Design of a Scalable Network Interface to Support Enhanced TCP and UDP Processing for High Speed Networks

A thesis submitted for the degree of
Doctor of Philosophy
by
Mohamed Elbeshti

Murdoch University
2014
Declaration

To the best of my knowledge, this thesis contains no material previously published by any other person except where due acknowledgment has been made.

This thesis contains no material which has been accepted for award of any other degree in any other university.

Signature:

Date: July 07, 2014
Dedicated to my Parents, Amira, Ahmed, Aseal, Yousef and Omar
for their support…
Abstract

Communication networks have advanced rapidly in providing additional services, with improvements made to their bandwidth and the integration of advanced technology. As the speed of networks exceeds 10 Gbps, the time frame for completing the processing of TCP and UDP packets has become extremely short. The design and implementation of high performance Network Interfaces (NIs) that can support offload protocol functions for current and next-generation networks is challenging. In this thesis two software approaches are presented to enhance protocol processing of TCP and UDP in the network interface. A novel software Large Receive Offload (LRO) approach for enhancing the receiving side has been proposed. The LRO works by aggregating the incoming TCP and UDP packets into larger packets inside the NI’s buffer. The receiving side software has been improved to support out-of-order packets. The second proposed software solution is applied on the Large Send Offload (LSO). The proposed LSO function processing is implemented by segmenting TCP and UDP messages that are larger than the Maximum Transmission Unit to the Maximum Segment Size. New packet headers are generated for each new outgoing packet.

A scalable programmable NI based 32-bit RISC core is presented that can support 100 Gbps network speeds. Acceleration of the processing time frame required at the NI has been implemented to prevent hazards (such as Data Hazard and Control Hazard) during the execution of the LRO and the LSO functions. An R2000/3000 RISC has been used in order to test the LRO and LSO functions and to discover the instruction set that is most suitable. Following this the VHDL NI was implemented with three pipeline RISC cores, a simple DMA controller and Content Addressable Memory. An evaluation of the desired RISC clock rate that is required to process TCP and UDP streams at 100 Gbps was conducted. It was determined that aRISC core running at 752 MHz with a DMA clock of 3753 MHz was able to process packets 512 bytes or larger fast enough to support 100 Gbps network speeds.
Publications

Journal Articles:

Conference Papers:

- M. Elbeshti, M. Dixon, and T. Koziniec, Design consideration for efficient network interface supporting the Large Receive Offload with embedded RISC: 36th International Conference on Telecommunications and Signal processing (TSP), Italy, 2013.

- M. Elbeshti, M. Dixon, and T. Koziniec, RISC core supporting the Large Sending Offload in 100 Gbps: 12th International Symposium on Communications and Information Technologies (ISCIT), Australia, 2012.

• M. Elbeshti, M. Dixon, and T. Koziniec, TCP and UDP Processing Requirements for Network Interface Design at 100 Gbps: 3rd International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Budapest, 2011.

Posters and Demonstration:
Table of Contents

Abstract ... iv
Publications .. v
Table of Contents ... vii
List of Figures ... xiii
List of Tables ... xvi
Acknowledgements ... xvii
List of Abbreviation ... xviii

Chapter 1 Introduction ... 1
1.1 Background ... 1
1.2 Protocol Processing Overview .. 2
1.3 Towards 100 Gbps Packet Processing ... 4
 1.3.1 Protocol Processing Considerations ... 5
 1.3.2 Network Interface Design Approaches ... 5
1.4 Programmable-based Network Interface Design .. 6
 1.4.1 Processing Rate ... 7
 1.4.2 Core Structure .. 8
1.5 Thesis Contributions ... 8
1.6 Research Approach .. 10
1.7 Organization of the Thesis .. 11

Chapter 2 Overview of the Protocol Processing .. 15
Chapter 2 ... 15
2.1 Introduction ... 15
2.2 Overview of the Protocol Processing at a Server .. 16
 2.2.1 Host CPU Time Required for Protocol Processing 17
 2.2.2 Protocol Processing Time Used by the Network Interface 18
 2.2.3 Packet Processing Time ... 20
 2.2.3.1 Maximum Number of Packets in one Second .. 20
Chapter 3 Large Receive Offload Methodology

3.1 Introduction .. 50

3.1 Related Implementations of Large Receive Offload Processing 51

3.1.1 Virtual Large Receive Offload ... 51

3.1.2 LRO performance within the host area .. 54

3.1.3 Receive Side Coalescing ... 55

3.2 Enhancing the Large Receive Offload Processing .. 56

3.2.1 Lost Large Packet Treatment inside the Network Interface 58

3.2.2 Large Packet Processing ... 60

3.3 Primary Design and Structure for the Receiving Side 61
Chapter 4 Large Send Offload Methodology...91

4.1 Introduction ... 91
4.2 Sending Side Block Diagram .. 91
4.3 Protocol Processing Methodology .. 94
 4.3.1 UDP Processing .. 96
 4.3.2 TCP Processing ... 99
4.4 SPIM Simulator for LSO .. 100
4.5 Simulation Results .. 103
 4.5.1 Instruction Types ... 105
 4.5.2 RISC Clock Rate .. 106
4.6 Design Consideration for 100 Gbps at the Sending Side 108
 4.6.1 Enhancing Packet Processing ... 109
4.7 Conclusion ... 110
Chapter 5 A Scalable Network Interface Architecture for 100 Gbps

5.1 Introduction .. 112
5.2 Network Interface Model .. 113
 5.2.1 Network Interface Buffering .. 115
 5.2.2 Data Transfer ... 117
 5.2.2.1 DMA for Data Transfer ... 117
 5.2.2.2 Bus Width ... 120
 5.2.3 Content Addressable Memory .. 120
 5.2.4 The CAM Implementation inside the proposed NI 122
5.3 The Network Interface FIFOs ... 127
5.4 The Interface Buffers ... 131
 5.4.1 Memory Management .. 131
 5.4.2 The Receiving and Sending Buffer .. 134
 5.4.3 Receiver and Transmission Line Buffers ... 134
5.5 Conclusion ... 137

Chapter 6 Developing the RISC Core for TCP/IP and UDP/IP Processing

6.1 Introduction ... 138
6.2 RISC Pipeline .. 138
6.3 Instructions Set Representation .. 142
 6.3.1 Arithmetic and Logic Operation Instructions .. 143
 6.3.2 Branch Instructions .. 144
 6.3.3 Memory Access Instructions ... 146
6.4 Pipeline Hazard .. 148
6.5 RISC Registers .. 153
6.6 Components required for RISC cores .. 155
6.7 Packet Data Path ... 155
 6.7.1 The PCI Interface ... 159
 6.7.1.1 PCI Interface at the Packet Processing Unit .. 160
 6.7.1.2 Reading data from the Receiving buffer ... 162
 6.7.1.3 Reading data from Sending side ... 163
 6.7.2 Interrupt Moderation Window Size ... 164
6.8 Conclusion ... 166
Chapter 7 LRO and LSO Processing Analysis inside the PPU 168

7.1 Introduction .. 168
7.2 Enhancement to Improve Packet Processing 168
7.3 Processing Analysis ... 171
 7.3.1 Large Receive Offload Analysis through Full-System Simulation 173
 7.3.1.1 TCP processing cycles ... 174
 7.3.1.2 UDP processing cycles ... 175
 7.3.2 Large Send Offload Analysis through Full-System Simulation 189
 7.3.2.1 TCP processing cycles ... 189
 7.3.2.2 UDP processing cycles ... 190
7.4 The Payload length Path .. 199
7.5 Conclusion ... 203

Chapter 8 VHDL Simulation Results ... 205

8.1 Introduction .. 205
8.2 Packet Processing Enhancements for High-Speed Networks 205
8.3 RISC Clock Rate for 100 Gbps .. 210
8.4 Results ... 211
8.5 The DMA and RISC Clock Rate for 100 Gbps 217
8.6 Conclusion ... 218

Chapter 9 Conclusion and Future Work ... 219

9.1 Summary of Contributions .. 219
9.2 Future Work ... 222

References .. 223

Appendix A Data Collection ... 231

A.1 Collection of real TCP and UDP streams from multiple tests 231
A.2 Tests Methodology ... 232
 A.2.1 Receive side Flows ... 233
A.2.1.1 Commands: .. 234
A.2.2 Send Side Flows .. 234
A.2.2.1 Commands: .. 234

Appendix B Schematic Diagrams... 235
List of Figures

Figure 2.1: Ethernet frame format ... 19
Figure 2.2: Theoretical maximum throughput for 10 Gbps 25
Figure 2.3: Workstation architecture ... 39
Figure 3.1a: Receive side data flow when Large Receive Offload is not implemented ... 52
Figure 3.1b: Receive side data flow when Large Receive Offload is implemented 52
Figure 3.2: Extract part of the LRO code shows packets that do not match the LRO requirements in a separate buffer ... 53
Figure 3.3: Offloading the LRO approach to the Network Interface 57
Figure 3.4: The Ethernet network interface structure 62
Figure 3.5: Segment Message of a TCP stream .. 65
Figure 3.6: Processing flow of TCP of LRO ... 66
Figure 3.7: Linked-list data structure ... 68
Figure 3.8: Lookup Memory structure ... 71
Figure 3.9: Illustrates inter-packet processing ... 73
Figure 3.10: Receiving block diagram ... 74
Figure 3.11: Packet Processing Unit based SPIM simulator 75
Figure 3.12: Programmed I/O approach for data movement 77
Figure 3.13: A TCP/IP and UDP/IP Hexadecimal format 78
Figure 3.14: Total percentage of data movements of LRO 81
Figure 3.15: Floating Point registers during the processing of the proposed LRO 83
Figure 3.16: RISC clock rate for packet header processing 84
Figure 3.17: MIPS required for the Receiving side using Programmed I/O 85
Figure 3.18: DMA approach for data movement inside the Network Interface 87
Figure 3.19: Overlapped processing at the receiving side 89
Figure 4.1: Sending side Model .. 93
Figure 4.2: Four pointers are used with the new approach for segmenting packets 96
Figure 4.3: Processing flow of TCP and UDP of LSO 97
Figure 4.4: Procedure of sending a UDP user data application 98
Figure 4.5: Procedure of sending a TCP user data application 99
Figure 4.6: Sending block diagram ... 100
Figure 4.7: SPIM simulator block diagram ... 101
Figure 4.8: Communication between the host and the NI 102
Figure 4.9: Processing flow ... 103
Figure 4.10: Total percentage of data movements of LSO processing 105
Figure 4.11: RISC clock rate for packet header processing 107
Figure 4.12: Amount of MIPS required for sending side using Programmed I/O 108
Figure 4.13: Pipeline processing at the sending side 110
Figure 5.1: Network interface block diagram .. 114
Figure 5.2: DMA structure .. 118
Figure 5.3: DMA cycles to transfer data from the source to the destination 118
Figure 5.4: DMA channel .. 119
Figure 5.5: CAM structure when the Linked-list .. 121
Figure 5.6: CAM based implementation of the look-up-table ... 123
Figure 5.7: CAM-based search engine block diagram .. 124
Figure 5.8: Cycles required during read operations .. 125
Figure 5.9: The two FIFOs are used to send data from the receiver RISC processor 129
Figure 5.10: Sends the TCP active connections to the receiving side through FIFO 3 130
Figure 5.11: The FIFO carries the information needed for segmenting a message 130
Figure 5.12: Circulation Buffer architecture .. 132
Figure 5.13a: Tracking the size of the RB .. 133
Figure 5.13b: Signal sent when 200 pages of the RB are occupied 133
Figure 5.14: Receiving Buffer Interface architecture ... 135
Figure 5.15: Sending buffer interface architecture ... 136
Figure 6.1a: Normal Structure of RISC instruction pipeline .. 139
Figure 6.1b: Structure of RISC instruction pipeline ... 139
Figure 6.2: Block diagram of the Fetch, Decode, Execute and Write/Back 141
Figure 6.3a: Arithmetic/Logic instruction formation ... 143
Figure 6.3b: Arithmetic/Logic immediate instruction formation 143
Figure 6.4: Arithmetic instructions ... 144
Figure 6.5: Branch instruction format .. 145
Figure 6.6: Branch instruction example ... 145
Figure 6.7: Load/Store instruction format .. 146
Figure 6.8: Load and store instructions with memory address ... 147
Figure 6.9: LCAM instruction format ... 147
Figure 6.10: Load a memory address from CAM ... 148
Figure 6.11a: Before scheduling the branch-delay slot .. 149
Figure 6.12: Before scheduling procedure ... 151
Figure 6.13: Delay slot technique for Data hazard ... 151
Figure 6.14: Forward mechanism used in the simulator ... 153
Figure 6.15: Latching the output of the Arithmetic Logic Unit .. 153
Figure 6.16: RISC register file ... 154
Figure 6.17: The topology of the test environment ... 156
Figure 6.18: Tested model for sending and receiving packets .. 157
Figure 6.19: Transferring packets from the Receiving Buffer to the Host Memory 160
Figure 6.20: Timing diagram captured from the simulation for burst transfer 161
Figure 7.1: Tested model for sending and receiving packets at the PPUnit 170
Figure 7.2: Large Receive Offload Processing cycles characteristics 172
Figure 7.3: Timing diagram for TCP BOM packet Instructions ... 177
Figure 7.4: Total number of instructions for TCP BOM packet without idle cycles 178
Figure 7.5: Total number of instructions for TCP COM packet without idle cycles 179
Figure 7.6: Total number of instructions for TCP EOM packet without idle cycles 180
Figure 7.7: Total number of instructions for TCP SSM packet without idle cycles 181
Figure 7.8: Total number of instructions for the TCP out-of-order packet when the sub linked-list is equal to “0” in the CAM ... 182
Figure 7.9: Total instructions for TCP out-of-order packet when the sub linked-list is not equal to “0” in the CAM .. 183
Figure 7.10: Total number of instructions to process the UDP BOM packet 184
Figure 7.11: Total number of instructions to process the UDP COM packet 185
Figure 7.12: Total number of instructions to process the UDP EOM packet 186
Figure 7.13: Total number of instructions to process the UDP SSM packet 187
Figure 7.14: Total instructions for the UDP out-of-order packet when the sub linked-list is not equal to “0” in the CAM ... 188
Figure 7.15: Total number of instructions to process the TCP BOM packet 191
Figure 7.16: Total number of instructions to process the TCP COM packet 192
Figure 7.17: Total number of instructions to process the TCP EOM packet 193
Figure 7.18: Total number of instructions to process the TCP SSM packet 194
Figure 7.19: Total number of instructions for the UDP BOM packets 195
Figure 7.20: Total number of instructions for the UDP COM packets 196
Figure 7.21: Total number of instructions for the UDP EOM packets 197
Figure 7.22: Total number of instructions for the UDP SSM packets 198
Figure 8.1: Total RISC idle cycles when the DMA clock is double RISC clock rate .. 206
Figure 8.2: Desired DMA clock rate for LRO and LSO 207
Figure 8.3: RISC clock rate for LSO and LRO for UDP/IP when the DMA is 3759 Mhz for receiving-side and 2115MHz for sending-side 211
Figure A.1: Network topology .. 231
Figure A.2: A snapshot of the Hexadecimal file from WirShark 235
Figure B.1: VHDL based Packet Processing Unit architecture 237
Figure B.2: Structure of RISC instruction VHDL based pipeline 238
Figure B.3: DMA schematic diagram .. 239
Figure B.4: RISC register file schematic diagram 240
Figure B.5: CAM schematic diagram .. 241
Figure B.6: Receiver Buffer Interface (RBI) schematic diagram 242
Figure B.7: Minimize Data Hazard by latching the output of the ALU by forwarding hardware (U12) to be read within next instruction (forward mechanism) 243
Figure B.8: VHDL block diagram for DMA entity 244
Figure B.9: VHDL block diagram for Register entity 245
Figure B.10: VHDL block diagram for PipeLine entity 246
Figure B.11: VHDL block diagram for CAM entity 247
List of Tables

Table 2.1: The frame rate per second applied to different line speed rates 22
Table 2.2: Minimum and Maximum-sized Ethernet frames .. 23
Table 2.3: Some of Network Processor cores used as network processor 43
Table 3.1: A comparison between the virtual LRO processing and offloaded LRO 58
Table 3.2: Number of cycles needed to complete out-of-order TCP or UDP packet 80
Table 3.3: Instruction types that are used with LRO processing 82
Table 4.1: Number of cycles within the SPIM simulator ... 104
Table 4.2: Instruction types used with LRO processing .. 106
Table 5.1: Input and output signals of the CAM .. 125
Table 6.1: RISC Instructions ... 142
Table 6.2: Number of occurrence for Conditional Branch instructions 150
Table 6.3: Number of occurrence of the Read after Write (R/W) hazard for UDP 152
Table 6.4: Number of occurrence of the Read after Write (R/W) hazard for TCP 152
Table 6.5: Number of Register files size for LRO and LSO ... 155
Table 6.6: Shows the components needed for the LSO and the LRO functions 155
Table 6.7: The Interrupt Moderation sizes and absolute time 165
Table 7.1: The number of RISC instructions required to process the LRO when the DMA is double RISC’s clock ... 200
Table 7.2: RISC cycles while performing the Large Send Offload, when the DMA clock rate is double the RISC’s clock rate .. 202
Table 8.1: Total number of RISC instructions to complete the processing of the LRO for TCP and UDP when the DMA clock is 3759 MHz 208
Table 8.2: Total number of RISC instructions to complete the processing of the LSO for TCP and UDP when the DMA clock is 2115 MHz 209
Table 8.3: Packet processing at the receiving side when the RISC clock is 752 MHz and the DMA is 3759 MHz ... 213
Table 8.4: LSO packet processing time when the RISC clock is 752 MHz and the DMA is 3759 ... 214
Table 8.5: LRO packet processing time when the RISC clock is 1449 MHz and the DMA is 3759 ... 215
Table 8.6: LSO packet processing time when the RISC clock is 1449 MHz and the DMA is 3759 ... 216
Table 8.7: The RISC and DMA clock rate supporting LRO and LSO for TCP and UDP at 100 Gbps ... 217
Acknowledgements

All praises are due to Almighty God “Allah”, Who provided me with the strength and willingness to undertake this work and the opportunity to contribute a drop in the sea of knowledge.

I am most grateful to my supervisors, Mike Dixon and Terry Koziniec. Their open doors and persistent encouragement was invaluable for the completion of this research. Also appreciated the time that Patrick, Lynette spent with me.

Finally, these acknowledgements would not complete without appreciating the unwavering support of my family including my father, my wife and children, and the memory of my mother.
List of Abbreviation

ACK ACK - Acknowledges received data
BOM Beginning of Message
CAM Content Addressable Memory
COM Continuation of Messages
DMAC Direct Memory Access Controller
EOM End of Message
FIN FIN - (Final) Cleanly terminates a connection
HI Host Interface
HNIC Host-NI Level of Communication Buffer
LI Line Interface
LRO Large Receive Offload
LSO Large Send Offload
MAC Media Access Control
RB Receiving Buffer
RBI Receiving Buffer Interface
REP Receiving Embedded Processor
RISC Reduce Instruct Set Computer
SB Sending Buffer
SBI Receiving Buffer interface
SEP Sending Embedded Processor
SN Sequence Number
SSM Single Segment Message
SYN SYN - (Synchronize) Initiates a connection
VHDL Very High-Speed Description Language