Catalog Home Page

A continuum solvent model of ion–ion interactions in water

Duignan, T.T., Parsons, D.F. and Ninham, B.W. (2014) A continuum solvent model of ion–ion interactions in water. Physical Chemistry Chemical Physics, 16 (40). pp. 22014-22027.

Link to Published Version: http://dx.doi.org/10.1039/c4cp02822h
*Subscription may be required

Abstract

The calculation of ion-ion interactions in water is a problem of long standing importance. Modelling these interactions is a prerequisite to explaining Hofmeister (specific ion) effects. We here generalize our solvation model of ions to calculate the free energy of two ions in water as a function of separation. The same procedure has previously been applied to calculate ion interactions with the air-water interface successfully. The Conductor like Screening Model (COSMO) is used. This treats the ions on a quantum mechanical level and calculates numerically the electrostatic response of the surrounding solvent. Estimates of the change in the cavity formation energy and the change in the ion-water dispersion energy as the ions approach are included separately. The calculated interaction potentials are too attractive and this is a significant issue. However, they do reproduce the affinity of similarly sized ions for each other, which is a crucial property of these potentials. They are also oscillatory, another important property. We normalize the potentials to reduce the over-attraction, and good correlation with experimental values is achieved. We identify the driving contributions to this like-prefers-like behaviour. We then put forward a plausible hypothesis for the over-attraction of the potentials. An agreeable feature of our approach is that it does not rely on salt specific parameters deliberately adjusted to reproduce experimental values.

Publication Type: Journal Article
Publisher: Royal Society of Chemistry
Copyright: © 2014 the Partner Organisations.
URI: http://researchrepository.murdoch.edu.au/id/eprint/26778
Item Control Page Item Control Page