Spatial Interpolation Using Neural Fuzzy Technique

Kok Wai Wong\textsuperscript{1}, Tamás D. Gedeon\textsuperscript{1}, Chun Che Fung\textsuperscript{2}, Patrick M. Wong\textsuperscript{3}

\textsuperscript{1}School of Information Technology
Murdoch University
Western Australia
Email: \{kwong|tgedeon\}@murdoch.edu.au

\textsuperscript{2}School of Electrical and Computer Engineering
Curtin University
Western Australia
Email: tfungcc@cc.curtin.edu.au

\textsuperscript{3}School of Petroleum Engineering
University of New South Wales
Sydney, Australia
Email: pm.wong@unsw.edu.au

Abstract: Spatial interpolation is an important feature of a Geographic Information System, which is the procedure used to estimate values at unknown locations within the area covered by existing observations. This paper constructs fuzzy rule bases with the aid of a Self-organising Map (SOM) and Backpropagation Neural Networks (BPNNs). These fuzzy rule bases are then used to perform spatial interpolation. A case based on the 467 rainfall data in Switzerland is used to test the neural fuzzy technique. The SOM is first used to classify the data. After classification, BPNNs are then used to learn the generalization characteristics from the data within each cluster. Fuzzy rules for each cluster are then extracted. The fuzzy rules base are then used for rainfall prediction.

1. INTRODUCTION

In a Geographic Information System (GIS), spatial interpolation is an essential feature [1]. Normally, points with known values are used to estimate values at other points. All spatial interpolation techniques can be grouped into global and local methods [1]. In a global method, all the information available is used to estimate an unknown value, while local methods only use a sample of the information for estimation. However, in [2], the authors have discussed the functionality of local method and found that they provide better results as compared to global method. Therefore, in this paper, the analysis will be based on local methods.

In a global method, trend surface analysis is normally performed. The equation that can be used to estimate values at other points using a third-order trend surface is:

\begin{align*}
Z &= b_0 + b_1 X + b_2 Y + b_3 X^2 + b_4 XY + b_5 Y^2 + b_6 X^3 + b_7 X^2 Y + b_8 XY^2 + b_9 Y^3
\end{align*}

(1)

where \(b\) coefficients are estimated from the available information points.

Equation (1) can also be written as:

\begin{align*}
Z &= f(X,Y)
\end{align*}

(2)

As for a local method, the spatial interpolation of the value \(Z_i\) in the \(i\)-th surface is:

\begin{align*}
Z_i &= f(X_i,Y_i)
\end{align*}

(3)

Artificial Neural Networks (ANNs) have emerged as an option for spatial data analysis [2,3]. The observation sample that is used to derive the predictive model is known as training data in an ANN development. The independent variables, or the predictor variables, are known as the input variables and the dependent variables, or the responses, are known as the output variables. ANN analysis is quite similar to statistical approaches in that both have learning algorithm to help them realise the data analysis model. However, an ANN has the advantages of being robust with the ability to handle large amounts of data. Novice users can also easily understand the practical use of an ANN. An ANN also has the ability to handle very complex functions [4]. The main limitation of using ANN is that the data analysis model built may not be able to be interpreted.

Fuzzy logic is also becoming popular in dealing with data analysis problems that are normally handled by statistical approaches or ANNs [5]. However, conventional fuzzy system systems do not have any learning algorithm to build the analysis model. Rather, they make use of human knowledge, past experience or detailed analysis of the available data by other means in order to build the fuzzy rules for the data analysis. The advantages of using fuzzy system are the ability to interpret the analysis model built and to handle...
vagueness and uncertainty in the data. The data analysis model can also be changed easily by modifying the fuzzy rule base. The major limitation is the difficulty in building the fuzzy rules due to lack of learning capability.

ANNs and fuzzy logic are complementary technologies in designing an intelligent data analysis approach [6]. That suggests combining the two [7]. For example, fuzzy logic could be used to enhance the performance of the neural network. In another approach, a neural network and fuzzy system could be integrated into a single architecture. However, a human analyst may still have difficulties understanding the analysis model computed. Analysis of the prediction model is also very time consuming. Therefore, it is one of the prime objectives of this paper to find a better way of combining the advantages of the ANN and fuzzy logic such that it can be used in spatial interpolation problem.

2. NEURAL FUZZY SPATIAL INTERPOLATION

ANN and fuzzy logic are complementary technologies for the designing of spatial interpolation tools. However, there are many ways that the combination can be implemented [7]. Table 1 shows the different ways that ANN and fuzzy system can work together. It is important to observe the characteristics under each class so as to determine the appropriate technique that the analyst will be comfortable with.

Table 1: Different ways to combine ANN and fuzzy logic

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuzzy Networks</td>
<td>Use fuzzy methods to enhance the learning capabilities or performance of ANN</td>
</tr>
<tr>
<td>Concurrent Neuro-Fuzzy</td>
<td>ANN and Fuzzy systems work together on the same task without any influence on each other</td>
</tr>
<tr>
<td>Cooperative Neuro-Fuzzy</td>
<td>Use ANN to extract rules and then it is not used any more</td>
</tr>
<tr>
<td>Hybrid Neuro-Fuzzy</td>
<td>ANN and Fuzzy are combined into one homogeneous architecture</td>
</tr>
</tbody>
</table>

The Cooperative Neuro-Fuzzy technique is selected as the more appropriate technique to be used in this application. The reasons are as follow. As the BPNN can generalise from the data through some learning algorithm, the spatial interpolation function could be realised automatically. This will also enable the fuzzy rules to cover the whole universal of discourse, so that they can be used to approximate data that are not present in the training set. As fuzzy rules are closer to human reasoning, the analyst could understand how the interpolation model performs prediction. If necessary, the analyst could also make use of his/her knowledge to modify the interpolation model.

A. Clustering using self-organizing map

For local spatial interpolation, the first step is to classify the available data into different classes so that the data are split into homogeneous sub-populations. Self-organizing Map (SOM) [8] is used to divide the data into sub population and hopefully reduce the complexity of the whole data space to something more homogeneous. The objective in this step is to make use of an unsupervised learning algorithm to sub-divide the whole population. The SOM is selected for this purpose mainly because it is a fast, easy and reliable unsupervised clustering technique.

Let the input data space \( \mathcal{R} \) be mapped by the SOM onto a two-dimensional array with \( i \) nodes. Associated with each \( i \) node is a parametric reference vector \( m_i = [m_{i1}, m_{i2}, \ldots, m_{in}]^T \in \mathcal{R} \), where \( m_{ij} \) is the connection weights between node \( i \) and input \( j \). Therefore, the input data space \( \mathcal{R} \) consisting of input vector \( X = [x_1, x_2, \ldots, x_n]^T \), i.e. \( X \in \mathcal{R} \), can be visualized as being connected to all nodes in parallel via a scalar weights \( m_{ij} \). The aim of the learning is to map all the \( n \) input vectors \( X_n \), onto \( m_i \) by adjusting weights \( m_{ij} \) such that the SOM gives the best match response locations.

SOM can also be said to be a nonlinear projection of the probability density function \( p(X) \) of the high dimensional input vector space onto the two-dimensional display map. Normally, to find the best matching node \( i \), the input vector \( X \) is compared to all reference vector \( m_i \) by searching for the smallest Euclidean distance \( \| X - m_i \| \), signified by \( c \).

During the learning process the node that best matches the input vector \( X \) is allowed to learn. Those nodes that are close to the node up to a certain distance will also be allowed to learn. The learning process is expressed as:

\[
m_i(t + 1) = m_i(t) + h_c(t)[X(t) - m_i(t)] \quad (4)
\]

where \( t \) is discrete time coordinate and \( h_c(t) \) is the neighbourhood function

After the learning process has converged, the map will display the probability density function \( p(X) \) that best describes all the input vectors. At the end
of the learning process, an average quantisation error of the map will be generated to indicate how well the map matches the entire input vectors $X_n$. The average quantisation error is defined as:

$$ E = \int || X - m_c ||^2 p(X) dX $$  \hspace{1cm} (5) $$

After the 2-dimensional map has been trained, the reference vectors that were used in the nodes of the map can be also obtained. In spatial interpolation, the reference vector will be the node center and consists of the input variables $(x, y)$ and the output variable $(z)$. As we like the clusters to be formed to facilitate the concept used in Euclidean interpolation, we propose here to construct the clustering boundaries based on the output reference vector of the nodes. The rule of thumb for deciding on the clustering boundaries is to examine the distance measure between the neighboring reference values. If the distance measure between the present reference node and the neighboring nodes is high, that suggests another cluster.

**B. Trend surface analysis using backpropagation neural networks**

After the set of available training data has been subdivided, BPNNs are trained in each cluster to predict only data within the cluster. Therefore, if the SOM identified $c$ clusters, then $c$ BPNNs need to be trained. When a BPNN [9] is used in spatial analysis, the observations obtained from the neighbouring are used as the training data, thus it is a supervised learning technique. The input neurons of the BPNN in this case correspond to the $x$ and $y$ position coordinates, and the output neuron is assigned to the variable that we want to perform spatial interpolation. The BPNN has a number of layers. The input layer consists of all the input neurons and the output layer just the output neuron. There are also one or more hidden layers. All the neurons in each layer are connected to all the neurons in next layer with the connection between two neurons in different layers represented by a weight factor. After the BPNN has learned and generalised from the training data, it is then used to construct the fuzzy rules bases.

**C. Knowledge representation using fuzzy rules**

As all the BPNNs have generalized from the training data, the next step is to extract the knowledge learned by the BPNNs. In this case, it is the same as the previous section; we will have to extract $c$ fuzzy rule bases. The following algorithm outlines the steps in extracting the fuzzy linguistic rules for one BPNN.

![Image](image_url)
3. CASE STUDY AND DISCUSSION

In this case study, the data from [2] is used. The data is collected on 8th May 1996 in Switzerland. 100 data locations are used as the training data and the other 367 locations data are then used to verify the prediction accuracy of the established spatial interpolation model. The two input variables used in this case is the 2D coordinate position \((x, y)\); and the output used is the rainfall measurements \((z)\). The digital elevation model (DEM) \((v)\) is also available but was not used in the case study as in [2]. The 100 training data points are fed into the SOM for unsupervised clustering. After performing the cluster boundaries determination, the classes are formed.

Before being input into individual BPNNs, the data needs to be normalized between 0 and 1. Linear normalization is used with maximum and minimum values unique to the class. In this case, the SOM identified a total of 8 classes. After the data has been normalized, 8 BPNNs are trained to handle their own sub-populations. After examining the maximum and minimum value of each class, the appropriate number of membership function used is determined to be 7. In this case, the number of fuzzy rules extracted for each BPNN (each class) is 49, i.e. \(7^2\). With the distribution information for each linguistic term, the user can easily understand the set of fuzzy rules and understand how the prediction is performed.

The results of this technique are compared to the results obtained from [2] as tabulated in Table 2 by using mean absolute error (MAE):

\[
MAE = \frac{1}{n} \sum_{i=1}^{n} \left| z_i^* - z_i \right| \tag{8}
\]
and root mean square error \((\text{RMSE})\):
\[
\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (z_i^* - z_i)^2}
\]

Table 2: Comparisons of results

<table>
<thead>
<tr>
<th>Technique</th>
<th>MAE</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neural Technique</td>
<td>53.86</td>
<td>72.95</td>
</tr>
<tr>
<td>Technique used in [2]</td>
<td>55.9</td>
<td>78.6</td>
</tr>
</tbody>
</table>

This neural fuzzy technique has performed better than the technique used in [2] with the advantage of understanding the underlying function of the BPNNs with a set of fuzzy rules. With the sets of fuzzy rules, human analyst can modify and add-on knowledge to enhance the model. As individual fuzzy rule sets are constructed for each individual cluster, analyst can have a better understanding in the feature of that cluster.

4. CONCLUSION

This technique uses SOM to divide the data into sub population and hopefully reduce the complexity of the whole data space to something more homogeneous. After the classification boundaries have been identified, the whole training data set is then sub-divided into the respective classes. BPNNs corresponding to each individual class are then trained using the cross-validation approach. After all the BPNNs have been trained, fuzzy rule bases for each class are then constructed. The case study used has shown that this method can produce better results as compare to the technique used in [2]. Beside, the advantages of using this technique are as follows. First it makes use of the robustness and learning ability of the ANN to sub-divide and generalize from training data. After which, the learned underlying function is then translated into fuzzy rules. With the use of fuzzy rules, the interpretability and the ability of handling vagueness and uncertainty has enhanced the interpolation model.

5. ACKNOWLEDGMENT

This research is supported by the Australian Research Council

REFERENCES