Inquiry-oriented learning in science: Transforming practice through forging new partnerships and perspectives

Final Report 2013

Professor Les Kirkup
ALTC National Teaching Fellow
University of Technology, Sydney

Acknowledgements

I gratefully acknowledge the people, institutions, networks and national bodies whose support was instrumental in making this fellowship a success.

I thank my university, the University of Technology, Sydney, who granted me time away from my normal duties so that I could carry out my fellowship program.

I thank the Office for Learning and Teaching and the Australian Learning and Teaching Council for their support. As well as being the funding bodies that made the program of activities possible, they also supported me professionally for the fellowship period and beyond. I am extremely grateful for their multidimensional and enthusiastic support.

I am deeply indebted to Ms Andrea Mears for working with me as Fellowship Program Officer. Her contributions to this fellowship were enormous. Andrea is the primary author of chapter 3.

My excellent Fellowship Reference Group provided invaluable advice and broad perspectives throughout the fellowship period. My thanks go to:

Dr Cathy Foley (Chief of Division Materials Science and Engineering at CSIRO)
Professor Mick Healey (HE Consultant & Researcher and Emeritus Professor at the University of Gloucestershire)
Professor Sue Jones (Professor of Zoology, University of Tasmania and ALTC Discipline Scholar)
Professor John Rice (Executive Director, Australian Council of Deans of Science)
Associate Professor Manjula Sharma (Head of the Sydney University Physics Education Research Group and Director of the Institute for Innovation in Science and Mathematics Education)
Professor Roy Tasker (Professor of Chemical Education, University of Western Sydney)

I thank my evaluator, Professor Helen MacGillivray of Queensland University of Technology for her evaluation and the critical perspectives she brought to the fellowship program. Helen’s evaluation may be found at http://www.olt.gov.au/resource-kirkup-les-uts-altc-national-teaching-fellowship-final-report-2013

I thank the following people for their encouragement, participation and support of the fellowship:

Ako Aoteroa, New Zealand: Dr Peter Coolbear, Dr Kirsty Weir
Coventry University, UK: Professor Paul Ivey, Professor Duncan Lawson, Professor John Davies, Dr Sarah Medhurst-Wilson, Mr Trevor Tolman
CSIRO: Professor Jim Peacock, Dr Scott Furman, Dr Scott Watkins
Charles Sturt University: Dr Andrea Crampton, Professor Nick Klomp
Curtin University: Associate Professor Mario Zadnik, Associate Professor Mauro Morcerino
Flinders University: Associate Professor Jamie Quinton, Ms Karen Burke da Silva, Professor Joe Shapter
Griffith University: Professor Stephen Billet
Higher Education Academy, UK: Dr Janet de Wilde
Hull University, UK: Professor Tina Overton
Indiana University-Purdue University Indianapolis, US: Professor Pratibha Varma-Nelson
James Madison University, US: Associate Professor Kyle Seifert, Associate Professor Carol Hurney, Associate Professor Kim Slekar
La Trobe University: Associate Professor Elizabeth Johnson
Macquarie University: Professor Angela Brew, Dr Ian Jamie
Monash University: Dr Gerry Rayner, Dr Chris Thompson, Dr Theo Hughes, Associate Professor Angela Carbone
Murdoch University: Professor Parisa Arabzadeh Bahri
Purdue University, US: Professor Gabriela Weaver
Queensland University of Technology: Mr Darren Pearce, Dr Madeleine Schultz
University of Adelaide: Professor Pascale Quester, Associate Professor Simon Pyke, Associate Professor Mark Jaksa
University of Capetown, South Africa: Associate Professor Andy Buffler
University of New England: Professor Jennie Shaw, Associate Professor Jennifer Clark, Professor Ieva Stupans, Professor Geoff Hinch
The Australia National University: Associate Professor Anna Wilson (who has recently moved to Oxford University), Ms Ruth Mills
The University of Queensland: Ms Kelly Matthews, Dr Gwen Lawrie, Professor Phil Long, Professor Peter Adams, Dr Louise Kuchel
The University of Sydney: Dr Charlotte Taylor, Professor Phil Poronnik
University of Technology, Sydney: Professor Shirley Alexander, Professor Attila Brungs, Professor Bruce Milthorpe, Associate Professor Jo McKenzie, Ms Katrina Waite
Ms Nicole Eng, Mrs Linda Foley, Ms Shima Baradaran, Ms Stephanie Beames
University of the West of Scotland, UK: Professor Moira Lewitt
University of Western Sydney: Associate Professor Pauline Ross, Dr Betty Gill, Professor Stuart Campbell

I thank the following AFFA recipients for their commitment to the fellowship: Dr Chris Creagh, Dr David Parlevliet (Murdoch University), Dr Tim McIntyre, Dr Margaret Wegener, Dr Kay Colthorpe, Dr Kirsten Zimbardi, (The University of Queensland), Associate Professor Julie Roberts, Dr Nicola King (University of New England), Dr Natalie Williamson (The University of Adelaide), Dr Maria Parappilly, Dr Sue Pyke, (Flinders University), Dr Danielle Ryan, Dr Dan Bedgood (Charles Sturt University), Dr Regina Magierowsk, Dr Ashley Edwards (University of Tasmania)

For website development and support, I thank Mark Parry of Parryville, Emily Walker of Robotnoodle
Acronyms/abbreviations

ACDS Australian Council of the Deans of Science
ACSME Australian Conference on Science and Mathematics Education
AFFA ALTC Fellowship Funded Activity
ALTC Australian Learning and Teaching Council Ltd
ANU Australian National University
ARK Adaptable Resource Kit
ASELL Advancing Science by Enhancing Learning in the Laboratory
CSIRO Commonwealth Scientific and Industrial Research Organisation
CSU Charles Sturt University
CVF Competing Values Framework
CUUJI CSIRO-University Undergraduate Inquiry Initiative
EOI Expression of interest
HERSDA Higher Education Research and Development Society of Australasia
HSC Higher School Certificate
IOL Inquiry-Oriented Learning
IBL Inquiry-Based Learning
IR Inspiring Research
LTAS Learning and Teaching Academic Standards
NSW New South Wales
OLT Australian Government Office for Learning and Teaching
PEN Physics Education Network
POGIL Process-Oriented Guided-Inquiry Learning
QLD Queensland
QUT Queensland University of Technology
SA South Australia
SAM-Net Science and Mathematics Network
SCU Southern Cross University
STEM Science, Technology, Engineering and Mathematics
TAS Tasmania
TEQSA Tertiary Education Quality and Standards Agency
TLO Threshold Learning Outcome
UK United Kingdom
UNE University of New England
UNSW University of New South Wales
UQ University of Queensland
US United States
USyd University of Sydney
UTas University of Tasmania
UTS University of Technology, Sydney
WA Western Australia
WIL Work integrated learning
Inquiry-oriented Learning in Physics at Murdoch

Chris Creagh and David Parlevliet

School of Engineering and Information Technology, Physics and Energy,

Murdoch University

At Murdoch University there are two first year physics mechanics units, one is algebra based, co-ordinated by David Parlevliet and the other is calculus based, co-ordinated by Chris Creagh. Both units have between 70 and 120 students in them, most of whom are not physics students. The continual challenge is to engage the non-physics students at an appropriate level while maintaining a high quality unit that extends the physics major students. One way of doing this is to make the units as student focused as possible. This allows students to achieve at a level they are comfortable with.

There are two traditional mathematical based assignments in each unit. The third assignment is based on students identifying physics in the real world, performing a self-developed proof of concept experiment and producing a scientific paper on the whole activity. There are multiple choice tests on the content in each unit and traditional labs that relate to the content. There are also tutorials which were originally intended to go over assignments but which have been more recently utilised for testing different ways of engaging students in the learning process.

Inquiry-oriented Learning (IOL) activities are the latest and probably the most successful of the initiatives we have been trailing in order to engage students in their own learning. Anecdotally the retention rate in the tutorials is better, there is good working noise during the activities, the students seem brighter and more likely to try an activity and the tutors seem to be enjoying themselves as well. So now we have a mix of activities in the tutorials consisting of the best of each of the past activities.

Some of the IOL tutorial activities were originally developed as labs for external students. In previous years external students were sent a kit of equipment to enable them to do their labs in their own home. This became unwieldy as the numbers of external students increased and the ability of the postal system to get packages to the students decreased. This necessitated creating experiments that students could do with equipment they could find around them i.e. they were the experimental designers. The latest experiment they have been asked to design is “Given that you have a refrigerator and an electric kettle find the specific heat of water”.

Other IOL tutorial activities were developed almost on the spot by just reworking the introduction to the activity. “Demonstrate the sharing of voltage across two resisters in series where one resister has a variable resistance” becomes “Many circuit components are characterised by obtaining their IV curves. Design and build a circuit that can do this for a resistor and then a LED. Compare and contrast the two curves.”

We have also developed IOL activities for projectile motion and heat transfer in materials. These have been implemented in small group tutorials with some success. Although no formal survey on the experience has been conducted as yet, informal feedback from the tutors was very positive. Students reacted favourably and were more engaged during and
after the IOL activity than in other traditional tutorial activities.

IOL can be applied outside of the tutorial and classroom for larger scale schools-on-campus activities. We have developed a workshop based on the concept of designing a solar powered mobile phone recharging station. Here small groups are given some materials including solar panels, multimeters and mirrors and asked to design a charging station from a design brief. Supporting materials are provided to help make sure people have the information they need to tackle the activity with confidence. The activity can be scaled to different groups with different backgrounds.

Once we had the basic concept of using IOL activities they started to pop up everywhere we felt students needed to engage more, lectures, on-line discussions and tutorials sometimes with only an hour’s notice. Our thought process became “The content is in the previously recorded lectures and in the text book so how do I provide the environment that gets students working with this material rather than passively sitting there waiting to be entertained?”

Even relatively simply IOL activities could be used in traditional lectures to improve audience engagement. Within General Physics towards the second half of second semester active learning and small inquiry-oriented activities (5min in length) were incorporated into the traditional lecture format. No formal survey on this was conducted, but anecdotally the audience came alive and the atmosphere in the lecture lifted. Students were more attentive and willing to engage in discussion and ask questions after these activities.

I have a sneaky feeling we are heading towards flipping the classroom. David has already made some short videos of experiments. Both of us have made them of lecture-demonstrations. I recorded my lectures (PowerPoint and audio) sitting in-front of my computer years ago which has given me room to make my real-time lectures more interactive. I think we are just waiting for a way to record mini lectures that looks semi-professional. We were supposed to get recording rooms this semester but they have been lost in the university reshuffle. It looks like we are going to have to work this one out for ourselves. Next year we start to move to a new and more flexible learning management system and a new lecture capture system which allows desktop editing. It cannot come soon enough. We can then seriously start to work on mixed modal learning and teaching in which IOL can play its significant part.

Where to next? More activities will be incorporated as we move towards a flipped classroom. The engagement and enthusiastic discussion that comes out of IOL activities gives students a good incentive to turn up to lectures and tutorials. Chris is applying for a National Teaching Fellowship that will combine the concept of IOL and the multiple representations an expert uses to communicate their understanding in a “Work It Out” sort of way. In other words we have not finished yet; watch this space!