Conference on Conservation Agriculture for Smallholders in Asia and Africa

7-11 December, 2014

CONFERENCE PROCEEDINGS
Proceedings of the Conference on Conservation Agriculture for Smallholders in Asia and Africa
Published in 2014
Published as an e-book on USB. For enquiries please contact Prof. Richard Bell

The committee thanks the following people for reviewing papers

Dr. C. Johansen
Prof. R. W. Bell
Dr. Md. E Haque
Prof. Dr. M Jahiruddin
Prof. Dr. M. Rahman
Dr. J. McHugh
Dr. T. Krupnik
Dr. J. Desbiolles
Dr. Md. A. Hashem
Dr. K. Flower
Dr. Y. Niino
Dr. I. Malik
Mr J. Esdaile
Dr. S. Mann
Dr. W.H. Vance

Citation

The correct reference for papers presented at this conference is:

Entire proceedings

Paper in proceedings
Weed Management in Mustard (Brassica napus L.) under Minimum Tillage and Crop Residues

M. M. Hossain1*, M. Begum1, M. M. Rahman1, A. Hashem2, R. W. Bell3 and M. E. Haque3

1Bangladesh Agricultural University, *Email: mmhshakil@yahoo.com
2Department of Agriculture and Food, Western Australia
3Murdoch University, Australia

Introduction

Weed management is critical to obtaining profitable yields in minimum tillage system. Innovative weed control strategies including chemical methods will continue to be an essential component in the development of sustainable conservation agriculture (CA) practices (Andrew and Kelton, 2011). Weed management in minimum tillage relied on extensive use of herbicides. This may leads to the development of resistance in weeds. Crop residue can decrease density and dry weight of perennial weeds by 35 and 75%, respectively, and of annual weeds around 80% compared to no residue (Fisk et al., 2001). Wheat (Triticum aestivum L.) residue can reduce weed seedling emergence in corn by 45% (Crutchfield et al., 1986) and weed biomass in sorghum (Sorghum bicolor L.) by 60% (Wicks et al., 1994). These results suggest that residue retention can be a promising method providing a sustainable approach for suppressing weeds in conservation tillage. Therefore, a study was undertaken to examine, weeds management and yield performance of mustard under minimum tillage and different levels of residue retention.

Materials and Methods

An on-farm research was conducted at the Vangnamari union under Gouripur upazila of Mymensingh district of Bangladesh during 13 November 2013 to 4 February 2014. In this experiment a mustard CV. BARI sharisha-14, was sown with 6 tillage and weed control practices viz., W1: Conventional tillage + one weeding (Control); W2: Roundup (RU) + Strip tillage (ST); W3: RU + ST + Pre-emergence (PE) herbicide (Pendimethalin); W4: RU + ST + Post-emergence (PO) herbicide (Oxadiazon); W5: RU + ST + PE + PO; W6: RU + ST + weed-free, and 2 levels of crop residue viz., Cr1: Current residue (20%) and Cr2: Increased residue (50%). The design was randomized complete block design with 4 replications consisting 48 (6×2×4) plots of 9 m × 5 m each. Weed samples were taken randomly from four locations of 0.25 m2 at 35 days after sowing (DAS). Weed populations were counted species wise and then oven dried at 70°C for 72 hours. The crop was harvested from three locations of 3 m2 areas and grain yield was recorded. Data were subjected to analysis of variance using MSTAT-C and means were separated by Duncan's Multiple Range Test.

Results and Discussions

Weed infestation

The experimental plots were infested with 24 weed species belonging to 13 families, of which 18 were annuals and 6 perennials (Table 1). Of these weed species, 6 belonged to Poaceae 3 to Cyperaceae, 2 to each of Amaranthaceae, Asteraceae, Brassicaceae, Fabaceae and each one of rest of the 7 families.

Tillage and weed control effect on weed and crop

The highest weed density (40 m-2) and dry matter (29 g m-2) was found in control (W1) while both were nil in strip tilled (ST) weed free plots (W6). However, the lowest weed density (12 m-2) and
Dry matter (6 gm²) was recorded in ST followed by RU, PE and PO (W5) (Fig. 1). W1 yielded the lowest (0.58 tha⁻¹) and the highest (0.95 tha⁻¹) was recorded from W6 while the second highest (0.90 tha⁻¹) from W5 (Figure 2). The highest BCR (2.29) was calculated from W5 in contrast to W6 (2.13) (Fig. 2).

Effect of crop residue on weed and mustard

Figure 3 shows that, at low crop residues, weed density and weed dry matter were high but crop yield was low. In contrast, weed density and weed dry matter was low and crop yield was high at high crop residue. These results suggest that, increased residue might have reduced weed emergence and increased crop yield by 52%.

Table 1: Weed infestation in the experiment plots

<table>
<thead>
<tr>
<th>Species</th>
<th>Family</th>
<th>Density</th>
<th>Species</th>
<th>Family</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternanthera sessilis *</td>
<td>Amaranthaceae</td>
<td>300</td>
<td>Vicia sativa *</td>
<td>Fabaceae</td>
<td>8</td>
</tr>
<tr>
<td>A. philoxeroides *</td>
<td>Amaranthaceae</td>
<td>26</td>
<td>Desmodium triflorum **</td>
<td>Fabaceae</td>
<td>2</td>
</tr>
<tr>
<td>Centipeda minima **</td>
<td>Asteraceae</td>
<td>14</td>
<td>Marsilea quadrifolia *</td>
<td>Marsiliaceae</td>
<td>15</td>
</tr>
<tr>
<td>Eclipta alba *</td>
<td>Asteraceae</td>
<td>198</td>
<td>Jussiaea decurrens *</td>
<td>Onagraceae</td>
<td>10</td>
</tr>
<tr>
<td>Heliotropium indicum *</td>
<td>Boraginaceae</td>
<td>16</td>
<td>Echinochloa crusgalli *</td>
<td>Poaceae</td>
<td>99</td>
</tr>
<tr>
<td>Brassica kaber *</td>
<td>Brassicaceae</td>
<td>14</td>
<td>E. colonum *</td>
<td>Poaceae</td>
<td>29</td>
</tr>
<tr>
<td>Raphanus raphanistrum *</td>
<td>Brassicaceae</td>
<td>6</td>
<td>Digitaria sanguinalis *</td>
<td>Poaceae</td>
<td>5</td>
</tr>
<tr>
<td>Spilanthes acmella *</td>
<td>Campanulaceae</td>
<td>14</td>
<td>Cynodon dactylon **</td>
<td>Poaceae</td>
<td>9</td>
</tr>
<tr>
<td>Chenopodium album *</td>
<td>Chenopodiaceae</td>
<td>10</td>
<td>Leersia hexandra **</td>
<td>Poaceae</td>
<td>4</td>
</tr>
<tr>
<td>Cyperus rotundus **</td>
<td>Cyperaceae</td>
<td>4</td>
<td>Panicum repens **</td>
<td>Poaceae</td>
<td>6</td>
</tr>
<tr>
<td>Cyperus difformis *</td>
<td>Cyperaceae</td>
<td>2</td>
<td>Polygonum coccinum *</td>
<td>Polygonaceae</td>
<td>46</td>
</tr>
<tr>
<td>Fimbristylis miliaceae *</td>
<td>Cyperaceae</td>
<td>20</td>
<td>Lindernia procumbens *</td>
<td>Scrophulariaceae</td>
<td>38</td>
</tr>
</tbody>
</table>

Reference

