Economic Valuation of Biodiversity Conservation. Citizens’ Non-use Value for Ningaloo Reef

Flavio Gazzani

This thesis is presented for the degree of Doctor of Philosophy
Murdoch University
2009
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary institution.

..
Flavio Gazzani
Abstract

This research attempts to improve a methodology for integrating environmental concerns of conservation projects in general and valuation of non-use values in particular. The study improves environmental economics analysis by accounting to assess the value of non-market goods using individuals' stated behaviour in a hypothetical setting. In particular, a new approach to Choice Modelling analysis for environmental goods is used in this case study, to obtain the value of biodiversity conservation by separately evaluating the preferences of individuals for the relevant attributes, and in doing so it also provides information that can be used in determining the preferred design for a sustainable use of marine protected areas.

This study is undertaken to explicitly assess on how Western Australian citizens value Ningaloo Marine Park by analysing their willingness to pay for its conservation. Two hypothetical conservation and protection scenarios are used: (i) to estimate the non-use value benefits of different environmental scenarios; (ii) to measure the willingness to pay for conservation; and (iii) to examine the factors that affect the Western Australians willingness to pay for conservation. The results of this study provide inputs in exploring alternative sources of financing the conservation of Ningaloo Marine Park.

A choice modelling survey was carried out in spring 2006, and it was administered to 150 Western Australians contacted on the beach and inside the camping area of Ningaloo Marine Park. The results indicate that there are positive and significant non-use values associated with the environmental, economic, and social attributes of Ningaloo Marine Park’s biodiversity conservation. The impacts of social, economic, and attitudinal characteristics of the respondents on their valuation of Ningaloo Marine Park conservation attributes are significant and conform with economic theory.
The model estimation results, highlight how the socio-attitudinal characteristics, such as higher education level and good biodiversity knowledge were able to strongly affect the willingness to pay for conservation.

In this study the trend of the respondents in favour of the introduction of entrance fee and increase of protection for Ningaloo Marine Park, was very evident. The possibility to introduce an entrance fee could be considered by policy makers in two possible options.

Option 1

Generalizing the result of this study and multiplying the average willingness to pay (WTP) per person $26.12 (the average WTP for the scenario with increased protection to 66% of sanctuary zone) for 220,000 visitors in Ningaloo Marine Park (Tourism, 2007), this option could be worth at least $5.7 million per year. The option of creating an extra 33% of sanctuary zone and an extra injection of $5.7 million per year for conservation, could be an interesting solution, and even more, protect this fragile and unique marine ecosystems for the future.

Option 2

This option reflects the present situation scenario from a biodiversity conservation and protection point of view (33% of sanctuary zone), but introduces the hypothetical entrance fee of $9 per person (the average WTP for this scenario which reflect the present situation). This amount of fee, multiplied by the 220,000 visitors could be worth almost $2.0 million per year for conservation purposes.

Introducing user fees in both options is a way to regulate access to the fragile ecosystems of Ningaloo Marine Park. It may therefore help to prevent overcrowding and other negative impacts on ecosystems due to excessive numbers of tourists, especially during the peak season (July/August). It may also be a way to capture
part of the consumers’ surplus, in order to make the protected area self-sustaining, i.e. to finance management costs and conservation. The introduction of fees will be ultimately a Government decision, but what this study shows is that there is a strong support with the community in this direction.
Acknowledgements

I wish to acknowledge, first and foremost, the invaluable support and encouragement of my thesis supervisors, Professor Dora Marinova, and Associate Professor Laura Stocker.

The Institute for Sustainability and Technology Policy (ISTP) and the Division of Arts at Murdoch University provided a friendly and encouraging environment. I am greatly appreciative of Murdoch University for supporting me in this endeavour with a scholarship, as well as a travel grant for part of the fieldwork in relation to this study.

I also express special thanks to the many Western Australians who responded to the Ningaloo survey and expressed an incredible attention for a future conservation and protection programme for this unique coral reef ecosystems.

Many thanks go to my wife Michela who has been taking care of my young daughter Sofia at my home in Perth.
This work is dedicated with love to my wife Michela and to my daughter Sofia, my spirit of inspiration.
Table of Contents

List of Tables
List of Figures
List of Maps
List of Appendices
Abbreviations and Acronyms

Chapter I Introduction and study coverage

1.1 Introduction ..1
1.2 Institutional framework for sustainable natural resource management in Western Australia ...4
 1.2.1 Natural Resource Management “Caring for our Country”
 1.2.2 Ningaloo Coastal Regional Strategy
 1.2.3 Fishing sector in Western Australia
 1.2.4 Australian marine protected areas: institutional arrangements for Ningaloo Marine Park (NMP)
1.3 Sustainable Development and Economic Valuation of Biodiversity conservation ..18
1.4 Application of Non-use Valuation Analysis in Australia23
1.5 Scope and Aims of the Study ..26
1.6 Research Questions ...27
1.7 Thesis structure ..28

CHAPTER II

Marine biodiversity coral reef crisis and marine protected areas: theory and recent development

2.1 Coral Reef Ecology ..31
 2.1.2 Biodiversity: Definition and Importance
2.2 Coral Reef Crisis ..36
 2.2.1 Climate and Environmental Change
 2.2.2 Non-Climate Stresses to Coral Reefs
 2.2.3 Overfishing and Resource Extraction
 2.2.4 Coastal Zone Modification and Mining
 2.2.5 Harbour Impacts
 2.2.6 Increase in Sediments or Nutrients enhance Algal Growth Rate
2.3 Marine Protected Areas: Theory and Practice47
 2.3.1 Traditional Approaches to Marine Conservation
 2.3.2 Contemporary Approaches to Marine Conservation
 2.3.3 Contemporary Approaches to Conservation Management
 2.3.4 Potential Benefits of Marine Reserves
 2.3.5 Fishing Spill-overs
 2.3.6 Design of Marine Protected Area
 2.3.7 Networks of Marine Protected Areas
2.4 Filling the Gaps in Marine Ecology Knowledge?77
Chapter III
Ningaloo Marine Park: physical, ecological and social aspects

3.1 Introduction ... 80
3.2 Location and Boundaries ... 81
3.3 Description of the Physical Environment 83
 3.3.1 Geology and Geomorphology
 3.3.2 Climate
 3.3.3 Oceanography
 3.3.4 Marine Biodiversity
3.4 The Social Setting and Aboriginal Heritage 94
 3.4.1 Pre-History
 3.4.2 Aboriginal Heritage
 3.4.3 Recent Occupation
3.5 Zoning Scheme for Ningaloo Marine Park 97
3.6 The Use of the Reserves .. 102
3.7 Pressures from Human Activities 105
 3.7.1 Commercial and Recreational Fishing
 3.7.2 Petroleum and Mineral Exploration and Production
 3.7.3 Tourism
 3.7.4 Pollution
 3.7.5 Introduced and other ‘Pest’ Species
 3.7.6 Commercial shipping
3.8 Potential Threats to Ningaloo Marine Park 117
 3.8.1 Climate Change
 3.8.2 Ocean Acidification
 3.8.3 Coral Bleaching
3.9 Conclusion .. 124

Chapter IV
Review of the environmental economic valuation literature: Non-use value analysis

4.1 Introduction ... 127
4.2 Estimate the Economic Value of Biodiversity 128
4.3 Intrinsic Value in Nature .. 131
4.4 Total Economic Value and Social Value of Ecosystem 137
4.5 Methodologies for Valuing Environmental Goods 141
 4.5.1 Actual Market Based Methods
 4.5.2 Simulated Market Methods
 4.5.3 Reliability
4.6 Contingent Valuation Method (CVM) 148
 4.6.1 Contingent Valuation Method: Consistency with Economic Theory
 4.6.2 CVM: the Willingness to Pay
 4.6.3 Gaps, Imperfections and Criticisms of Contingent Valuation Method
 4.6.3.1 Large difference between willingness to pay and willingness to accept measures
 4.6.3.2 Strategic behaviour in responses
 4.6.3.3 ‘Protest Zero Bids’ Responses
 4.6.3.4 Implied Value Cue Bias
 4.6.3.5 Scenario Misspecification Biases
 4.6.3.6 Conclusion
4.7 Choice Modelling

4.7.1 Definition of Attributes, Levels and Customisation

4.7.2 Experimental Design

4.7.3 Experimental Context, Test of Validity and Questionnaire Development

4.7.4 Sample and Sampling Strategy

4.8 Conclusion

Chapter V Previous studies on economic valuations of biodiversity

5.1 Introduction

5.2 Existence and Option Values

5.3 Harvested Product Valuations

5.4 Recreation and Tourism Valuation

5.5 Ecological Function Valuations

5.6 Summary and Conclusion

Chapter VI Choice modelling methodology: An alternative approach to survey design and model specification

6.1 Introduction

6.2 Choice Modelling Methodology: Theoretical Framework

6.3 Implementation of Choice Modelling Methodology

6.3.1 Case Study: Identification of the Problems

6.3.2 Selection of Attributes and Levels

6.3.3 Questionnaire Development

6.3.4 Experimental Design

6.3.5 Sample Sizing and Data Collection

6.3.6 Estimation Methodology and Specifications of the Utility Functions

6.4 Welfare Measurement: Willingness to Pay Extrapolated from Choice Modelling Estimates

6.5 Conclusion

Chapter VII Survey and estimation results

7.1 Introduction

7.2 Results from Questionnaire 1

7.3 Results from Questionnaire 2

7.4 General Level of Environmental Concern of Respondents

7.5 Visits to Ningaloo Reef

7.6 Recreational Fishing

7.7 Eco-tourism

7.8 Commercial Activities inside Ningaloo Marine Park

7.9 Integrating local Communities for Future Development

7.10 Ningaloo Reef Ecologically Valuable as the Great Barrier Reef

7.11 Respondents’ Marine Ecological Knowledge

7.12 Demographics of the Sample

7.13 Model estimation

7.13.1 Model 2 with Socio-demographic and Attitudinal Interactions

7.13.2 Results Model 1

7.13.2 Results Model 2
Chapter VIII
Conclusion and policy recommendations

8.1 Introduction ...257
8.2 Summary of Major Finding and Conclusion257
 8.2.1 Attitude towards Conservation and Protection of the NMR
 8.2.2 Validity and Accuracy of Choice Modelling Analysis for NMR Non-use
 Values
 8.2.3 Economic Valuation of Biodiversity Conservation
 8.2.4 Socio-economic-demographic Factors Affecting Respondents’
 Willingness to Pay for Conservation.
8.3 Policy recommendations ...265
 8.3.1 Conservation of Marine Biodiversity
 8.3.2 Creating Economic Incentives for Conservation
8.4 Contribution to the Knowledge and Theory270
 8.4.1 Methodological Development
 8.4.2 A Framework for the Economic Valuation of Biodiversity Conservation
8.5 Further research Directions ...272

List of Table

Table 1.1 The Ningaloo Marine Park Management strategic objectives……..16
Table 2.1 Stresses in Coral Reef Ecosystems40
Table 2.2 IUCN’s Categorization of Protected Areas53
Table 4.1 A General Value Typology ..133
Table 6.1 Example of choice set: Percentage of sanctuary zone202
Table 6.2 Choice set for Ningaloo Reef Questionnaire 2209
Table 6.3 Variables description ..218
Table 7.1 Alternative scenarios selected from Questionnaire 1227
Table 7.2 SECTION I General Level of Environmental Concern230
Table 7.3 SECTION II Ningaloo reef Knowledge and Visits231
Table 7.4 Response rate of the question: ‘It is my right to fish at Ningaloo’..233
Table 7.5 More opportunities for eco-tourism234
Table 7.6 More commercial development at Ningaloo235
Table 7.7 The future of Ningaloo should be up to local communities236
Table 7.8 Ningaloo Reef is ecologically valuable as the Great Barrier Reef 237
Table 7.9 Main source of information about Ningaloo237
Table 7.10 SECTION III Biodiversity Knowledge238
Table 7.11 Relationship between biodiversity knowledge and WTP239
Table 7.12 Socio-demographic comparison240
Table 7.13 Test of Independence of Irrelevant Alternatives (IIA)242
Table 7.14 Multinominal logit results of Model 1 and Model 2244
Table 7.15 Ningaloo Scenarios ...246
Table 7.16 Relationship between the scenario preferred and the WTP248
Table 7.17	Estimates of implicit prices	250
Table 7.18	Estimates of compensation surplus for each scenario	253
Table 7.19	WTP regression results	254

List of Figure

Figure 3.1	Gnaraloo shoreline fringing reef	84
Figure 3.2	The Australian Currents	86
Figure 3.3	Manta Ray and Whale Shark, north of Coral Bay	91
Figure 3.4	Red throat emperor, Lethrinus miniatus	93
Figure 3.5	Gnaraloo Bay sanctuary zone delimitation	100
Figure 3.6	Recreational fishing sign	101
Figure 3.7	Broken corals caused by fishing trawler, south of Coral Bay	106
Figure 3.8	Satellite photo of Dampier Salt Mine in Lake MacLeod	108
Figure 3.9	Satellite photo of Lake MacLeod including the salt mine	108
Figure 3.10	Broken corals caused by anchor in Coral Bay	111
Figure 3.11	Red Fox (vulpes vulpes) in Jurabi Point, Ningaloo Marine Park	114
Figure 3.12	The coral-eating Drupella snails	116
Figure 3.13	Image of a bleaching hard coral on Great Barrier Reef	123

List of Maps

| Map 3.1 | Boundaries of Ningaloo Marine Park (Commonwealth Waters) | 82 |
| Map 3.2 | Ningaloo Reef Present Situation, CALM 2007 | 104 |

List of Appendices

Appendix I Choice Sets from Questionnaire 1 | 275 |
Appendix II The full version of questionnaire 2 schedule | 280 |
Appendix III Coral Reef Ecology | 293 |
Appendix IV Marine Ecology | 310 |

References | 319 |
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCM</td>
<td>Attribute Based Choice Modelling</td>
</tr>
<tr>
<td>ABS</td>
<td>Australian Bureau of Statistics</td>
</tr>
<tr>
<td>AGE</td>
<td>Age</td>
</tr>
<tr>
<td>APPEA</td>
<td>Australian Petroleum and Production Exploration Assoc</td>
</tr>
<tr>
<td>ASC</td>
<td>Alternative Specific Constant</td>
</tr>
<tr>
<td>BIO</td>
<td>Decrease of Marine Biomass</td>
</tr>
<tr>
<td>BIOK</td>
<td>Marine Biodiversity Knowledge</td>
</tr>
<tr>
<td>CBA</td>
<td>Cost-Benefit Analysis</td>
</tr>
<tr>
<td>CM</td>
<td>Choice Modelling</td>
</tr>
<tr>
<td>CVM</td>
<td>Contingent Valuation Methodology</td>
</tr>
<tr>
<td>CS</td>
<td>Compensating Surplus</td>
</tr>
<tr>
<td>CSIRO</td>
<td>Commonwealth Scientific and Industrial Research Org</td>
</tr>
<tr>
<td>DC</td>
<td>Dichotomous Choice</td>
</tr>
<tr>
<td>DEC</td>
<td>Department of Environmental Conservation</td>
</tr>
<tr>
<td>DEH</td>
<td>Department of Environmental and Heritage</td>
</tr>
<tr>
<td>DOF</td>
<td>Department of Fisheries</td>
</tr>
<tr>
<td>DPI</td>
<td>Department of Planning and Infrastructure</td>
</tr>
<tr>
<td>EDU</td>
<td>Education</td>
</tr>
<tr>
<td>ENSO</td>
<td>El Nino Southern Oscillation</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Authority</td>
</tr>
<tr>
<td>EPBC</td>
<td>Environment Protection and Biodiversity Conservation</td>
</tr>
<tr>
<td>EVT</td>
<td>Extreme Value Theory</td>
</tr>
<tr>
<td>FHPA</td>
<td>Fish Habitat Protection Areas</td>
</tr>
<tr>
<td>FISH</td>
<td>Decrease of Income for Local Fisheries</td>
</tr>
<tr>
<td>GBR</td>
<td>Great Barrier Reef</td>
</tr>
<tr>
<td>HPM</td>
<td>Hedonic Pricing Method</td>
</tr>
<tr>
<td>HTCM</td>
<td>Hedonic Travel Cost Method</td>
</tr>
<tr>
<td>IAICNR</td>
<td>Inter American Institute for Global Change Research</td>
</tr>
<tr>
<td>IID</td>
<td>Independently and Identically Distributed</td>
</tr>
<tr>
<td>INC</td>
<td>Income</td>
</tr>
<tr>
<td>ITCM</td>
<td>Individual Travel Cost Method</td>
</tr>
<tr>
<td>IUCN</td>
<td>The World Conservation Union</td>
</tr>
<tr>
<td>LAC</td>
<td>Limit of Acceptable Change</td>
</tr>
<tr>
<td>LR</td>
<td>Likelihood Ratio test</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MEA</td>
<td>Millennium Ecosystem Assessment</td>
</tr>
<tr>
<td>MININ</td>
<td>Loss of Income for Mining and Petroleum Companies</td>
</tr>
<tr>
<td>MLE</td>
<td>Maximum Likelihood Estimation</td>
</tr>
<tr>
<td>MMA</td>
<td>Marine Management Area</td>
</tr>
<tr>
<td>MNL</td>
<td>Multinominal logit</td>
</tr>
<tr>
<td>MPA</td>
<td>Marine Protected Area</td>
</tr>
<tr>
<td>MPRA</td>
<td>Marine Parks and Reserves Authority</td>
</tr>
<tr>
<td>NMP</td>
<td>Ningaloo Marine Park</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NRM</td>
<td>Natural Resource Management</td>
</tr>
<tr>
<td>NRMC</td>
<td>Natural Resource Management Council</td>
</tr>
<tr>
<td>NRSMPA</td>
<td>National Representative System of Marine Protected Areas</td>
</tr>
<tr>
<td>OECD</td>
<td>Organization for Economic Co-operation and Development</td>
</tr>
<tr>
<td>OLS</td>
<td>Ordinary Least Squares</td>
</tr>
<tr>
<td>REEF</td>
<td>Reduction of Coral Reef</td>
</tr>
<tr>
<td>RUM</td>
<td>Random Utility Model</td>
</tr>
<tr>
<td>SANCT</td>
<td>Percentage of Sanctuary Zone inside Ningaloo Reef</td>
</tr>
<tr>
<td>SOE</td>
<td>State of the Environment</td>
</tr>
<tr>
<td>SST</td>
<td>Sea Surface Temperature</td>
</tr>
<tr>
<td>SP</td>
<td>Stated Preference</td>
</tr>
<tr>
<td>TCM</td>
<td>Travel Cost Methodology</td>
</tr>
<tr>
<td>TV</td>
<td>Total Value</td>
</tr>
<tr>
<td>TEV</td>
<td>Total Economic Value</td>
</tr>
<tr>
<td>TWA</td>
<td>Tourism Western Australia</td>
</tr>
<tr>
<td>WA</td>
<td>Western Australia</td>
</tr>
<tr>
<td>WAPC</td>
<td>Western Australian Planning Commission</td>
</tr>
<tr>
<td>WTP</td>
<td>Willingness to Pay</td>
</tr>
<tr>
<td>WTA</td>
<td>Willingness to Accept</td>
</tr>
<tr>
<td>ZTCM</td>
<td>Zonal Travel Cost Method</td>
</tr>
</tbody>
</table>