>
<td>90</td>
</tr>
<tr>
<td>role</td>
<td>efforts</td>
<td>88</td>
</tr>
<tr>
<td>role</td>
<td>arab</td>
<td>81</td>
</tr>
<tr>
<td>role</td>
<td>negotiations</td>
<td>75</td>
</tr>
<tr>
<td>role</td>
<td>palestinian</td>
<td>62</td>
</tr>
<tr>
<td>palestinian</td>
<td>jordan</td>
<td>156</td>
</tr>
<tr>
<td>palestinian</td>
<td>israel</td>
<td>131</td>
</tr>
<tr>
<td>palestinian</td>
<td>arab</td>
<td>130</td>
</tr>
<tr>
<td>palestinian</td>
<td>amman</td>
<td>127</td>
</tr>
<tr>
<td>palestinian</td>
<td>washington</td>
<td>110</td>
</tr>
<tr>
<td>palestinian</td>
<td>israel</td>
<td>102</td>
</tr>
<tr>
<td>palestinian</td>
<td>negotiations</td>
<td>78</td>
</tr>
<tr>
<td>palestinian</td>
<td>region</td>
<td>71</td>
</tr>
<tr>
<td>palestinian</td>
<td>efforts</td>
<td>65</td>
</tr>
<tr>
<td>palestinian</td>
<td>future</td>
<td>65</td>
</tr>
<tr>
<td>rabin</td>
<td>jordan</td>
<td>51</td>
</tr>
<tr>
<td>al'aqabah</td>
<td>israel</td>
<td>52</td>
</tr>
<tr>
<td>al'aqabah</td>
<td>jordan</td>
<td>70</td>
</tr>
<tr>
<td>al'aqabah</td>
<td>amman</td>
<td>62</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Column 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Word 1</td>
<td>Word 2</td>
<td>Frequency</td>
</tr>
<tr>
<td>social</td>
<td>europe</td>
<td>58</td>
</tr>
<tr>
<td>social</td>
<td>legal</td>
<td>50</td>
</tr>
<tr>
<td>social</td>
<td>legal</td>
<td>50</td>
</tr>
<tr>
<td>social</td>
<td>future</td>
<td>63</td>
</tr>
<tr>
<td>social</td>
<td>region</td>
<td>61</td>
</tr>
<tr>
<td>federal</td>
<td>transportation</td>
<td>92</td>
</tr>
<tr>
<td>federal</td>
<td>equipment</td>
<td>52</td>
</tr>
<tr>
<td>federal</td>
<td>evidence</td>
<td>62</td>
</tr>
<tr>
<td>federal</td>
<td>executive</td>
<td>60</td>
</tr>
<tr>
<td>federal</td>
<td>weeks</td>
<td>51</td>
</tr>
<tr>
<td>federal</td>
<td>investigation</td>
<td>82</td>
</tr>
<tr>
<td>federal</td>
<td>operation</td>
<td>60</td>
</tr>
<tr>
<td>federal</td>
<td>administration</td>
<td>95</td>
</tr>
<tr>
<td>federal</td>
<td>customs</td>
<td>58</td>
</tr>
<tr>
<td>federal</td>
<td>legal</td>
<td>55</td>
</tr>
<tr>
<td>federal</td>
<td>cars</td>
<td>52</td>
</tr>
<tr>
<td>federal</td>
<td>traffic</td>
<td>53</td>
</tr>
<tr>
<td>federal</td>
<td>future</td>
<td>57</td>
</tr>
<tr>
<td>transportation</td>
<td>administration</td>
<td>62</td>
</tr>
<tr>
<td>transportation</td>
<td>freight</td>
<td>76</td>
</tr>
<tr>
<td>transportation</td>
<td>train</td>
<td>78</td>
</tr>
<tr>
<td>transportation</td>
<td>cars</td>
<td>65</td>
</tr>
<tr>
<td>transportation</td>
<td>traffic</td>
<td>55</td>
</tr>
<tr>
<td>transportation</td>
<td>trains</td>
<td>55</td>
</tr>
<tr>
<td>equipment</td>
<td>administration</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 6-9 Frequently occurring word pairs
(A section for Column 1 and a section for Column 2)

Labels assigned for the columns created for Newsgroup data in Experiment 4b are shown in Table 6-10. The reasons for outcome of the patterns and for multiple occurrences of the same group can be deduced from the words describing the columns. Sometimes columns evolve to be very similar though they were created for a different group of input vectors. As can be seen from the Table 6-10 the group MOV (movies) has created multiple columns for different variations within the same category. For instance, Column 3 represents Japanese and Chinese movies with words like samurai, Chinese, swordfights and fencing whereas column 7 is focused on
America and Hollywood. Column 9 which is a mixed pattern of MOV (movies) and TRK (Star Trek) seems to have evolved on discussions based on movies about wars, which is also a common theme with Star Trek.

<table>
<thead>
<tr>
<th>Column No</th>
<th>Newsgroup name</th>
<th>Automatically extracted words for column label</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FSP - Farscape</td>
<td>Francis, wars, test, Erik, personality, Thinkum, Viki, wire, Iwaniszew, darth, discovered, lies</td>
</tr>
<tr>
<td>2</td>
<td>TRK – Star Trek</td>
<td>trek, ds9, tng, Borg, federation, episode, Spock, enterprise, holomatrix, geschreven, ship, voyager, survive, crew</td>
</tr>
<tr>
<td>3</td>
<td>MOV – movies</td>
<td>swordfight, rob, sword, Peckinpah, samurai, Hollywood, liberals, Chinese, christian, fencing conservative, beauty's</td>
</tr>
<tr>
<td>4</td>
<td>BL5 – Babylon 5</td>
<td>jms, b5, crusade, trek, wars, published, Babylon, episode, rangers, officer, legend, production</td>
</tr>
<tr>
<td>5</td>
<td>BL5 – Babylon 5, TRK – Star Trek</td>
<td>nordal, donate, b5, crusade, trek, episode, ds9, Babylon, test, wars, voyager, rangers</td>
</tr>
<tr>
<td>6</td>
<td>CMP – computer, LNX – Linux, WIN– Windows2000</td>
<td>boot, drive, win2k, data, swap, files, win98, ram, cpu, card, error, Internet</td>
</tr>
<tr>
<td>7</td>
<td>MOV – movies</td>
<td>beauty's, copout, conservative, America, Gary, christian, speaking, Hollywood, peace, improper, director, security</td>
</tr>
<tr>
<td>8</td>
<td>BKS – books</td>
<td>incarnations, immortality, paperback, Bruening, Anthony, kid</td>
</tr>
<tr>
<td>9</td>
<td>MOV – movies, TRK - Star Trek</td>
<td>Chinese, beauty's, wars, Greek, francis, copout, European, views, crouching, tiger, empire, killed</td>
</tr>
<tr>
<td>10</td>
<td>AST – astronomy</td>
<td>scope, refractor, celestron, eyepiece, bright, viewing, meade, observing, axis, focus, onion, astro</td>
</tr>
</tbody>
</table>

Table 6-10 Newsgroup names assigned for the major group discovered by each column by the labels assigned to the columns by the extended RA system.

Inspection of the word map shows that column 8 is mostly acknowledging postings on books of one particular author called Piers Anthony, who wrote a series of
novels which are collectively called “Incarnations of immortality”. This explains why no documents for BKS group was acknowledged in the test set in Table 6-7. There may not have been any postings on this particular subject in the books (BKS) group of the test set. Column 9 seems to be partially about the Chinese movie ‘Crouching Tiger, Hidden Dragon’ where as postings on the movie ‘American Beauty’ seem to be acknowledged by many columns.

6.5.3 Post–Processing the Output

The proposed post-processing system automatically generates a detailed analysis of the results from the clustering system. The input to this system is a text file that contains data on the gamma layer firing of the clustering system. The output is presented in several ways. One is the column-wise breakdown of the number of documents from each topic that are acknowledged by a particular column. Another is the facility for the users to access and read the actual documents that contributed to building a column.

For example, consider columns 3 and 7 in Experiment 4b, which have been created for group MOV (movies). Column-wise breakdown of the test results in Table 6-11 shows how the appearance of documents from other topics lower the column precision for MOV (movies). It can be seen from Table 6-11 that a considerable percentage of LNX (Linux) documents have responded to these columns. It is hard to accept that there could be any similarity between Linux and movies related documents. However, when the actual Linux documents are examined (using the web page generated) that responded to columns 3 and 7, it can be seen that those documents categorized as Linux have no content related to Linux or computer. They carry a discussion about various countries though posted to the Linux newsgroup.
Table 6-11 Column-wise breakdown of document groups for columns 3 and 7

<table>
<thead>
<tr>
<th>Group</th>
<th>% of documents Acknowledged</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>2.5</td>
</tr>
<tr>
<td>BL5</td>
<td>5.0</td>
</tr>
<tr>
<td>BKS</td>
<td>15.0</td>
</tr>
<tr>
<td>CMP</td>
<td>0</td>
</tr>
<tr>
<td>FSP</td>
<td>0</td>
</tr>
<tr>
<td>HMR</td>
<td>10.0</td>
</tr>
<tr>
<td>LNX</td>
<td>27.5</td>
</tr>
<tr>
<td>MOV</td>
<td>37.5</td>
</tr>
<tr>
<td>TRK</td>
<td>2.5</td>
</tr>
<tr>
<td>WIN</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>% of documents Acknowledged</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST</td>
<td>6.9</td>
</tr>
<tr>
<td>BL5</td>
<td>2.3</td>
</tr>
<tr>
<td>BKS</td>
<td>9.3</td>
</tr>
<tr>
<td>CMP</td>
<td>0</td>
</tr>
<tr>
<td>FSP</td>
<td>0</td>
</tr>
<tr>
<td>HMR</td>
<td>11.6</td>
</tr>
<tr>
<td>LNX</td>
<td>32.6</td>
</tr>
<tr>
<td>MOV</td>
<td>20.9</td>
</tr>
<tr>
<td>TRK</td>
<td>16.3</td>
</tr>
<tr>
<td>WIN</td>
<td>0</td>
</tr>
</tbody>
</table>

The web pages generated by the post-processing system give links to the actual documents that contributed to building columns (in a format similar to Figure 6-3). There under each column number, the left hand side gives the input vector name corresponding to a document with its category. The numbers on right denote the gamma devices that fired when that document is given as input. Figure 6-3 clarifies the differences between the gamma layer device combinations for a part of column 3 created by experiment 4b. The differences between gamma layer device combinations can be used to distinguish similarities and differences between different documents. These numbers do not correspond to words in the document. It is a heuristic combination of words that creates a path to the gamma layer from the alpha layer.
<table>
<thead>
<tr>
<th>Column Number 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOV-12.txt</td>
</tr>
<tr>
<td>TRK-14.txt</td>
</tr>
<tr>
<td>MOV-45.txt</td>
</tr>
<tr>
<td>MOV-144.txt</td>
</tr>
<tr>
<td>BKS-158.txt</td>
</tr>
<tr>
<td>BKS-163.txt</td>
</tr>
<tr>
<td>MOV-206.txt</td>
</tr>
<tr>
<td>MOV-208.txt</td>
</tr>
<tr>
<td>MOV-259.txt</td>
</tr>
<tr>
<td>MOV-262.txt</td>
</tr>
<tr>
<td>MOV-312.txt</td>
</tr>
<tr>
<td>BKS-325.txt</td>
</tr>
<tr>
<td>BKS-403.txt</td>
</tr>
<tr>
<td>MOV-527.txt</td>
</tr>
<tr>
<td>BKS-507.txt</td>
</tr>
<tr>
<td>MOV-584.txt</td>
</tr>
<tr>
<td>MOV-602.txt</td>
</tr>
<tr>
<td>BKS-543.txt</td>
</tr>
<tr>
<td>MOV-623.txt</td>
</tr>
<tr>
<td>MOV-684.txt</td>
</tr>
<tr>
<td>LNX-591.txt</td>
</tr>
<tr>
<td>LNX-592.txt</td>
</tr>
<tr>
<td>LNX-600.txt</td>
</tr>
<tr>
<td>LNX-605.txt</td>
</tr>
<tr>
<td>LNX-606.txt</td>
</tr>
<tr>
<td>HMR-1619.txt</td>
</tr>
<tr>
<td>HMR-1636.txt</td>
</tr>
<tr>
<td>HMR-1642.txt</td>
</tr>
<tr>
<td>MOV-826.txt</td>
</tr>
<tr>
<td>HMR-1636.txt</td>
</tr>
<tr>
<td>MOV-826.txt</td>
</tr>
<tr>
<td>MOV-826.txt</td>
</tr>
<tr>
<td>HMR-1636.txt</td>
</tr>
<tr>
<td>MOV-826.txt</td>
</tr>
<tr>
<td>MOV-826.txt</td>
</tr>
</tbody>
</table>

Figure 6-3 Part of the output for column 3 showing the relationships between document vectors and gamma layer device numbers

6.5.4 Searching for Similar Documents

When it is not possible to articulate the information need clearly, the user can provide an indicator or an example to the RA to discover similar information. For example, a new document can be provided to the system as the indicator and the system will show which columns acknowledge similar documents. Table 6-12 generated from the post-processing system (for experiment 4b) shows 22 document vectors and which columns a particular document is acknowledged by. Each line corresponds to a document vector and ‘1’ under a column number indicates that particular column acknowledges that document. If the new document does not possess any relation to an existing column, it will not be acknowledged by any column.
Table 6-12 A set of the document vectors by the columns they respond to.

<table>
<thead>
<tr>
<th>File names of document vectors</th>
<th>Responding column numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>tAST-12</td>
<td></td>
</tr>
<tr>
<td>tBRS-14</td>
<td></td>
</tr>
<tr>
<td>tBL5-16</td>
<td></td>
</tr>
<tr>
<td>tBL5-23</td>
<td></td>
</tr>
<tr>
<td>tCOM-12</td>
<td></td>
</tr>
<tr>
<td>tCOM-14</td>
<td></td>
</tr>
<tr>
<td>tCOM-17</td>
<td></td>
</tr>
<tr>
<td>tFSP-24</td>
<td></td>
</tr>
<tr>
<td>tFSP-25</td>
<td></td>
</tr>
<tr>
<td>tMOV-12</td>
<td></td>
</tr>
<tr>
<td>tMOV-25</td>
<td></td>
</tr>
<tr>
<td>tTRK-11</td>
<td></td>
</tr>
<tr>
<td>tTRK-14</td>
<td></td>
</tr>
<tr>
<td>tTRK-18</td>
<td></td>
</tr>
<tr>
<td>tTRK-24</td>
<td></td>
</tr>
<tr>
<td>tTRK-25</td>
<td></td>
</tr>
<tr>
<td>tTRK-28</td>
<td></td>
</tr>
<tr>
<td>tWIN-0</td>
<td></td>
</tr>
<tr>
<td>tWIN-11</td>
<td></td>
</tr>
<tr>
<td>tWIN-17</td>
<td></td>
</tr>
<tr>
<td>tWIN-21</td>
<td></td>
</tr>
<tr>
<td>tWIN-23</td>
<td></td>
</tr>
</tbody>
</table>

When an unknown document is given as input to the clustering system, responding column numbers and the firing gamma device numbers will be given as output. Using this information the post-processing system generates a table similar to Table 6-12 with only one line. The differences between the documents responding to the same column can be seen by the firing numbers of gamma layer devices. More work can be done to enhance the usability of the discrimination provided by the firing gamma device numbers. For example, using a scheme for calculating vector similarity, documents with the most similar gamma device numbers could be identified as documents with similar content.
6.5.5 Performance Evaluation

Evaluation of systems that provide users with effective access to information and interaction with information has to be done at different levels. As argued in (Saracevic, 1995) there can be three levels such as processing level and output, users and use level, and social level. Evaluation at processing level includes assessment of performance of algorithms and techniques whereas evaluation at output level includes assessment of searching, interaction, feedback, etc. Evaluating ‘end-user performance’ and ‘use of information retrieval (IR) systems’ are done at users and use level. Currently users and use level evaluations are mostly done using actual products and services on the market. Effect of information access on research, productivity, and decision-making is addressed at social level. However, most of the research and literature in IR evaluation are on the processing level.

Most of the existing evaluation methods are aimed at information retrieval (IR) since IR is the oldest branch of research in information access. Precision and recall have been the preferred measures of IR evaluation at the processing level. Precision is the ratio of relevant items retrieved to all retrieved items and recall is the ratio of relevant items retrieved to all relevant items in the data set. If the relevance of assessed output is given precision is directly calculated. However, recall depends not only on what was retrieved but also on what was not retrieved, which raises the question “how does one know what was missed if one does not know that it was missed?” Furthermore, all use of recall has the underlying assumption that an existing item is only relevant to one category in the data set, which is not warranted particularly in large databases like TREC. According to Järvelin and Kekäläinen, if the assumption that there is only a single relevant set per request is abandoned, use of
the measure recall must be re-evaluated (Järvelin and Kekäläinen, 2000). In order to solve problems linked to the assessment of relevance, Järvelin and Kekäläinen propose ‘bases’ (or degrees of relevance) for recall such as, highly relevant, fairly relevant, marginally relevant and irrelevant rather than using a single value. Taking these facts into consideration, Lagus’s argument (Lagus, 2000) ‘that due to fundamental problems such as existing categorization being inaccurate, categories overlapping and the same articles belonging to several categories, automatic methods may provide better categorization than the original one’ seems correct.

For the evaluation of the clustering system of the Recommendation Architecture, precision and recall is defined (Equation 1 and Equation 2) considering the category a document belongs to as the category of most documents acknowledged by that column. As a measure of local coherence the average precision of over 60% for the test sets in all four demonstrated experiments is quite good considering the values are from eight (in Experiments 3a and 3b) or ten (in Experiment 4a and 4b) groups. The random value for eight groups is about 12% whereas the random value for ten groups is 10%. As the articles are manually classified the human value could be as high as 100%. Since all 8 clusters in Experiments 4a and 4b do not match the original topics and the RA has discovered a few new topics, the human value must be to a large extent lower than 100%. The overall recall for the test set, especially for the experiments with the newsgroups, are rather low which needs further work in increasing the sensitivity of columns. Precision and recall both vary from 0% to 100%. As Salton argues optimising both recall and precision simultaneously is not normally achievable (Salton, 1989). Therefore a compromise must be reached. According to Salton, an intermediate performance level, at which both the recall and
precision vary between 50%-60% is more satisfactory than either of the limiting performance levels that favour high recall or high precision exclusively.

Modern information access systems have much more value added to the results which differentiate them considerably from the retrieval systems. As argued by webSOM based projects (Lagus, 2000), it is difficult to define evaluation methods for quality of visualization, exploration and navigation in these methods. It is a challenge to integrate IR evaluations from different levels and to define evaluation methods for new applications.

6.6 Summary
The first section (Section 6.2) of this chapter presented several heuristics for setting four important parameters. Fine-tuning the controllable parameters of the system enable consistent categorisation while acknowledging a large number of documents. As often the case had been, any empirical study with the RA requires the knowledge of the influence these parameter values have on the system.

The major part of this chapter examined the extensions that were proposed for increasing the effectiveness of the clustering system and for creating a word map for visualization of the results. Discarding poorly built columns and spurious columns reduces the effect of too specific and too general input vectors being the starting point of a column. The advantage in discarding poorly built columns is that the system can overcome stagnation when experimenting with limited number of documents. The benefit of discarding largely imprecise columns is twofold as it enhances local coherence within columns and allows discrimination among different patterns. By
enabling the system to use frequency of occurrence of features, significant improvement is achieved for recall and precision. Though major topics that respond to a particular column can be identified by the post-processing system, column labelling describes the characteristics of the columns themselves. Especially, where few topics respond to the same column, the commonality they share among themselves can be clearly seen. As demonstrated by experiments, these extensions significantly contribute to text organization with classification and representation.

The last parts of this chapter (Sections 6.5.3 and 6.5.4) demonstrate the use of the post-processing system to enhance the applicability of the RA for more tasks in text mining. Primarily, the post-processing system enables analysis and exploration of the data organized by the clustering system. It also gives many paths to discover the reasons why particular documents form a pattern together and why some documents respond to a particular column. Finally it provides a search facility that guides the user to a cluster of similar documents when a new document is provided. This facility is especially useful when the needs of a user are difficult to articulate.

It is noted that existing standard criteria for evaluation of information access methods are primarily concerned with information retrieval and filtering. More qualitative measurements are necessary which consider the value added to information access by text mining systems such as visualization, cluster labelling and navigation.
Chapter 7

Conclusion

7.1 Principal Lessons

This thesis examined the viability of applying the Recommendation Architecture model for text mining. The Recommendation Architecture model has shown promise as a new connectionist approach for pattern discovery and recognition on simulated problems. However, it had never before been tested for a real problem with real data. This thesis, for the first time, provides insights into the behaviour of the Recommendation Architecture when applied to a real world problem, specifically text mining. The Recommendation Architecture turned out to be a viable model for text mining to a large extent. Guidelines were given on how and in what situations it can be applied and the existing limitations were explored. New extensions to the model were proposed to overcome these limitations and to enhance the application to text mining.

As reported in chapter 4, the new RA implementation developed in C++ enables fast execution of experiments on a normal desktop computer. This makes the Recommendation Architecture model available in an executable form that can be applied to any domain effectively. The concepts, functionality and the algorithm of the Recommendation Architecture model were comprehensively examined in chapter 2. This analysis, together with the proposed formal notation, brought forth a clear understanding of the Recommendation Architecture, which may help popularise its use in other applications. The prototype will be made available on the web with the

Four decades of research on information access systems have seen many advances in the fields of retrieval, filtering, and classification. A review of the literature on information access systems (in chapter 3) suggested that the usefulness of information retrieval, filtering and classification systems is limited in the context of evolving user interests. When the information need is vaguely understood and difficult to verbalize, and when it is necessary to discover unsuspected relationships among documents, a different approach is needed. Text mining aims to fill the gap between traditional information access systems and evolving user needs. The added dimensions that text mining offers are the pattern discovery and organization of text displaying various relationships among documents. The Recommendation Architecture’s ability to discover and recognize patterns makes it a natural candidate for application in this type of text mining.

Chapter 5 demonstrated how the RA model can be applied to the problems of pattern discovery in text and classification of text. The difficulty of the task depends notably on the nature of the data set. For empirical studies in this thesis two kinds of data sets were selected. One had a fair amount of structure in its content and the other had very little structure. The first set of documents were selected from the TREC corpus. The TREC documents are written in a structured manner and with proper English sentences. However, they contain some noise in the sense that some very long documents have only few sentences that are relevant to the subject, making the pattern discovery and classification non-trivial. Furthermore, this set contained documents that were pre-classified as belonging to more than one group, creating a significant
overlap. The second set of documents was selected from Internet Newsgroup postings. They contain wide variations in writing style and of very poor quality. There is also a fair degree of cross posting in the Newsgroups. From both sets, each document was presented to the system as a set of features appropriately selected to represent the document.

When the system is used for pattern discovery, the feature selection process takes no a priori guidance on the information of existing categories in a data set. The system classifies documents in to various categories as they are being discovered. The discovered categories are the patterns representing some commonality among documents. However, the categories that were discovered during the experimentation with Newsgroup data were difficult to interpret even with the labels assigned. For Newsgroup data where the content within one category has vast differences, this similarity could be, for example, jokes in all 10 groups, a discussion style, etc. The experimental results in discovering patterns with TREC data were shown to be very encouraging and the interpretation of the discovered patterns proved to be reasonably straightforward with the labels assigned.

When the system is used for classification, the input space needs guidance as to what categories are expected, i.e., a feature selection is needed in favour of the features more likely to provide useful discrimination among the known categories. In chapter 5, the Two-step feature selection method that was used for information filtering by Stricker et al. (Stricker et al., 1999) is modified by the author to use for classification. The experimental results showed that the classification accuracy of the Recommendation Architecture was quite good (precision over 61% for test sets) with
both data sets when the input space is modelled with the proposed modified feature selection algorithm (chapters 5 and 6).

Experiments carried out in Chapter 5 showed that several enhancements are needed to the Recommendation Architecture model for effective pattern discovery and classification in text. Chapter 6 introduced the extensions proposed for increasing the effectiveness of document classification. One is the reduction of the effect of a ‘poor’ document vector contributing in the creation of a column. With real-world data there is a high probability that a starting vector will be a fairly sparse and rare or a noisy one which makes it contribute poorly. When the starting vector is sparse and rare, the created column tends to develop into a very specific column that only acknowledges a few input vectors. When the starting vector is noisy, the created column tends to be very general and acknowledges a large number of input vectors. Both these conditions result in poor performance of columns and the proposed extensions, Extension-I and Extension-II (of Sections 6.3.1.2, 6.3.2.2), addressed these conditions by way of automatically discarding poor columns. The advantage of Extension-I is that the system can overcome stagnation when working on a limited number of documents. The benefit of discarding too imprecise columns is twofold: it enhances local coherence within columns and it allows more discrimination among different patterns. Thus discarding poorly built columns and spurious columns reduces the effect of too specific and too general input vectors being the starting point of a column.

Extension-III proposed in Section 6.4 enables the system to use the frequency of occurrence of features (feature intensity) of document vectors to enhance pattern
recognition. The original algorithm was designed to use binary vectors which denote only the presence or absence of a feature in the vector. The information regarding the frequency of occurrence of that feature was not used. Feature intensity recognition is achieved by differentiating the tasks of recording information and recognizing information at the system component level. The experimental results proved that this extension contributes significantly to improve both recall and precision.

Pattern discovery is not very effective unless it is combined with an explanation of why particular texts are categorized into a particular group. Using the automatic column labelling scheme introduced in Section 6.5.1, the columns could be described using a word map that consisted of features that contributed to create them. The word map was automatically extracted from the features contributing to the creation and maintenance of a column. It also describes the co-occurrence of frequent features that contribute to maintaining a column. This allows the context for the words in the label to be further understood by examining the frequently occurring word-pairs. The word maps significantly improve the effectiveness of RA in text mining by way of presenting the columns in a human readable form.

The proposed post-processing system (in Section 6.5.3) is evidently capable of using gamma level output for more tasks in text mining. Primarily, this allows analysis and exploration of the data organized by the clustering system. It also offers many paths to find out why particular documents form a pattern together and why some documents respond to a particular column. Finally, it provides a ‘search by example’ facility that guides the user to a cluster of similar documents when a new document is given. This facility is especially useful when the user’s search need is
difficult to articulate.

The effectiveness of the clustering system depends on the suitable selection of parameter values from a number of adjustable parameters in the RA system. In general, there is no method for selecting good parameter values other than by trial and error because they depend on the input data set. When the vectors of the data set have average feature density (for example, statistical data used in the model experiment in chapter 4 and stemmed data in Appendix B), the parameter selection takes a minimum effort. However, when the number of training samples is limited and the document vectors are sparse, parameter tuning could consume a considerable amount of time. Furthermore, when the data is very noisy and of poor quality, it is more difficult to identify suitable parameters to optimise the categorization process. This makes the application of RA model to particular domains a challenging task. Section 6.2 suggests several heuristics for selecting parameter values for key parameters based on the characteristics of the data set.

Note that existing standard criteria such as recall and precision for evaluation of information access methods are primarily concerned with information retrieval and filtering and are not sufficient to evaluate text mining systems. What is needed are qualitative measures which take into account the added value to information access of a given text mining system. The ultimate measure of evaluation would be user satisfaction, though it is difficult to measure properly because the software is at an early stage. Looking through the experiments the low recall values in some cases can be explained. The key reason is the existence of sets of very specific documents resulting in considerable variations within the same category (e.g. set of documents in
Another reason is the level of sensitivity of columns and how well it matches with the nature of the patterns being identified. A low level of sensitivity creates columns that identify narrow patterns (e.g. set of documents in ‘movies’ Newsgroup discussing a specific movie) and a high level of sensitivity creates columns that identify broad patterns (e.g. a whole Newsgroup). Furthermore the measurement of recall itself is also subject to a considerable amount of criticism for not being a realistic and acceptable in all situations (Järvelin and Kekäläinen, 2000).

Currently, Self-Organizing Maps (SOM) provide the basis for most prominent text mining methods. SOMs provide a visualization of relationships among documents but have their limitations due to mostly fixed architectures and vast maps. In a SOM, a document is given a coordinate location in a two dimensional grid based on the content. The Recommendation Architecture can perform significant further text mining tasks when compared to SOM based methods. Not only does it provide for visual representation of results in many ways after discovering patterns, but is also capable of document classification. The RA also has the ability to have one document in several columns depending on its associative similarities in content which makes clustering in the RA multi-dimensional. Internet Newsgroups are widely used as datasets with WebSOM (Lagus, 1998). Since SOM gives a fixed position to each document and not a classification into a group, the problem of low acknowledgement does not arise in a SOM based system. Conversely, the RA model separates the documents into a few large groups (in separate columns) which causes some documents to be left behind if there is no similarity in content to fall into one of the columns. Thus the RA faces the problem of not acknowledging enough documents in
some cases when standard recall measure is used to evaluate its performance.

In conclusion, the Recommendation Architecture model can be successfully applied for several tasks in text mining. The RA model with the proposed extensions produces highly encouraging results for somewhat structured corpora and produces moderately successful results even for very noisy data. The strength of the Recommendation Architecture model lies in its ability for pattern discovery in text, classification with high accuracy and providing the rationale for a particular categorization. One notable shortcoming of the RA system as applied to real world problems is the necessity to manually optimise system parameters to suit the input space.

7.2 Future Directions
Several directions could be further pursued to investigate the RA model as well as its applications. There is a wide scope for possible investigation of the consequence feedback of the competitive system. Consequence feedback in the competitive system can be used for evolving columns based on the acceptability of the output.

Further investigation into column sensitivity and the nature of patterns being recognized may improve the performance of the model. When the patterns are broad (based on a large feature set) higher level of column sensitivity would result in building columns which can recognize broad patterns. When experimenting with Newsgroup data it was challenging to make the columns sensitive enough to respond to a fair number of documents while preserving their identity.
Given the number of experiments which needed to conduct, there was time for only two different types of data sets to be used for the experiments in this work. More empirical studies with diverse text collections may verify the generalizability of the system for text mining at large.

The output of the clustering system is based on the firing status of a set of devices in the gamma layer. Due to information compression from alpha layer to gamma layer, the resulting vectors containing gamma device numbers are very small in size. For example, a document may be represented by 1,000 features but the number of gamma layer devices are usually less than 20. This non-binary, compressed gamma device-discriminative information carries additional information of the nature of the similarity of the patterns being identified. In Section 6.5.4, a search scheme was presented to use this data to identify the degree of similarity between documents in a given column. Further work could be carried out to exploit the information in gamma layer devices to provide additional explorative abilities by using the similarities of documents within columns.

A text mining tool based on the Recommendation Architecture could be easily implemented by adding a user interface. Even when the existing categories are unknown a set of document vectors obtained by using a simple feature selection scheme can be given as the input. It is easy to use as the input is a text file of document vectors and the system can be saved and loaded at any point. Depending on the data set some parameter tuning may be necessary which requires the system to run several times in order to select the best output.
Appendix A

Additional Experimental Results - Newsgroup Data
(Feature Selection with the Document Frequency Thresholding Method)

This appendix describes three experiments carried out with the Newsgroup data, as noted in Section 5.4.1.2. Several variations of feature structures and feature selection methods were carried out to identify appropriate and effective feature structures and feature selection methods for pattern discovery with the RA. To investigate the impact of the ‘structure of features’ on clustering, words, word-pairs and a combination of the two were used as the features. The feature selection for the input space was done with the Document Frequency Thresholding method. This section examines the experimental results in detail.

A.1 Formation of the Input Space

The experiments were carried out using data from ten newsgroups postings. The groups selected for the experiments were, Babylon5 (BL5), books (BKS), computer (COM), movies (MOV), Linux (LNX), Windows2000 (WIN), Farscape (FSP), Star Trek (TRK), humour (HMR) and amateur astronomy (AST). The newsgroup postings can be said to be very ‘noisy’ in terms of varied content including very short remarks as the whole document, jokes, questions, elaborate discussions, program code, and ASCII images and longwinded flame wars between individuals. The actual text is often carelessly written, contains spelling errors and is of poor style.

As described in Section 5.4.2.1 the experiments were carried out with 1000 words, 1000 pairs and 2000 single words and pairs as features for the document
A.2 Experiment NG-1

For the first experiment, the most frequent 1,000 words were selected as the representative feature set (set 1). The document vectors were created by mapping the absence and presence of these features. The Figure A-1 shows the vector sizes in terms of feature density (i.e. the number of features that are present in each vector). As shown in the figure, a large number of the input vectors have less than 25 features. If the features with high frequency are ideally distributed, each group should have approximately 100 features (if a feature set of 1,000 consists of 100 features from each group).

![Figure A-1 Document vector sizes in terms of feature density (Experiment NG-1)](image)

For this experiment, 100 document vectors were presented per wake period. The following results were obtained after 220 wake periods and 220 sleep periods.

A.2.1 Results and Discussion

As seen in the results (Table A-1), it was not possible find one major pre-classified topic or several that correspond to the columns.
Table A-1 Some frequent words in the documents accepted by each column
(words in bold face appear in three or more columns)

<table>
<thead>
<tr>
<th>Column No</th>
<th>Words describing the column</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>world, run, free, bit, love, simply, second, number, bring, internet, show, including, american, point, happened, far, times, based, buy, day</td>
</tr>
<tr>
<td>2</td>
<td>world, show, part, simply, american, number, bit, far, including, guess, point, free, movies, second, history, day, life, certainly, read, film,</td>
</tr>
<tr>
<td>3</td>
<td>world, run, guess, simply, point, based, number, show, part, times, free, including, second, course, life, bit, love, working, internet, american</td>
</tr>
<tr>
<td>4</td>
<td>including, world, service, second, online, copy, postings, original, information, run, simply, order, part, containing, free, number, book, times, body, material</td>
</tr>
<tr>
<td>5</td>
<td>copy, process, headers, world, complaint, properly, free, love, run, second, simply, part, dark, close, show, business, file, certainly, bit, information</td>
</tr>
<tr>
<td>6</td>
<td>simply, world, times, part, show, information, free, second, life, number, turned, point, love, sign, man, american, run, guess, easy, day</td>
</tr>
<tr>
<td>7</td>
<td>number, world, simply, times, part, free, bit, far, point, run, show, second, knew, easy, love, life, american, based, reason, money,</td>
</tr>
<tr>
<td>8</td>
<td>knew, afraid, completely, course, turned, leave, absolutely, inside, worth, show, box, point, night, fun, move, body, man, power, head, easy</td>
</tr>
</tbody>
</table>

Though columns are created with substantial differences initially, as the time goes by the uniqueness of most of the columns is lost as the columns begin to acknowledge document vectors from various categories. Inspection of the word map shows similar words in the labels for most of the columns and it is hard to distinguish them from each other. Note that the words in bold face in the column label are common across more than three columns. This suggests that single features selected using the Frequency Thresholding method for a sparse data set like Newsgroup data, is not discriminatory enough for automatic discovery of pre-classified patterns.
A.3 Experiment NG-2

For this experiment, the feature set (set 2) was created by taking the most frequently occurring word pairs in sentences. The word pair list was produced by taking the Cartesian product of the most frequently occurring 500 words. Then a word pair frequency profile was generated by counting all the instances of word pairs within sentences in each document. From the pair list, the most frequent 1,000 word pairs were selected as the representative feature set. Then the document vectors were created by mapping the presence or absence of the selected features. The resulting document vectors were very sparse - only 2,690 out of 30,000 had more than five features.

Figure A-2 Document vector sizes in terms of feature density (Experiment NG-2)

Figure A-2 shows the document vector sizes in terms of number of features they contain. From the selected 2690 the majority of the input vectors have less than 30 features.
A.3.1 Results and Discussion

During the experiment, 100 vectors were presented each wake period and the same data was repeatedly presented for 100 wake/sleep cycles. Due to sparseness of the vectors and the limited number of vectors available the system stagnates without acknowledging many vectors.

It can be seen from Table A-2 that the columns have high precision values. Recall is quite low due to the small number of documents acknowledged by columns. More than half of the document set was unacknowledged. After a few columns were created the system stagnated and the creation of columns stopped. This suggests that the word-pair features selected using the Frequency Thresholding is an effective feature structure for discovering patterns in text, but not suitable for sparse data sets like Newsgroup data.

<table>
<thead>
<tr>
<th>Column No</th>
<th>Major Groups</th>
<th>Precision as a %</th>
<th>Recall as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FSP</td>
<td>100</td>
<td>16.4</td>
</tr>
<tr>
<td>2</td>
<td>AST, HMR</td>
<td>65.7</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>MOV</td>
<td>100</td>
<td>02.2</td>
</tr>
<tr>
<td>4</td>
<td>COM</td>
<td>100</td>
<td>17.1</td>
</tr>
<tr>
<td>5</td>
<td>TRK</td>
<td>100</td>
<td>07.4</td>
</tr>
<tr>
<td>6</td>
<td>AST, HMR, LNX</td>
<td>65.1</td>
<td>-</td>
</tr>
</tbody>
</table>

Table A-2 Precision and Recall by the major category/categories acknowledged by each column

A.4 Experiment NG3

The last feature set (set 3) was generated by combining the sets 1 and 2 which gives a feature set comprising of 2,000 features. Then document vectors were created by mapping the absence and presence of these features. Figure A-3 shows the vector
sizes in terms of number of features they contain. As shown in the figure, the majority of the input vectors have less than 30 features though it should be closer to 200 as the documents were from 10 groups.

![Document vector sizes in terms of feature density (Experiment NG-3)](image)

A.4.1 Results and Discussion

The two feature sets were combined to ascertain the effectiveness of nullifying the shortcomings of one set with another. For example, the set 1 produced too generic columns and set 2 produced too specific columns. However, the results of the experiments carried out with this combined feature set showed similar results as with set 1 (single words). This suggests that this combination of feature sets does not combine the effects of the two feature sets to cancel out the shortcomings of each scheme.

A.5 Conclusion

Meaningful pattern discovery with newsgroup data when the term selection was done using Frequency Thresholding proved to be rather difficult. The choice of single words as terms turned out to be not discriminatory enough in respect to the identity of different groups or sets of groups. Conversely, the majority of word pairs appearing in the same sentence proved to be of highly discriminative of what group a particular
document belongs to. The problem with word pairs was that they were too rare which made the document vectors very sparse. Thus it was not possible to obtain a set of columns with acceptable performance. On the contrary, the document vectors which have single terms or the combination of single terms and pairs proved to be acknowledged in large numbers by created columns.
Appendix B

Affect of Word Stemming on Document Classification

This set of experiments was carried out to examine the effect on classification and pattern discovery when stemming was used in selecting features (words). Here the RA model is used with all the extensions proposed in chapter 6 including the extensions for feature intensity recognition and for discarding too specific and spurious columns. The selected data set consists of a set of randomly selected news articles from the Foreign Broadcasting Services (FBIS), Financial Times and the LA Times, from the TREC CD-4 and CD-5 corpora. As reported in Section 5.4.1, the documents were selected from ten categories that contained a larger number of samples. The nominal codes representing the ten selected topics were: 401, 412, 415, 422, 424, 425, 426, 434, 436 and 450. These topics as given in the TREC relevance judgment information are: 401 – foreign minorities in Germany, 412 – airport security, 415 – drugs and the golden triangle, 422 – art, stolen, forged, 424 – suicides, 425 – counterfeiting money, 426 – dogs, law enforcement, 434 – economy in Estonia, 436 – railway accidents, 450 – King Hussein and peace.

B.1 Formation of the Input Space

Features representing the topics in the document corpus were chosen applying the two-step feature selection described in Section 5.3.1. Porter’s stemming algorithm (Porter, 1980) was used to stem the words when they were being selected for the frequency calculation. A feature set of 1,000 words was selected using 100 words from each topic to represent the 10 topics. To accommodate information on the
frequency, integer vectors were formed by counting the frequency of occurrence of each feature (stemmed word) in each document. In the document vector, the index denotes the feature and the content indicates the frequency of occurrence of the feature. The vectors were normalized to have a maximum feature frequency of 5.

Figure B-1 illustrates the feature density of the input data vectors after selected features were mapped to the training set. The figure shows that the majority of input vectors have less than 50 features though 100 features were selected from each topic.

![Figure B-1 Frequency of document vectors sizes in terms of feature density](image)

Distributions of the features in the input for each topic are illustrated in Figure B-2. For each topic 200 files were used. It may noticeable that some features which have high frequency of occurrence in one topic have a lower frequency in another. However there are some features that had a high frequency of occurrence in several categories creating some overlap. Inspection of the test data set shows that feature distribution has considerable differences from the training set. There are some prominent features common to many categories that were not seen in the training set. Thus, documents in the test set have considerable noise or unexpected prominent features.
Figure B-2 Features that were selected for each group and their frequency of occurrence for the training set
Figure B-3 Features that were selected for each group and their frequency of occurrence for the test set
B.2 Experiments

Experiments were carried out with a training set comprising 2,000 document vectors consisting of 200 vectors from each topic. Document vectors from topics that had less than 200 vectors were duplicated once to get the minimum of 200 vectors for each topic. The test set comprised of a new set of 500 unique document vectors, which were not used for training or feature selection. During each wake period 100 document vectors were presented which comprised of 10 documents from each topic. Results of three experiments (Stem1, Stem2, and Stem3) are tabulated below. As random values are used in initialising the columns, the types of the columns and the number of columns vary though run under same conditions.

B.3 Results

<table>
<thead>
<tr>
<th>Column No</th>
<th>Major corresponding topic/topics</th>
<th>Precision as %</th>
<th>Recall as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Training set</td>
<td>Test set</td>
</tr>
<tr>
<td>1</td>
<td>436</td>
<td>88.9</td>
<td>90.0</td>
</tr>
<tr>
<td>2</td>
<td>422</td>
<td>91.3</td>
<td>91.2</td>
</tr>
<tr>
<td>3</td>
<td>434</td>
<td>100</td>
<td>90.2</td>
</tr>
<tr>
<td>4</td>
<td>450</td>
<td>98.2</td>
<td>76.8</td>
</tr>
<tr>
<td>5</td>
<td>401</td>
<td>64.1</td>
<td>37.7</td>
</tr>
<tr>
<td>6</td>
<td>415</td>
<td>100</td>
<td>84.2</td>
</tr>
<tr>
<td>7</td>
<td>412</td>
<td>90.6</td>
<td>100</td>
</tr>
<tr>
<td>8</td>
<td>422, 424</td>
<td>51.7</td>
<td>56.3</td>
</tr>
<tr>
<td>9</td>
<td>412, 424, 425</td>
<td>74.6</td>
<td>80.4</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>84.4</td>
<td>78.5</td>
</tr>
</tbody>
</table>

Table B-1 Precision and Recall for each column by the major document category identified (Experiment Stem1)
Table B-2 Precision and Recall for each column by the major document category identified (Experiment Stem2)

<table>
<thead>
<tr>
<th>Column No</th>
<th>Major corresponding topic/topics</th>
<th>Precision as %</th>
<th>Recall as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Training set</td>
<td>Test set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training set</td>
<td>Test set</td>
</tr>
<tr>
<td>1</td>
<td>436</td>
<td>88.9</td>
<td>90.0</td>
</tr>
<tr>
<td>2</td>
<td>422</td>
<td>91.8</td>
<td>90.6</td>
</tr>
<tr>
<td>3</td>
<td>434</td>
<td>100</td>
<td>90.4</td>
</tr>
<tr>
<td>4</td>
<td>450</td>
<td>98.1</td>
<td>91.1</td>
</tr>
<tr>
<td>5</td>
<td>401</td>
<td>63.8</td>
<td>42.3</td>
</tr>
<tr>
<td>6</td>
<td>415</td>
<td>100</td>
<td>90.0</td>
</tr>
<tr>
<td>7</td>
<td>424+425+426</td>
<td>73.5</td>
<td>65.6</td>
</tr>
<tr>
<td>8</td>
<td>412</td>
<td>81.4</td>
<td>100</td>
</tr>
<tr>
<td>9</td>
<td>425</td>
<td>76.3</td>
<td>67.4</td>
</tr>
<tr>
<td>10</td>
<td>424+425+426</td>
<td>91.9</td>
<td>92.3</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>86.6</td>
<td>82.0</td>
</tr>
</tbody>
</table>

Table B-3 Precision and Recall for each column by the major document category identified (Experiment Stem3)

<table>
<thead>
<tr>
<th>Column No</th>
<th>Major corresponding topic/topics</th>
<th>Precision as %</th>
<th>Recall as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Training set</td>
<td>Test set</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Training set</td>
<td>Test set</td>
</tr>
<tr>
<td>1</td>
<td>436</td>
<td>81.5</td>
<td>84.4</td>
</tr>
<tr>
<td>2</td>
<td>422</td>
<td>66.1</td>
<td>91.6</td>
</tr>
<tr>
<td>3</td>
<td>434</td>
<td>97.6</td>
<td>82.1</td>
</tr>
<tr>
<td>4</td>
<td>401</td>
<td>65.0</td>
<td>44.2</td>
</tr>
<tr>
<td>5</td>
<td>415</td>
<td>98.4</td>
<td>86.7</td>
</tr>
<tr>
<td>6</td>
<td>450</td>
<td>97.2</td>
<td>80.8</td>
</tr>
<tr>
<td>7</td>
<td>415</td>
<td>88.6</td>
<td>85.4</td>
</tr>
<tr>
<td>8</td>
<td>412,425</td>
<td>63.6</td>
<td>51.7</td>
</tr>
<tr>
<td>9</td>
<td>412</td>
<td>86.6</td>
<td>68.2</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>82.7</td>
<td>75.0</td>
</tr>
</tbody>
</table>

B.3 Discussion

The experiments Stem1 and Stem3 produced nine columns with seven columns uniquely identifying one TREC topic, whereas the experiment Stem2 produced 10 columns with eight columns uniquely identifying one TREC topic. In experiments Stem1 and Stem2, all the topics except 426 made a significant contribution as stand-alone columns or as parts of a pattern that consists of a column. Topic 426 appeared as a part of a pattern that is acknowledged by a column only from experiment Stem2.
The average systems precision for the test sets gave high values of 78.5%, 82.0% and 75.0% in the three experiments. Average precision for experiment 3b (carried out without word stemming in chapter 6 in Section 6.4.3.1) was 65.0% for 10 columns.

The average recall values are 69.1%, 66.7%, and 70.3%, which are higher than the average recall of 55.0% of the Experiment 3b in Section 6.4.3.1 (carried out without word stemming). Though average values are higher, they cannot be directly compared with experiment 3b, as the averages are calculated for different columns and for a different number of columns. Therefore the results of the six columns that have been made for similar topics (which are 401, 412, 415, 422, 436 and 450) are tabulated below for comparison. As shown in Table B-4, stemming shows only a minor favourable effect in improving recall.

<table>
<thead>
<tr>
<th>Experiment no</th>
<th>Average Precision as %</th>
<th>Average Recall as a %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Training set</td>
<td>Test set</td>
</tr>
<tr>
<td>S1</td>
<td>88.8</td>
<td>79.9</td>
</tr>
<tr>
<td>S2</td>
<td>87.3</td>
<td>84.0</td>
</tr>
<tr>
<td>S3</td>
<td>80.8</td>
<td>75.7</td>
</tr>
<tr>
<td>3b – without stemming</td>
<td>81.4</td>
<td>72.3</td>
</tr>
</tbody>
</table>

Table B-4 Average precision and average recall for six columns

It is a favourable affect that columns are created for topics like 434 and 425 whereas no columns were created for them in the earlier experiments. It means that stemming enables the clustering system to discover some patterns which are not prominent. However, topic 426 fails to contribute significantly for creating a column or a part of a column though it used to contribute for a part of a column the earlier experiments (in chapter 6).
B.5 Conclusion

Use of word stemming when pre-processing the feature set gives higher values for precision and recall of some individual columns. As it lowers the recall of some topics, the affect of word stemming on the overall performance is not very significant. Therefore stemming is not essential for working with Recommendation Architecture.
REFERENCES

Fang, Y. C., Parthasarathy, S. and Schwartz, F. (2001) *Using Clustering to Boost Text Classification*, ICDM Workshop on Text Mining (Text DM'01), San Jose, CA, USA.

BIBLIOGRAPHY

