Characterisation of Small Leucine Rich Proteins Gene and Protein Expression in Mesenchymal Stem Cell Differentiation into Osteoblasts, Adipocytes and Chondrocytes

ANTHONY BUZZAI
Bachelor of Science (Biomedical Science)
School of Veterinary and Life Sciences

SUPERVISORS
Dr Joshua Lewis
Endocrinology and Diabetes
Sir Charles Gairdner Hospital

Dr Sarah Etherington
School of Veterinary and Life Sciences
Murdoch University

Professor Richard Prince
Endocrinology and Diabetes
Sir Charles Gairdner Hospital

This thesis is presented for the Honours Degree in Biomedical Science at Murdoch University
NOVEMBER 2013
DECLARATION

I declare this thesis is my own account of my research and contains as its main content, work which has not been previously submitted for a degree at any tertiary education institution.

_______________________________ ___/___/___

Anthony Buzzai Date
MANUSCRIPTS

Currently in submission

Estradiol effects on cellular proliferation and extracellular calcification in adipose tissue-derived stem cells during osteogenesis.

Currently in preparation

Oral presentations

Combined Biological Sciences Meeting 2013. Perth, Australia. The gene expression of Small Leucine Rich Proteins during the osteogenesis of human mesenchymal stem cells.
ABSTRACT

This thesis is directed to understanding the role of Small Leucine Rich Proteins (SLRPs) in the cell biology of mesenchymal tissue in particular bone and cartilage. SLRPs are a family of 17 biologically active macromolecules which form the extracellular matrix in a variety of tissues and may play a role in bone and cartilage biology and diseases, in particular osteoporosis. It was hypothesised that:

1) The gene and protein expression of specific SLRPs will be up-regulated during the development of bone and cartilage.

2) During osteogenesis, the location of these SLRPs shows a pattern of distribution within the extracellular matrix.

3) Osteogenesis related SLRPs are specific to the cell development of that tissue.

To investigate the first hypothesis, a bioinformatics study of a human osteosarcoma cell was initially used to determine the gene expression on all 17 SLRP members. The six highest expressed members Lumican, Epiphycan, Tskushi, Biglycan Decorin, and Osteomodulin (OMD) were selected for further analysis. To investigate the second hypothesis, the gene expression of these six selected members were analysed using real time quantitative reverse transcriptase polymerase chain reaction in both long term (up to 28 days) and short term (up to 7 days) osteogenesis of donor matched human adipose and bone marrow mesenchymal stem cells. These results showed the increase in expression of OMD in osteogenic stimulated media. As a result of these studies OMD was selected for further study, as a potential biomarker of osteoblasts.

The gene expression of OMD was only increased significantly in osteoblast-like cells compared to other mesenchymal stem cell lineages including cartilage and adipose tissue. Protein expression of OMD was further investigated by western blotting. This was followed by confocal microscopy to further understand the expression of this protein. It was found through both methods that the protein expression of OMD was increased during osteogenesis, reflecting the gene expression previously observed.

In conclusion, it was shown that the gene and protein expression of OMD was increased specifically during osteogenesis, and therefore could be used as a marker of osteogenesis of mesenchymal stem cells. Furthermore, its role in osteogenic development should be further studied to understand its role in osteogenesis.
TABLE OF CONTENTS

DECLARATION .. 2
MANUSCRIPTS .. 3
ABSTRACT .. 4
TABLE OF CONTENTS ... 5
ACKNOWLEDGEMENTS .. 8
ABBREVIATIONS ... 9
PART I: LITERATURE REVIEW .. 11
 1.1 Osteoporosis overview .. 11
 1.1.1 Clinical definition of osteoporosis by bone mineral density 11
 1.1.2 Epidemiology of osteoporosis .. 12
 1.1.3 Falls and fractures associated with osteoporosis .. 12
 1.1.4 Burdens of osteoporosis .. 14
 1.2 Bone physiology .. 16
 1.3 Pathogenesis of osteoporosis ... 17
 1.4 The bone matrix .. 18
 1.5 Proteoglycans in the ECM ... 18
 1.6 Small Leucine Rich Protein Family ... 19
 1.6.1 Structure of SLRPs .. 21
 1.7 The Functions of Small Leucine Rich Proteins in Mesenchymal Stem Cell
 Lineages ... 31
 1.7.1 Definitions and characteristics of mesenchymal stem cells 31
 1.7.2 Process by which Mesenchymal Stem Cells mature into Osteoblasts 31
 1.7.3 Process by which Mesenchymal Stem Cells mature in Adipocytes 37
 1.7.4 Process by which Mesenchymal Stem Cells mature into Chondrocytes 39
 1.8 Conclusion .. 42
PART II: MATERIALS AND METHODS ... 43
 2.1 Materials manufacturers .. 43
 2.2 Human adipose and bone marrow derived mesenchymal stem cell primary cell
 culture procedure ... 45
 2.2.1 Isolation of mesenchymal stem cells (performed by Ms Jenny Wang) 45
 2.2.2 Cell resuscitation ... 46
 2.2.3 Cell passage ... 46
 2.2.4 Cell cryopreservation ... 47
 2.2.5 Cell counting assay .. 47
2.2.6 Adipogenic and chondrogenic lineage differentiation assay 47
2.2.7 Osteogenic lineage differentiation assay .. 48
2.3 RNA isolation and qRT-PCR .. 48
2.3.1 RNA isolation ... 48
2.3.2 Quantitative reverse transcriptase real time PCR ... 49
2.3.3 Gel electrophoresis for amplification products ... 50
2.3.4 Statistical analysis of gene expression ... 51
2.4 Protein isolation and western blotting ... 52
2.4.1 Protein isolation ... 52
2.4.2 Western blotting .. 53
2.5 Immunofluorescence staining .. 56
2.5.1 Collagen coating of #1 glass coverslips ... 56
2.5.2 Immunofluorescence staining procedure .. 56

PART III: RESULTS ... 58
3.1 Selection of Small Leucine Rich Proteins ... 58
3.2 Optimisation of selected SLRP genes for qRT-PCR in ADSCs (Figure 3.2 and Figure 3.3) .. 59
3.3 Optimisation of selected SLRP genes for qRT-PCR in BMSCs (Figure 3.4 and Figure 3.5) .. 60
3.4 Patient characteristics ... 61
3.5 Baseline gene expression of SLRPs in unstimulated ADSC and BMSC cultures 62
3.6 The gene expression of SLRPs during osteogenesis of human MSCs 62
3.6.1 Short-term gene expression of SLRPs in ADSCs (Figure 3.8) 63
3.6.2 Long-term gene expression of SLRPs in ADSCs (Figure 3.9) 64
3.6.3 Short-term gene expression of SLRPs in BMSC (Figure 3.10) 65
3.6.4 Long-term gene expression of SLRPs in BMSCs (Figure 3.11) 66
3.7 Comparison of SLRP gene expression between tissue types 67
3.8 Osteomodulin .. 68
3.8.1 OMD gene expression during multi-lineage differentiation of human ADSCs (Figure 3.12) ... 68
3.8.2 Protein expression of OMD during osteogenesis ... 69
3.9 Subcellular location of OMD during osteogenesis .. 71
3.9.1 Distribution of OMD within the ECM during osteogenesis of ADSCs (Figure 3.15) ... 71
3.9.2 Distribution of OMD within the ECM during osteogenesis of BMSCs (Figure 3.16 and 3.17) .. 73
PART IV: DISCUSSION.. 76
4.1 Principal findings .. 76
 4.1.1 Expression of SLRP family members during osteogenesis .. 76
 4.1.2 Comparison of SLRPs gene expression between the osteogenesis of ADSC and BMSC .. 81
 4.1.3 The protein expression and subcellular localisation of OMD during osteogenesis 82
 4.1.4 Osteomodulin as a marker of osteogenesis ... 83
 4.1.5 Advantages and disadvantages of this thesis ... 85
 4.1.6 Future directions and concluding statement .. 85
PART VI: APPENDIX ... 87
PART VII: REFERENCES .. 101
ACKNOWLEDGEMENTS

The image on the front cover of this thesis shows stem cells I had cultured undergoing cell death. This image is not only a reminder of the tough moments throughout my honours year, but a reminder of those who helped me get through them.

To my amazing supervisor Sarah, thank you for taking the time to check up on me and your willingness to always go through my thesis, even when I was too scared to show you.

To my awesome supervisor Josh, thank you for patience with me this year. Your knowledge and passion for research has inspired me to pursue a research career. Out of everyone I have worked with this year, I have learnt the most from you about research and I cannot thank you enough for the amount time you have spent ensuring I was on track to finish.

To my brilliant supervisor Richard, thank you for all you have taught me about not only being a researcher, but general life skills such as assertiveness. Thank you for giving the opportunity to work with you and your group. Although this year was frustrating at times, it has been fun of course.

To my unofficial supervisor Jenny, thank you for taking the time to answer my questions every five seconds and teach me everything I needed to know in the lab. You have been such great company in the office and I hope to see you back in Australia soon.

To the Cellular Orthopaedics Laboratory at the Centre for Orthopaedic Research, in particular Nathan, Tak, Ying Hua and Audrey, I thank you for allowing me to use your facilities and taking the time to teach me western blotting.

To Ben, Shelby, Marie, Cynthia, Simone, Felicia, Bee, Alexia, Lawrence, Helena and Kerry, thank you for your company in the office this year and taking the time to help me out before I had a mental breakdown.

To my closest friends Ryan, Stephanie, Sarah, Michelle, Tamika, Andrew, Rhiannon, Natalie, Sheldon, Belinda, Elisa, Amber, Joe and Ben and my cousins Jess and Sebastian, thank you for helping me not only procrastinate, but ensured that I made time to relax.

To my fellow honours friends Matheo, Lauren, Sam and Rachael, thank you for putting up with my non-stop whinging and overall rudeness this year. I wish you all the best with you future studies.

To my siblings Michael, Elisa, Daniel and Andrew, I am sorry that you all had to deal with my bad moods the most, but I am grateful for your patience with me.

To my parents Tony and Angela, thank you for not only making sure that I ate and slept this year, but for your unconditional moral support which without I would not have made it through this year.
ABBREVIATIONS

<table>
<thead>
<tr>
<th>Term</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Mineral Density</td>
<td>BMD</td>
</tr>
<tr>
<td>Adipose Derived Stromal Cells</td>
<td>ADSCs</td>
</tr>
<tr>
<td>Asporin</td>
<td>ASPN</td>
</tr>
<tr>
<td>Biglycan</td>
<td>BGN</td>
</tr>
<tr>
<td>Bone Marrow Stromal Cells</td>
<td>BMSCs</td>
</tr>
<tr>
<td>Bone Morphogenic Protein</td>
<td>BMP</td>
</tr>
<tr>
<td>Chondroadherin</td>
<td>CHAD</td>
</tr>
<tr>
<td>Decorin</td>
<td>DCN</td>
</tr>
<tr>
<td>Epiphycan</td>
<td>EPYC</td>
</tr>
<tr>
<td>Extracellular Matrix</td>
<td>ECM</td>
</tr>
<tr>
<td>Extracellular Matrix Protein 2</td>
<td>ECM2</td>
</tr>
<tr>
<td>Glyceraldehyde-3-Phosphate Dehydrogenase</td>
<td>GAPDH</td>
</tr>
<tr>
<td>Glycosaminoglycan</td>
<td>GAG</td>
</tr>
<tr>
<td>Interleukin</td>
<td>IL</td>
</tr>
<tr>
<td>Leucine Rich Repeats</td>
<td>LRRs</td>
</tr>
<tr>
<td>Lumican</td>
<td>LUM</td>
</tr>
<tr>
<td>Mesenchymal Stem Cells</td>
<td>MSCs</td>
</tr>
<tr>
<td>Nyctalopin</td>
<td>NYX</td>
</tr>
<tr>
<td>Opticin</td>
<td>OPTC</td>
</tr>
<tr>
<td>Osteogenic media</td>
<td>OSM</td>
</tr>
<tr>
<td>Osteoglycin</td>
<td>OGN</td>
</tr>
<tr>
<td>Osteomodulin</td>
<td>OMD</td>
</tr>
<tr>
<td>Phosphate Buffered Saline</td>
<td>PBS</td>
</tr>
<tr>
<td>Podocan</td>
<td>PODN</td>
</tr>
<tr>
<td>Podocan-Like Protein</td>
<td>PODNL1</td>
</tr>
<tr>
<td>Term</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>---</td>
<td>--------------</td>
</tr>
<tr>
<td>Polymerase chain reaction</td>
<td>PCR</td>
</tr>
<tr>
<td>Proline-Arginine-Rich End Leucine Rich Repeat Protein</td>
<td>PRELP</td>
</tr>
<tr>
<td>Quantitative real time reverse transcriptase PCR</td>
<td>qRT-PCR</td>
</tr>
<tr>
<td>Small Leucine Rich Proteins</td>
<td>SLRPs</td>
</tr>
<tr>
<td>Sodium Dodecyl Sulphate</td>
<td>SDS</td>
</tr>
<tr>
<td>Transforming Growth Factor Beta</td>
<td>TGF-β</td>
</tr>
<tr>
<td>Tsukushi</td>
<td>TSKU</td>
</tr>
<tr>
<td>Tumour Necrosis Factor Alpha</td>
<td>TNFα</td>
</tr>
</tbody>
</table>