KNOWLEDGE PRODUCTION AND TRANSFER IN
PHYSICAL AND LIFE SCIENCES

Daniela Nicolau

M.Eng, (Chemical Engineering), MA (Science and Technology Policy)

This thesis is presented for the degree of Doctor of Philosophy

Institute for Sustainability and Technology Policy
Murdoch University
Perth

2002
DECLARATION

I declare that this thesis is my own account of my own research and contains, as its main content, work which has not previously been submitted for a degree at any tertiary educational institution

Daniela Nicolau
Questions about knowledge flows between different fields of science are important from a policy perspective.

This thesis focuses on knowledge transfer between physical sciences and life sciences. Science and technology are increasingly intertwined in a complex continuum. This complexity of the science and technology today asks for a concerted, articulated and comprehensive understanding of the process of science and technology.

The approach that this research has taken is to analyse the process of science and technology. The thesis asks: What is the trade of science and technology? In order to answer this question we developed an anatomy of knowledge and we analysed the internal developments in science via the analysis of the role of the researchers as carriers and producers of knowledge.

Secondly the thesis asks: What are the mechanisms and directions on which scientific knowledge migrates? This research postulates that the analysis of the process of science and technology translates to the analysis of the production and transfer of scientific and technological knowledge.

What is obvious and essential for science and technology is the difference between the specific mechanisms of knowledge production. This thesis suggests that the modern mode of knowledge production is characterized by an increasing density of communication on three levels: between science and technology – on one hand – and society on the other--; between scientific practitioners; and with the entities of the physical
and social world. Central to our research is the concept of ‘mode of knowledge production’ with mode 1 and mode 2 being defined by Gibbons.

The four case studies employed emphasise on how collaboration across disciplines is highly important for the production of new knowledge. The main characteristic of newly emerging fields in an increasing synergy between disciplines, which leads to several types of communication between them.

With the increasing of the interdisciplinary intensity the border between the production of knowledge and the transfer of knowledge begins to be blurred. The transfer of knowledge occurs today at a more conceptual level. It follows that the production of knowledge has a large component of knowledge transfer. To study it, this thesis proposes a quasi-quantitative model. In this unified framework for the knowledge transfer mechanisms, transfer is seen as a process with a number of stages and forms. We tested our framework on four case studies.

The third part of the thesis proposes a taxonomy of interdisciplinarity and deals with the social engineering of knowledge transfer that is the design of adequate guidelines for policies aiming at maximization of knowledge transfer. In this way the thesis aims to contribute to the understanding of processes of development of new emerging scientific fields.
ACKNOWLEDGEMENTS

First, I would like to thank my supervisor Dr. John Phillimore for his intellectual inputs and encouragement during all these years. He is also a great friend and a source of inspiration. I am also grateful to Murdoch University which provided financial support for this research.

I am also indebted to Professor Peter Sheehan and his team in the Centre for Strategic Economic Studies in Victoria University for providing a stimulating and friendly environment during the last months of this research.

My parents on the other side of the world were a continuous source of love and support and I am grateful for that.

Finally I wish to thank my husband, Dan, whose help was crucial in finishing this PhD. He has been a brilliant editor and a great conversation partner.

This thesis is dedicated to my children, Alice and Dan Jr.
TABLE OF CONTENTS

Acknowledgments .............................................................................................................. i

INTRODUCTION .................................................................................................................. 1

PART I .................................................................................................................................. 15

1. Introduction ....................................................................................................................... 15
2. What is knowledge? ............................................................................................................ 16
   2.1. Categories of knowledge ........................................................................................ 20
   2.2. Common knowledge .............................................................................................. 23
   2.3. Scientific knowledge .............................................................................................. 26
   2.4 Differences between scientific and common sense knowledge ............................. 33
       2.5. Technological knowledge .................................................................................... 34
       2.6 The nature of Technological Knowledge ............................................................ 36
       2.7. The anatomy of Technological Knowledge ....................................................... 38
       2.8. The physiology of Technological Knowledge ................................................... 40
3. Knowledge production and transfer ............................................................................. 43
   3.1. The economists’ perspective on Knowledge Transfer ............................................. 45
       3.1.1. Inherent limitations of economics regarding knowledge transfer ................. 45
       3.1.2 General economic theory regarding knowledge transfer ............................... 48
       3.1.3 Productivity growth through the movement of knowledge .............................. 49
       3.1.4 Technology –push and market-pull debate ....................................................... 51
   3.2. Knowledge management perspective on knowledge transfer .............................. 59
   3.3. Sociology of Science perspective on Knowledge Transfer ................................. 62
       3.3.1. General sociology studies regarding knowledge transfer .............................. 64
       3.3.2. Network analysis in the study of Science and Technology ............................ 66
3.4. The perspective of the history of science on knowledge transfer .............................. 74
4. Mechanisms of knowledge transfer ............................................................................. 78
   4.1. Diffusion of technical knowledge .......................................................................... 78
   4.2. Tacit and explicit knowledge as modes of knowledge transfer ............................ 81
4.3. Knowledge transfer between Science and Technology .......................................... 85
5. A unified framework for the knowledge transfer mechanisms .................................. 87
   5.1. Fundamental assumptions .................................................................................... 90
   5.2. Fundamental transfer mechanisms ...................................................................... 91
   5.3. Interphasic transfer .............................................................................................. 97
   5.4. Conclusion ........................................................................................................... 98

PART II CASE STUDIES ON SCIENTIFIC AND TECHNOLOGICAL
KNOWLEDGE TRANSFER

1. Applied knowledge transfer and production .............................................................. 99
2. Lessons from history of science and technology ...................................................... 102
   2.1. Emerging and converging fields .......................................................................... 103
2.2. Knowledge Transfer between Sciences ......................................................... 104
  2.2.1. Characteristics of Knowledge in Physical Sciences ............................... 106
  2.2.2. Role of the individuals in the development of knowledge in Physical Sciences
  ......................................................................................................................... 109
  2.2.3. Evolution of knowledge in Life Sciences ................................................. 112
  2.2.4. Propensity of Life Sciences for acquisition of “external” knowledge ......... 113
  2.2.5. Some important messengers from physical sciences to life sciences .......... 115
  2.2.6. Messengers to physical sciences .............................................................. 126
2.3. The bridge between Life Sciences and Physical Sciences ............................... 128
3. Case study one: Microelectronics ..................................................................... 131
  3.1. Choice of the Case Study ............................................................................ 131
  3.2. Flow and accumulation of knowledge leading to microelectronics .............. 133
    3.2.1. “Accidental” knowledge transfer and production: crystallography ......... 133
    3.2.2. Streams of knowledge in Solid State Physics .......................................... 135
    3.2.3. Technological competition and scientific synergism in early electronics ... 137
    3.2.4 Streams of knowledge in Silicon Age ...................................................... 140
  3.3. Role of the working environment in the invention of the transistor .............. 141
  3.4. The transistor as multiple discovery ............................................................. 143
  3.5. The relationship between Science and Technology in microelectronics .......... 144
  3.6. Interaction between economics and technology .......................................... 146
  3.7. A Case Study within the Case Study: Microlithography ............................... 148
    3.7.1. Short description of microlithography and semiconductor fabrication ..... 148
    3.7.2. Relationship between microlithography and semiconductor fabrication .... 152
    3.7.3. Knowledge transfer and production in microlithography ....................... 154
    3.7.4. The impact of chemical engineering ..................................................... 157
    3.7.5. Future developments in microlithography ............................................. 158
  3.8. Market-pull and technology or science-push in microelectronics ................... 159
  3.9. Knowledge transfer and knowledge production in microelectronics ............ 163
    3.9.1. Knowledge production in microelectronics ........................................... 163
    3.9.2. Knowledge transfer in microelectronics ............................................... 168
4. Case study two: Nanotechnology ..................................................................... 173
  4.1. Choice of the Case Study ........................................................................... 173
  4.2. A short history of nanotechnology ............................................................. 174
  4.3. What is nanotechnology ............................................................................ 176
  4.4. Branches of nanotechnology ...................................................................... 180
    4.4.1. Solid state nanotechnology ................................................................. 181
    4.4.2. Molecular manufacturing .................................................................... 183
    4.4.3. Computational nanotechnology ............................................................ 185
    4.4.4. Bio-nanotechnology ............................................................................ 187
  4.5. Distinctive features of nanotechnology ..................................................... 190
    4.5.1. The fairy tale effect .............................................................................. 190
    4.5.2. The El Dorado effect ............................................................................ 191
    4.5.3. Significant technological features of nanotechnology ......................... 193
  4.6. Knowledge production and knowledge transfer in nanotechnology ............. 196
    4.6.1. Knowledge production in nanotechnology ........................................... 196
    4.6.2. Knowledge transfer in nanotechnology ............................................... 199
PART 3. HARNESING INTERDISCIPLINARITY ........................................ 249

1. Introduction: the many faces of interdisciplinarity ................................ 249
2. What is inter-disciplinarity ............................................................ 250
3. The Interdisciplinarity landscape ...................................................... 257
3.1. The role of Interdisciplinarity agents .......................................... 259
3.2. The roles of Interdisciplinarity .................................................... 262
3.3. The Importance of Interdisciplinarity ........................................... 263
3.4. Addressing the barriers to Interdisciplinarity ................................. 265
3.5. Interdisciplinarity and Education ................................................. 268
4. Practical approaches towards Interdisciplinarity .................................. 272
4.1. Necessity for policies targeting Interdisciplinarity ......................... 272
4.2. Elements of policy making ......................................................... 275
4.3. Governmental policies regarding Interdisciplinarity — American examples .... 276
4.3.1. Broad governmental policies regarding Interdisciplinarity — Bioengineering 279
4.3.2. Mission-oriented policies regarding Interdisciplinarity .................. 286
4.3.3. Partial conclusions regarding Interdisciplinary-oriented policies .......... 294
4.4. University-led initiatives in Interdisciplinarity ................................. 297
4.4.1. Some success stories .......................................................... 298
4.4.2. Some lessons .......................................................................... 303
4.5. The Funding Process for interdisciplinary research in Australia .......... 306

CONCLUSIONS .................................................................................. 311

BIBLIOGRAPHY ........................................................................... 335