Conference on Conservation Agriculture for Smallholders in Asia and Africa

7-11 December, 2014

CONFERENCE PROCEEDINGS
Proceedings of the Conference on Conservation Agriculture for Smallholders in Asia and Africa
Published in 2014
Published as an e-book on USB. For enquiries please contact Prof. Richard Bell

The committee thanks the following people for reviewing papers

Dr. C. Johansen Prof. R. W. Bell
Dr. Md. E Haque Prof. Dr. M Jahiruddin
Prof. Dr. M. Rahman Dr. J. McHugh
Dr. T. Krupnik Dr. J. Desbiolles
Dr. Md. A. Hashem Dr. K. Flower
Dr. Y. Niino Dr. I. Malik
Mr J. Esdaile Dr. S. Mann
Dr. W.H. Vance

Citation

The correct reference for papers presented at this conference is:

Entire proceedings

Paper in proceedings
Conference Host

Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
http://www.bau.edu.bd/

Conference Organizers

Conference Sponsors
Minimum tillage and increased residue retention improves soil physical conditions and wheat root growth in a rice-based cropping system

M. A. Islam¹, R. W. Bell¹, C. Johansen², M. Jahiruddin³, M. E. Haque¹

¹Murdoch University, Australia, M.Islam@murdoch.edu.au ; R.Bell@murdoch.edu.au ; enamul.haque71@gmail.com
²Consultant, Leeming, Australia, cjo41802@bigpond.net.au;
³Bangladesh Agricultural University, Mymensingh, Bangladesh, m_jahiruddin@yahoo.com

Introduction

Wheat (Triticum aestivum L.) is grown in rice-based cropping systems of the eastern Indo-Gangetic Plain in soils subjected to repeated tillage to prepare puddled soil for preceding monsoon rice (Oryza sativa L.). Such soils commonly have a hard plough-pan layer (10-15 cm depth) which limits root growth and yield of wheat (Mohanty et al., 2006). Conservation agriculture offers the potential for improved soil physical properties and increased root growth and yield of wheat (Aggarwal et al., 2006). However, it is unclear whether such changes will occur in intensive rice-based cropping sequences and the dependence of improvement on crop residue retention. A field experiment assessed changes in soil physical properties after 7 consecutive crops in relation to minimum tillage and crop residue retention levels.

Materials and methods

The study was conducted at Digrum village in Rajshahi, Bangladesh (24°31 N, 88°22 E) in the drought-prone ancient alluvial plain (High Barind Tract) during 2010-13. Only data of 2012-13 are presented here. Wheat was the first crop grown, followed by mungbean (Vigna radiata L.) and rice. The sequence was repeated and ended with a 3rd wheat crop (crop number 7 in the sequence). Main plots consisted of strip tillage (ST), bed planting (BP) and conventional tillage (CT) while high residue (HR) and low residue (LR) levels were retained on sub-plots. Each treatment was replicated four times. Volumetric soil water contents (SW) were measured with a capacitance sensor and penetration resistance (PR) with a hand penetrometer. In this study, SW and PR values for conventional tillage were compared with the average of in-the-strip and between-the-strip values; and on top of the bed. Root volume (RV) was recorded by water displacement and root length by the grid intercept method. When the F-test was significant (GenStat 15th ed.), treatment means were separated by least significant difference (lisd, P≤0.05).

Results and Discussion

Regardless of tillage method and residue management, PR and SW increased with soil depth which may reflect the existence of a plough pan (Fig. 1a and 1b). At 0-5 cm and 5-10 cm soil depth, the lowest PR value was obtained in the BP-system and the greatest PR obtained with CT treatment. High residue decreased the penetration resistance and increased the SW level.

Regardless of treatments, wheat root volume and RLD decreased with increasing soil depth (Fig. 2a), which might be related to increasing PR (Fig. 1b). In the surface layers (0-10 cm soil depth), significantly greater root volume and root length density were found in beds than other tillage treatments. High residue also enhanced the root growth in the surface layer of soil (Fig. 2). At 10-20 cm depth, the root growth followed the order: BP > ST > CT. Below 20 cm soil depth, treatment variation in RV and RLD disappeared.
Conclusions

Initial bed forming followed by minimum tillage planting for six consecutive crops decreased soil impedance to root growth of wheat. Strip tillage for 7 consecutive crops also increased root growth of wheat at 10-20 cm depth. High residue retention for six consecutive crops increased SW and decreased mechanical impedance which led to increased root growth of wheat. None of the tillage or residue retention treatments affected root growth or soil properties below 20 cm after 7 consecutive crops. In an intensive (3 crops/year) rice-based cropping system, the beneficial effects of CA on physical properties of the surface soil and on root growth have developed relatively quickly.

References