Accepted Manuscript

Title: Relationships among body composition, circulating concentrations of leptin and follistatin, and the onset of puberty and fertility in young female sheep

Author: C.A. Rosales Nieto A.N. Thompson C.A. Macleay J.R. Briegel M.P. Hedger M.B. Ferguson G.B. Martin

PII: S0378-4320(14)00306-6
DOI: http://dx.doi.org/doi:10.1016/j.anireprosci.2014.10.008
Reference: ANIREP 5079

To appear in: Animal Reproduction Science

Received date: 12-7-2014
Revised date: 1-10-2014
Accepted date: 5-10-2014

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Highlights

1. Accelerating the accumulation of muscle and adipose tissues can advance puberty.
2. Accelerating the accumulation of muscle and adipose tissues improved fertility rate.
3. Possible physiological link between muscle and the reproductive system of female sheep.
4. Muscle accumulation and leptin concentration were significant positive correlated.
Relationships among body composition, circulating concentrations of leptin and follistatin, and the onset of puberty and fertility in young female sheep

C.A. Rosales Nietoa,b,c,g, A.N. Thompsona,b,d, C.A. Macleayb, J.R. Briegelb, M.P. Hedgere, M.B. Fergusona,b,d,h, G.B. Martinc,f,*

a CRC for Sheep Industry Innovation and the University of New England, Armidale, NSW, 2351, Australia
b Department of Agriculture and Food of Western Australia, South Perth, WA, 6151, Australia
c The UWA Institute of Agriculture and School of Animal Biology, University of Western Australia, Crawley, WA, 6009, Australia
d School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, 6150, Australia
e Monash Institute of Medical Research, Monash University, Victoria, 3168, Australia
f Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford OX3 9DU, UK
g Present address: Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental San Luis, 78431, Mexico
h Present address: The New Zealand Merino Company Ltd, PO Box 25160, Christchurch 8024, New Zealand

*Corresponding author: The UWA Institute of Agriculture and School of Animal Biology, University of Western Australia, Crawley, WA, 6009, Australia. Tel: +61864882237. Email: graeme.martin@uwa.edu.au (G.B. Martin)
Abstract

The onset of puberty depends on the attainment of critical body mass, so should also be affected by increases in the rate of accumulation of muscle and adipose tissue. Adipose tissue and reproduction are linked by leptin. For muscle, a link has not yet been identified, although one possibility is follistatin. We assessed the relationships among circulating concentrations of follistatin and leptin and the rates of growth and accumulation of muscle and fat during pubertal development in female sheep. We used 326 animals with known phenotypic values for live weight (LW), depths of eye muscle (EMD) and fat (FAT), and known breeding values at post-weaning age for body mass (PWT) and depths of eye muscle (PEMD) and fat (PFAT). Leptin concentration was positively correlated with values for EMD, PEMD, FAT, PFAT, LW and PWT (P<0.001), whereas follistatin concentration was negatively correlated with values for EMD and PWT (P<0.001), and PEMD (P<0.01) and FAT (P<0.05). Leptin concentration was negatively related to age and positively related to live weight at first oestrus and the proportion of females that attained puberty (P≤0.05), and to fertility and reproductive rate (P<0.01). Follistatin concentration was negatively related to live weight at first oestrus and to fertility (P<0.01) and reproductive rate (P<0.05). There were positive correlations (P<0.001) between muscle accumulation and leptin concentration, and between muscle accumulation and reproductive performance. We conclude that leptin and follistatin are probably both involved in effects of accelerated accumulation of muscle and adipose tissues on the onset of puberty.

Keywords: Ewe lambs, follistatin, leptin, puberty, fertility
1. Introduction

The onset of puberty depends on an interaction between chronological age and accumulation of body mass so, for example, female sheep usually enter puberty when they attain 50-70% of their mature body mass (Hafez, 1952; Dýrmundsson, 1973). The ‘body mass’ concept has recently been refined by consideration of individual tissue types and we now appreciate that, in young ewes, genetic merit for accelerated accumulation of muscle and fat is associated with advanced puberty and improved fertility (Rosales Nieto et al., 2013a, 2013b).

The dependency of puberty on tissue mass reveals the importance of physiological signals from metabolic regulatory tissues to the reproductive axis (Martin et al., 2008). For adipose tissue, the primary signal is leptin (review: Foster and Nagatani, 1999) but, for muscle, endocrine factors associated with reproduction have not been clearly identified. One possibility is follistatin, a binding protein that inactivates several members of the transforming growth factor β family, including activin and myostatin, with diverse effects on growth, metabolism, immunity and reproduction (Rodino-Klapac et al., 2009; Hedger et al., 2011). Follistatin is secreted by the sheep ovary (Tisdall et al., 1992) but circulating concentrations vary little during the oestrous cycle (McFarlane et al., 2002), probably because it is produced in a variety of tissues, particularly muscle, where its importance for muscle growth and development has been demonstrated (Matzuk et al., 1995; Lee and McPherron, 2001; Gilson et al., 2009). With respect to reproduction, follistatin seems to have no effect on hypothalamic GnRH secretion in sheep (Padmanabhan et al., 2002), but it does act at pituitary level to inhibit FSH secretion in rodents (Ueno et al., 1987). The ultimate trigger for the first ovulation at puberty might be GnRH and LH pulses, but FSH is essential for the months-long process of ovarian development leading to that point – without it, there
would be no follicular development, no oestradiol production and therefore, no ovulation
(Schwartz, 1974). Follistatin also appears to play a direct role in ovarian function – in mice,
deletion of follistatin in adult granulosa cells leads to effects that range from reduced fertility
and litter size to complete termination of ovarian activity and reproduction (Jorgez et al.,
2004; Kimura et al., 2010). Overall, therefore, follistatin appears to play roles in oocyte
maturation and in the inhibition of pituitary FSH synthesis (Shimasaki et al., 1989; review:
Knight and Glister, 2001; Knight et al., 2012).

Thus, we hypothesized that accelerating the onset of puberty and improving
reproductive performance by increasing the accumulation of muscle and fat will be
associated with changes in the circulating concentrations of leptin and follistatin. We tested
this hypothesis in young female sheep, using large field studies in which we analyzed the
statistical relationships among leptin and follistatin concentrations, phenotypic and genotypic
values for rates of growth and accumulation of muscle and adipose tissues, age and live
weight at puberty, fertility and reproductive rate. Large correlation-based studies can detect
potential physiological linkages so are valuable as a first step towards the development of
hypotheses that guide intervention studies.

2. Material and Methods

These experiments were undertaken in accordance with the Australian Code of Practice for
the Care and Use of Animals for Scientific Purposes and was approved by the Animal Ethics
Committee of the Department of Agriculture and Food, Western Australia.

2.1. Experiment 1
2.1.1. Experimental location and animals

We used Merino ewe lambs (n = 136) that had been born in August-September 2009 on a commercial farm (‘Moojepin’). The dams (mothers) of the experimental animals had been sourced from two ram-breeding flocks in Western Australian and sires (fathers) were chosen to supply a wide range in Australian Sheep Breeding Values (ASBV) for growth, muscle and fat. Data were collected for birth date, birth weight, birth type (single or twin) and rear type to weaning (single or twin). Ewes were transported to Medina Research Station (32.2° S, 115.8° E) where the experiment was conducted from February to June 2010. Merino sheep present an extended breeding season and the months with lowest ovarian activity are November and December, although there is variation among years due to environmental conditions (Watson, 1953; Radford, 1959). The ewes were weighed bi-weekly and the data were used to calculate the average daily gain (ADG) and to estimate the live weight at puberty and the date of conception. The depths of the longissimus dorsi muscle and subcutaneous fat at a point 45 mm from the midline over the twelfth rib were measured using ultrasound when the ewes were 164 (range 134 to 176) and 251 (range 221 to 263) days of age. For both measurements, the range in eye muscle depth (EMD) was 20-33 mm and the range in C-site fat depth (FAT) was 2-8 mm. Using MERINOSELECT (Brown et al., 2007), the ultrasound data were used to generate estimates of Australian Sheep Breeding Values at post-weaning age, which can be measured from 7 to 10 months of age, for weight (PWT; range 0–9 kg), depth of eye muscle (PEMD; range 0.0–2.6 mm) and depth of fat (PFAT; range 0.0–1.2 mm). In this year, the national average values in MERINOSELECT for females were 0.9 for PWT, 0.0 mm for PFAT and 0.2 mm for PEMD.

2.1.2. Animal management and feeding
Animals were initially allocated on the basis of live weight to two 20 m x 60 m pens, where they had *ad libitum* access to water and to a pelleted diet (introduced over a 7-day period). The pellets were based on barley, wheat and lupin grains, cereal straw and hay, canola meal, minerals and vitamins, and had been formulated to provide 11.5 MJ of metabolizable energy per kilogram of dry matter, 15% protein, and sufficient minerals and vitamins for maximum growth.

On February 24 (Day –69), when the ewes were 179 days old (range 149 to 191) and weighed 36.8 ± 0.4 kg, four Merino wethers (male sheep castrated before puberty) with marking harnesses (MatingMark®; Hamilton, NZ) were introduced to detect the onset of oestrus (pre-mating period). The wethers had received a 2 mL subcutaneous injection of testosterone enanthate (75 mg/mL; Ropel®, Jurox, NSW) one week before they were placed with the young ewes. Every 2 weeks, the injections were repeated and the crayons on the harnesses were changed. The wethers were removed on May 4 (Day 0), when the ewes were 249 (range 219 to 261) days old and weighed 41 ± 0.5 kg. The ewes received an intramuscular injection (1 mL) of supplement of vitamins (Vitamin A 500,000 iu; Vitamin D3 75,000 iu; Vitamin E 50 iu/mL; Vet ADE®, Auckland, New Zealand). For the mating period, they were allocated, on the basis of live weight and sire, into 8 management groups of 15 and moved into 3 m x 7 m pens where they had *ad libitum* access to clean water and the sheep pellets. A single, experienced Merino ram was introduced into each group of ewes. The rams were removed on Day 47 and the ewes remained indoors.

Crayon marks on ewe rumps were recorded three times per week to estimate the date of first standing oestrus. Crayon marks were scored (1, 2 or 3), with Score 1 being one narrow mark on the middle or the edge of the rump and Score 3 as being a single large mark covering the rump. The date when the first Score 2-3 crayon mark was recorded was used to estimate age at first oestrus and the closest live weight recorded to that date was deemed to be
live weight at first oestrus. Pregnancy rate and the number of fetuses per ewe were confirmed by ultrasound scanning 60 d after rams were removed. The data were used to generate values for fertility (percentage of pregnant ewes per 100 ewes mated) and reproductive rate (number of fetuses in utero per 100 ewes mated).

2.1.3. Blood sampling and immunoassay

Blood (5 ml) was sampled, without fasting, by jugular venipuncture on 4 occasions, at beginning and middle of the teasing period and the mating periods, when the ewes were on average 199, 227, 248, and 269 days old. The samples were placed immediately on ice, centrifuged at 2000 g for 20 min and the plasma harvested and stored at −20º C until analysis. The plasma concentration of total follistatin was measured in duplicate 100 μL aliquots by radioimmunoassay using purified heterologous bovine follistatin as standard and iodinated bovine follistatin as tracer, as previously described and validated for ovine samples (Klein et al., 1991; O’Connor et al., 1999). The limit of detection was 1.16 ng/mL and the intra- and inter-assay CVs were 7.9% and 7.8%. Plasma leptin concentrations were determined by radioimmunoassay in duplicate 100 μL aliquots, as described by Blache et al. (2000). The limit of detection was 0.06 ng/mL and the intra-assay CVs were 7.3% at 0.73 ng/mL, 4.4% at 0.84 ng/mL, and 2.4% at 1.61 ng/mL.

2.2. Experiment 2

2.2.1. Experimental location and animals

The Merino ewe lambs (n = 190) used in this experiment were born in June 2010 on the research farm (‘Ridgefield’) of the University of Western Australia (32.2° S, 115.8° E). The mothers of the experimental animals had been sourced from two ram-breeding flocks in
Western Australian and their fathers had a wide range in Australian Sheep Breeding Values (ASBV) for growth, muscle and fat. In November 2010, ewes were transported to Medina Research Station (32.2° S, 115.8° E) for the first stage of the experiment and, in late December, they returned to ‘Ridgefield’ where they remained until the end of the experiment (September 2011). Female sheep were moved from one experimental station to another due to project’s objectives and goals. Although, animals were moved from one location to another, the data were always recorded similarly.

Data were collected using the same protocols as for Experiment 1, except for live weight. The ewes were weighed every 2 weeks at the Medina site and every week at the Ridgefield site. Data were combined and used to calculate the average daily gain (ADG) and to estimate the live weight at puberty and the date of conception. The depths of the longissimus dorsi muscle and subcutaneous fat at a point 45 mm from the midline over the twelfth rib were measured using ultrasound when the ewes were 167 (range 146 to 186) and 218 (range 198 to 228) days of age. For both measurements, the range in eye muscle depth (EMD) was 20-33 mm and the range in C-site fat (FAT) was 2-8 mm. Using MERINOSELECT (Brown et al., 2007), the ultrasound data were used to generate estimates of Australian Sheep Breeding Values at post-weaning age, which can be measured from 7 to 10 months of age, for weight (PWT; range 0–9 kg), depth of eye muscle (PEMD; range 0.0–2.6 mm) and depth of fat (PFAT; range 0.0–1.2 mm). In this year, the national average values in MERINOSELECT for females were 1.3 for PWT, 0.0 mm for PFAT and 0.2 mm for PEMD.

2.2.2. Animal management and feeding
The ewes were allocated on the basis of live weight to eight groups of 23 or 24 animals and housed in separate pens (6 x 14 m) at Medina research station. They had *ad libitum* access to water and a pelleted diet, introduced over a 7-day period, formulated as described above.

The pre-mating period commenced on November 30 (Day –70), when the ewes were on average 157 days old (range 136 to 176) and weighed 36.2 ± 0.3 kg (range 24.8 to 50.8). A vasectomized Merino ram with a marking harness was introduced into each pen to detect the first oestrus. On December 29 (Day –41), the ewes and vasectomized rams were returned to ‘Ridgefield’, where each group was allocated to a separate 30 x 120 m plot, with access to clean water, *ad libitum* oaten hay (9 Mj/kg and 9% protein) plus lupin grain (13.5 Mj/kg and 32% protein). It was anticipated that the combination of supplement plus dry pasture would allow the ewes to gain approximately 100 g/day. Although, animals were moved from one location to another and changes in diet from pellets to oat hay and lupins cannot affect the circulating concentration of follistatin and leptin. The vasectomized rams were removed on February 8 (Day 0) and ewes were allocated on the basis of their live weight and sire into 8 groups. An experienced ram with a marking harness was introduced into each group to begin the mating period when the ewes were on average 226 days old (range 206 to 246) and weighed 42.4 ± 0.3 kg (range 24.3 to 56.4). The rams were removed after 45 days.

Crayon marks on ewe rumps were scored and recorded three times per week at Medina and once per week on ‘Ridgefield’ to estimate the date of first standing oestrus, as described for Experiment 1. Age and live weight at first oestrus, fertility (percentage of pregnant ewes per 100 ewes mated) and reproductive rate (number of fetuses in utero per 100 ewes mated) were also estimated using the same protocol as in Experiment 1.

2.2.3. Blood sampling and immunoassay
We used the same protocols for sampling and assay as in Experiment 1. Blood was sampled when the ewes were 144, 186, 227 and 254 days old. For follistatin in Experiment 2, the limit of detection was 1.16 ng/mL and the intra- and inter-assay CVs were 7.9% and 7.8%. For leptin in Experiment 2, the limit of detection was 0.05 ng/mL and the intra-assay CVs were 16% at 0.47 ng/mL, 3.3% at 1.10 ng/mL, and 3.6% at 1.79 ng/mL.

2.3. Data analysis

The data were analyzed using SAS version 9.3 (2010). Ewe live weight during the experiment was analyzed using the linear mixed model procedures allowing repetitive measures (PROC MIXED) and included dam source and age (mother) and birth type as fixed effects.

Average daily gain (ADG) during the experiments was determined for each young ewe using a random coefficient regression including a cubic smoothing spline for time (TRANSREG). ADG was analyzed using the linear mixed model procedures (PROC MIXED). Fixed effects in the model were source and age of dam (mother), birth type and age at start of the experiments. Follistatin and leptin concentrations were each independently tested as a covariate, and sire (father) of the ewes was used as a random effect. We fitted follistatin and leptin, due to their role in regulation of feed intake and energy balance and muscle growth and development, to test whether or not these two proteins are involved in the ADG of the ewe lambs.

The correlations among live weight, follistatin concentration, leptin concentration, PWT, PEMD, PFAT, EMD and FAT were computed using PROC GLM with MANOVA option which allows removal of major fixed effects. Fixed effects included in the model were source and age of dam (mother), birth type and age at the day of the muscle and fat scan.
Age and live weight at first oestrus were analyzed using mixed models (PROC Mixed), including dam source and age, birth type and age as fixed effects. Concentrations of follistatin and leptin were each independently tested as a covariate. The sire (father) of the ewes was used as a random effect.

Puberty and fertility data were analyzed using the generalized linear mixed model procedures with a binomial distribution and logit link function (PROC GLIMMIX). Fixed effects were dam source and age, birth type, age and live weight at the sampling date. Concentrations of follistatin and leptin were each independently tested as a covariate. Sire (father) of the ewe was used as random effect. Reproductive rate data were analyzed using the generalized linear mixed model procedures with a multinomial distribution and logit link function (PROC GLIMMIX). The same fixed effects, covariates and random effects were used as for the fertility analysis.

Average live weight, PWT, EMD, PEMD, FAT and PFAT were analyzed using mixed models (PROC MIXED), and included as fixed effects: dam source and age, and birth-reared type. Average hormone concentration for leptin and total follistatin were each independently tested as a covariate. Sire (father) of the ewe was used as random effect. Hormone concentration (follistatin, leptin) was analyzed using mixed models (PROC MIXED) allowing for repeated-measures, and included as fixed effects: dam source and age, birth-reared type and age and live weight at start of teasing. FAT, EMD, PWT, PEMD or PFAT were each independently tested as a covariate. Sire (father) of the ewe was used as random effect. Mean hormone concentration was analyzed using analysis of variance model procedures, where Factor A was hormone concentration and Factor B was date at sampling (PROC ANOVA). Differences among groups for live weight, leptin and follistatin concentration within date of sampling were analyzed using PROC GLM.
All 2-way interactions among the fixed effects were included in each model and non-significant (P > 0.05) interactions were removed from the final model. The data for puberty, fertility and reproductive rate are presented as logit values and back-transformed percentages.

3. Results

3.1. Live weight, leptin and follistatin

In Experiment 1, mean live weight increased from around 37 kg on Day −75 to around 54 kg on Day +57 (Fig. 1A), with an ADG of 144 ± 2.4 g. There was a clear set-back in growth between Days −20 and +20. Mean leptin concentration increased from 1.3 ± 0.02 ng mL$^{-1}$ on Day −50 to 1.7 ± 0.02 ng mL$^{-1}$ on Day +20 (P < 0.001; Fig. 1B), and the progression in this rise was also interrupted around Day 0, at the time of the arrest in weight gain (upper panel). By contrast, follistatin concentration decreased gradually from 3.1 ± 0.1 ng mL$^{-1}$ on Day −50 to 2.7 ± 0.1 ng mL$^{-1}$ on Day 0 (P < 0.001), after which it did not change (Fig. 1B).

In Experiment 2, live weight increased from 37 kg on Day −75 to 48 kg on Day +59 (Fig. 1C). There were brief periods when growth was negative (eg, Days −50,−12, −8, +24) so the overall ADG (69 ± 4.7 g) was about half that observed in Experiment 1. The concentrations of both leptin and follistatin were higher in Experiment 2 (Fig. 1D) than in Experiment 1(Fig. 1C), but the dynamics were similar. In both experiments, leptin concentrations were initially high and increasing, then fell on Day 0 (P < 0.001), in association with declines in growth. In Experiment 2, follistatin concentrations began at high levels then decreased markedly on Day 0 (P < 0.001; Fig. 1D), before rising again.

In both experiments, neither follistatin concentration nor leptin concentration were correlated with age or source of dam, or birth or rear type of the young ewes. However, leptin concentration was strongly positively correlated with live weight in both experiments (P < 0.001; Fig. 2A, B). By contrast, for follistatin concentration, the relationship with live weight
was weak, if still significant, in Experiment 1 (P < 0.01; Fig. 2A) but not significant in Experiment 2 (Fig. 2B).

3.2. Growth, muscle and fat

The correlations among live weight, PWT, EMD, PEMD, FAT and PFAT are shown in Table 1. In both experiments, there were strong positive relationships between EMD and live weight and PWT, FAT and live weight, EMD and FAT and PEMD and PFAT, but all other relationships were relatively weak. Leptin concentration was strongly related to PWT, EMD, FAT and PFAT in both experiments (Table 2). The correlation with PEMD was also significant in both experiments, but strong in Experiment 2 and relatively weak in Experiment 1. By contrast, where the relationships with follistatin concentration were significant, they were all negative. In Experiment 1, the relationships were strong for PWT, EMD, PEMD and FAT but, in Experiment 2, there were only two significant correlations, with EMD and PEMD, and both were relatively weak (Table 2).

The potential effects of accumulation of muscle on leptin and follistatin concentrations are of particular interest, so the relationships with EMD are explored in Figure 3. For leptin, the correlations are relatively robust in both experiments whereas, for follistatin, the correlations are significant but explain only 2-10% of the variation.

3.3. Puberty

As shown in Table 3, leptin concentration was positively associated with the proportion of ewe lambs that attained puberty for Experiment 2 (P ≤ 0.05), but the relationship was not significant for Experiment 1 (P = 0.08). Age at first oestrus was weakly negatively correlated with leptin concentration in Experiment 1 (P < 0.01), but the association was not significant in Experiment 2 (P > 0.05). Live weight at first oestrus was weakly positively correlated with
leptin concentration for Experiment 2 (P < 0.05), but not Experiment 1. After adjustment for effects of live weight, these effects of leptin concentration on age at first oestrus and puberty were no longer evident (Table 3). Follistatin concentration was not related to the proportion of ewe lambs entering puberty, or to age at first oestrus. There was a weak and significant negative relationship with live weight at first oestrus, but only in Experiment 1 (Table 3).

3.4. Fertility and reproductive rate after puberty

As shown in Table 3, for Experiment 1, leptin concentration was positively correlated with the proportion of ewe lambs that became pregnant (P < 0.01) and with reproductive rate (P < 0.01). By contrast, follistatin concentration was negatively correlated with the proportion of young female sheep that became pregnant (P < 0.01) and with reproductive rate (P < 0.05). The relationships between leptin and fertility and between leptin and reproductive rate were significant after adjustment for effects of live weight, but the relationships between follistatin and fertility and between follistatin and reproductive rate were not significant.

The strong but contrasting relationships observed in Experiment 1 between fertility and leptin, and between fertility and follistatin, are illustrated in Figure 4. For Experiment 2, neither leptin nor follistatin concentration were related to the proportion of ewe lambs that became pregnant, or with reproductive rate (Table 3).

4. Discussion

These correlation-based field studies with young Merino ewes offer several robust novel observations: the positive relationships between muscle development and puberty and fertility and, and the positive relationships between muscle development and leptin concentrations. Moreover, these studies provide the first observations of relationships between follistatin concentrations, puberty and fertility in sheep, although they are somewhat
problematical because of differences between the two experiments (as we will discuss below). Importantly, the expected relationships between leptin and reproduction, evident in both studies, verifies the validity of large, correlation-based field studies for detecting potential physiological linkages, as well as the validity of our sampling regime and statistical methodology. We can therefore interpret the correlations with some confidence and use them as a solid basis for development of hypotheses for guiding direct intervention studies.

Circulating concentrations of leptin increased progressively as the animals grew and puberty approached, consistent with previous reports (review: Foster and Nagatani, 1999). However, the progressive increase was interrupted by brief periods in both experiments when the growth of the ewe lambs was negative, such that the animals lost weight rather than continue to grow. The losses in body mass were small in absolute terms, although arguably larger in the context of the growth trajectory, and the associated changes in the leptin profile suggest a greater impact on metabolic homeostasis than is indicated by a relatively insensitive measure such as body mass. Indeed, even the more mechanistic relationship between mass of adipose tissue and leptin concentration (Maffei et al., 1995; Blache et al., 2000) is probably incapable of reflecting dynamic changes in metabolic homeostasis. With respect to the control of ovarian function, the ‘acute’ response to short-term changes in nutrition seems to be best explained changes in circulating concentrations of metabolic hormones that precede detectable changes in live weight (reviewed by Scaramuzzi et al. 2006). Moreover, across both experiments, there was a consistent relationship between circulating leptin concentrations and the rate of tissue accumulation, whether it was measured by the rate of growth or by the rates of accumulation of muscle or fat. As a consequence, leptin concentration was positively correlated to age and live weight at first oestrus, the success of puberty and fertility, and final reproductive rate, observations that are consistent with previous studies (reviewed: Smith et al., 2002). Overall, these observations support the
concept that increases in the rates of accumulation of adipose tissue, perhaps acting through
the leptin that it produces, inform to the brain centres that control reproduction about the
body composition of the animal and thus affect the onset of puberty.

Follistatin concentrations, by contrast, decreased as the animals grew and as the
amount of muscle increased. Interestingly, the actual concentration of follistatin was similar
at the onset of puberty and conception in both experiments and, whenever follistatin
concentration was significantly correlated with measures of reproductive function, the
relationships were negative. These observations suggest that if follistatin plays a role in
reproduction in young female sheep, it is inhibitory – delaying puberty and reducing fertility
and reproductive rate. If circulating follistatin acts as a physiological signal between muscle
tissue and the reproductive axis, it appears to be an inhibitory factor that needs to be reduced
before reproduction can proceed. Clearly, this hypothesis needs to be tested with more
detailed intervention studies.

There were inconsistencies among the observations from these two field studies. For
example, the dependency of leptin concentration on the rate of growth, and on the rates of
muscle and fat accumulation, were significant in both experiments, but much stronger in
Experiment 2 than in Experiment 1, particularly for phenotypic and genotypic measures of
muscle accumulation. For follistatin concentration, on the other hand, relationships with the
rates of growth and of muscle and fat accumulation were weaker for Experiment 1 than for
Experiment 2. Ewe lambs from Experiment 2 were heavier and had higher circulating
concentrations of both hormones than the young females from Experiment 1, but the average
growth rate was lower for Experiment 2 than for Experiment 1. Our interpretation is that the
differences in fertility rate between the experiments is largely explained by differences in
growth rate during the mating period, a variable that is difficult to control with field studies in
an extensive management system. It is clear that there were uncontrolled external factors
affecting the secretion of leptin and follistatin, as well the reproductive performance of the
animals. The significant relationships that we did observe were revealed because we used
large numbers of animals.

Interestingly, there were significant relationships between muscle accumulation and
leptin concentration and between muscle accumulation and reproductive performance. Leptin
is thought to be produced primarily by adipose tissue, but the large variation in circulating
leptin concentrations at similar levels of adiposity implies control by factors other than
simple fat mass (Flier, 1997). The relationships with measures of muscle accumulation
suggest that intramuscular adipose tissue might also be a biologically significant source of
leptin, a concept supported by other findings: the leptin gene is expressed in muscle (Wang et
al., 1998); leptin induces muscular hypertrophy and regulates energy expenditure and fat
oxidation in muscle (Gong et al., 1997; Muoio et al., 1997); and, as muscle mass increases,
the concentration of intramuscular fat increases (Zeidan et al., 2005; Zhong et al., 2011). It is
therefore possible that the leptin produced in muscle, particularly in intramuscular fat, works
in parallel with leptin from adipose tissue to inform the brain about metabolic reserves.

We hypothesized that follistatin concentration would be high during muscle growth
and development, and therefore higher in ewe lambs selected for rapid muscle accumulation.
Our data lead us to reject these hypotheses, although it is important to note that our
observations were made under field conditions so uncontrolled, day-to-day variations in food
intake and weight gain might have affected follistatin secretion (Silanikove, 2000). Indeed,
Phillips et al. (1998) reported that reductions in food intake affected circulating
concentrations of follistatin in Romney ewe lambs. On the other hand, we also need to
explore the relationship between myostatin and follistatin. Myostatin is an important
inhibitory regulator of muscle development (McPherron et al., 1997; Thomas et al., 2000;
Lee and McPherron, 2001) and, in sheep, muscle development is enhanced by a mutation in
the myostatin gene and by increases in the production of follistatin, which blocks myostatin action (Clop et al., 2006; Rodino-Klapac et al., 2009). However, in animals selected for accelerated muscle accumulation, but less specialized for meat (e.g., Merino), the ratio of follistatin to myostatin is probably more important in determining muscle mass (McPherron et al., 2009). To date, there have been no studies of the processes that underpin muscle accumulation in Merino sheep that have been selected for rapid muscle accumulation.

With respect to reproduction, the decline in total follistatin concentration at the approach of puberty and conception reflects previous observations (Foster et al., 2000; McFarlane et al., 2002). Among the variety of effects that follistatin has been reported to have on the reproductive axis, our observations are consistent with its role in blocking the activins – at pituitary level, reducing FSH synthesis and at ovarian level reducing the actions of FSH on granulosa cells. Under these circumstances, withdrawal of follistatin as mature live weight is achieved would aid the progress of puberty and the maximization of fecundity.

In conclusion, in sheep with higher breeding values for accumulation of muscle or fat, puberty will be advanced and reproductive performance improved, perhaps because of the effects of the changes in tissue accumulation on the circulating concentrations of leptin and follistatin. These hypotheses have been generated from correlations with large numbers of animals in field studies, and now need to be tested in intervention experiments.

Conflict of interest

Please disclose any potential conflict of interest pertaining to your contribution or the Journal; or write 'NONE' to indicate you declare no such conflict of interest exists. A conflict of interest might exist if you have a competing interest (real or apparent) that could be considered or viewed as exerting an undue influence on you or your contribution. Examples could include financial, institutional or collaborative relationships. The Journal's editor(s) shall contact you if any disclosed conflict of interest may affect publication of your contribution in the Journal.
Potential conflict of interest: NONE

On behalf of all the authors, I declare that there are no potential conflicts of interest.

Cesar Rosales Nieto

Acknowledgements

The authors wish to thank to Mrs Margaret Blackberry (University of Western Australia) and Ms Susan Hayward (Monash Institute of Medical Research) for their assistance with the hormone analyses and Gavin Kearney for his advice in statistical analyses. César Rosales Nieto was supported by CONACyT (the Mexican National Council for Science and Technology), the Department of Agriculture and Food of Western Australia, the Cooperative Research Centre for Sheep Industry Innovation, and the UWA School of Animal Biology. This work was also supported by grants to MPH from the National Health and Medical Research Council of Australia, and by the Victorian Government’s Operational Infrastructure Support Program.
References

Hafez, E.S.E., 1952. Studies on the breeding season and reproduction of the ewe Part I. The breeding season in different environments Part II. The breeding season in one locality. J. Agric. Sci. 42, 189-231.

Fig. 1. Changes in live weight in Experiment 1 (A) and Experiment 2 (C) and circulating concentrations of follistatin (○) and leptin (●) in the young Merino ewes in Experiment 1 (B) and Experiment 2 (D). Day 0 is the day fertile Merino rams were introduced. Values are mean ± sem.

Fig. 2. Correlation between live weight and mean circulating concentrations of follistatin (○ grey lines) and leptin (● black lines) in the young Merino ewes in Experiment 1 (A; P < 0.01 for follistatin and P < 0.001 for leptin) and Experiment 2 (B; P > 0.05 for follistatin and P < 0.001 for leptin).

Fig. 3. Correlation analysis for the effect of depth of eye muscle (EMD) on the concentrations of mean total follistatin (○ grey lines) and mean leptin (● black lines) in the young Merino ewes from Experiment 1 (A; P < 0.05 for leptin and P < 0.01 for follistatin) and Experiment 2 (B; P < 0.001 for leptin and P < 0.05 for follistatin).

Fig. 4. Effect of mean concentration of leptin (black line) and follistatin (grey line) on fertility in the young Merino ewes in Experiment 1. The closest sample to the date of conception was used to plot these regressions. The broken lines represent upper and lower 95% confidence limits (both relationships: P < 0.01).
Tables

Table 1: Correlations (r) among post-weaning phenotypic and genotypic values for live weight (LW, PWT), depth of muscle (EMD, PEMD) and depth of fat (FAT, PFAT) in young Merino ewes from Experiments 1 and 2.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Variable</th>
<th>PWT</th>
<th>EMD</th>
<th>PEMD</th>
<th>FAT</th>
<th>PFAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LW</td>
<td>0.68</td>
<td>0.64</td>
<td>0.28</td>
<td>0.56</td>
<td>0.29</td>
</tr>
<tr>
<td>2</td>
<td>PWT</td>
<td>0.79</td>
<td>0.70</td>
<td>0.24</td>
<td>0.52</td>
<td>0.26</td>
</tr>
<tr>
<td>1</td>
<td>EMD</td>
<td>0.53</td>
<td>0.40</td>
<td>0.39</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PEMD</td>
<td>0.63</td>
<td>0.29</td>
<td>0.33</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>FAT</td>
<td>0.41</td>
<td>0.59</td>
<td>0.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PFAT</td>
<td>0.76</td>
<td>0.54</td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.22</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.40</td>
<td>0.67</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>0.71</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Correlations (r) among post-weaning phenotypic and genotypic values for live weight (PWT), muscle accumulation (EMD, PEMD) and fat accumulation (FAT, PFAT) and the mean circulating concentrations of leptin and follistatin in young Merino ewes. Information has been provided for analyses with or without live weight (LW, PWT) included in the statistical model1.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Experiment 1</th>
<th></th>
<th></th>
<th>Experiment 2</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Leptin</td>
<td>Follistatin</td>
<td>Leptin</td>
<td>Follistatin</td>
<td>Leptin</td>
<td>Follistatin</td>
</tr>
<tr>
<td>PWT (r)</td>
<td>*** (0.46)</td>
<td>*** (-0.28)</td>
<td>*** (0.27)</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMD (r)</td>
<td>*** (0.47)</td>
<td>*** (-0.32)</td>
<td>*** (0.55)</td>
<td>* (-0.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMD + LW</td>
<td>*</td>
<td>**</td>
<td>***</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEMD (r)</td>
<td>* (0.19)</td>
<td>** (-0.27)</td>
<td>*** (0.53)</td>
<td>** (-0.18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PEMD + PWT</td>
<td>NS</td>
<td>*</td>
<td>***</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAT (r)</td>
<td>*** (0.41)</td>
<td>** (-0.23)</td>
<td>*** (0.47)</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAT + LW</td>
<td>***</td>
<td>NS</td>
<td>***</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFAT (r)</td>
<td>*** (0.26)</td>
<td>NS</td>
<td>*** (0.45)</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFAT + LW</td>
<td>NS</td>
<td>NS</td>
<td>***</td>
<td>NS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P-values: * $P \leq 0.05$; ** $P \leq 0.01$; *** $P \leq 0.001$; NS $P > 0.05$

1Note: values for r cannot be supplied for correlations when a third factor (LW or PWT) is included in the analyses.
Table 3. The correlations (r) between the hormone concentrations (follistatin and leptin) and the advent of puberty, the age and live weight at first oestrus, and reproductive performance (fertility, reproductive rate) in young Merino ewes mated at 8-9 months of age. Information has been provided for analyses with live weight (LW) included or excluded in the statistical model2.

| Variable | Experiment 1 | | | | Experiment 2 | | | |
|---------------------------------------|
| Puberty (%) | NS | NS | * | NS |
| Age at first oestrus (days) (r) – LW | ** (-0.21) | NS |
| Age at first oestrus + LW | NS |
| LW at first oestrus (kg) (r) | NS | * (-0.17) | * (0.19) | NS |
| Fertility (%) – LW | ** | ** | NS |
| Fertility + LW | * | NS |
| Reproductive rate (%) – LW | ** | * | NS |
| Reproductive rate + LW | * | NS |

P-values: * $P \leq 0.05$; ** $P \leq 0.01$; *** $P \leq 0.001$; NS $P > 0.05$

2Note: values for r cannot be supplied for correlations when a third factor (LW) is included in the analyses, or when the distribution is binomial or multinomial (puberty, fertility, reproductive rate).
Figure 1

(A) Body mass (Kg) over days of the experiment.

(B) Follistatin (ng/mL) over days of the experiment.

(C) Leptin (ng/mL) over days of the experiment for both pre-mating and mating periods.

(D) Comparison of Follistatin and Leptin levels during pre-mating and mating periods.
Figure 2

Follistatin (ng/mL⁻¹)

- **A**
 - $y = 0.0247x + 0.4261; r^2 = 0.2861$

- **B**
 - $y = -0.0544x + 5.212; r^2 = 0.0533$

Leptin (ng/mL⁻¹)

- **A**
 - $y = 0.0217x + 0.969; r^2 = 0.1552$

- **B**
 - $y = -0.0163x + 4.4187; r^2 = 0.0032$

Body mass (Kg)
Figure 3

Follistatin (ng/mL⁻¹)

\[y = -0.1633x + 7.3099 \]
\[R^2 = 0.0957 \]

Leptin (ng/mL⁻¹)

\[y = 0.0458x + 0.2496 \]
\[R^2 = 0.1967 \]

Depth of Eye muscle (EMD; mm)

\[y = -0.0924x + 6.2031 \]
\[R^2 = 0.0226 \]
\[y = 0.0571x + 0.3721 \]
\[R^2 = 0.2484 \]
Figure 4

Leptin (ng/mL⁻¹)

Fertility (%)

Follistatin (ng/mL⁻¹)