SUSTAINABLE URBAN WATER SYSTEMS:
POLICY AND PROFESSIONAL PRAXIS

by

Michael John Mouritz
Bachelor of Science
(Environmental Science, Honours)

Institute for Science and Technology Policy
School of Social Science
Murdoch University

This thesis is presented for the degree of
Doctorate of Philosophy
of
Murdoch University
1996
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for degree at any other tertiary education institution.

Michael John Mouritz
ABSTRACT

The provision of water, wastewater and stormwater infrastructure is an essential ingredient of cities. However, questions are being raised about the type and form of urban infrastructure, for economic and environmental reasons. Traditionally these technologies have offered linear solutions, drawing increasing volumes of water into cities and discharging waste at ever increasing levels, causing escalating stress on the environment. In addition the costs of water infrastructure provision and replacement, both in the developing and developed world, is becoming prohibitive. In response, a new paradigm has been called for and new solutions are emerging that have been labelled as Integrated Urban Water Management (IUWM). This concept can be considered to consist of both technical and philosophical dimensions, and represents a new form of professional praxis. However, the adoption of these techniques and concepts is constrained by the inertia of the existing urban water systems. It is therefore argued that the introduction of any change must occur across a number of dimensions of the technoeconomic system of the city. These dimensions - artefacts and technical systems (i.e. the technology and knowledge systems), professional praxis and socio-political context (i.e. institutions, culture and politics) and biophysical realities and world views (i.e. the environment and underlying values) - provide a framework for analysis of the change process - both how it is occurring and how it needs to occur. This framework is used to illustrate the link between environment values and the process of technological innovation, and points to the need for the emerging values and innovations to be institutionalised into the professional praxis and socio-political context of society. Specifically, it is argued that a new form of transdisciplinary professional praxis is emerging and needs to be cultivated. A broad review of the literature, an evaluation of selected emerging technologies and three case studies are used to illustrate and argue this position. These examples show the potential economic, social and environmental benefits of IUWM and provide some insight into the potential which this approach has to influence the form and structure of the city and at the same time highlighting the institutional arrangements required to manage urban water systems.
TABLE OF CONTENTS

List of Acronyms ... i
Acknowledgements .. ii

CHAPTER 1

INTRODUCTION

1.1 Overview of Urban Water Systems ... 1
1.2 Context and Hypothesis ... 2
1.3 Dimensions Of Technology - A Framework For Change 5
1.4 Outline of the Thesis ... 10

CHAPTER 2

HISTORY OF URBAN WATER SYSTEMS

2.1 Introduction ... 14
2.2 The Globalising of Water Technologies and Localisation of Water Management ... 14
 2.2.1 Ebb And Flow Of Human Settlements .. 15
 2.2.2 A Watershed - Ecological Thinking .. 17
 2.2.3 Some Triggers for Change ... 20
2.3 But What of Cities? ... 21
 2.3.1 Water Technologies and City Form ... 22
 2.3.2 Towards a Sustainable City ... 28
2.4 The Basis of a Sustainable Urban Water Management Paradigm 32
2.5 Summary ... 43

CHAPTER 3

CHANGING WORLD VIEWS - SUSTAINABLE DEVELOPMENT

3.1 Introduction ... 44
3.2 Origins of Sustainable Development ... 45
3.3 Why sustainability ? ... 47
3.4 Definitions and Values ... 50
3.5 Understanding Sustainable Development ... 55
3.6 What Does Agenda 21 Say ? ... 59
3.7 The Politics of SD .. 61
3.8 Summary ... 64

CHAPTER 4

COMPLEXITY: A BIOPHYSICAL REALITY

4.1 Introduction ... 66
4.2 A Way of Seeing ... 67
4.3 Applications of Complexity .. 71
4.4 Limitations of the New Science .. 76
4.5 Summary ... 78
CHAPTER 5
NEW MANAGEMENT - CHANGING PROFESSIONAL PRAXIS

5.1 Introduction ... 79
5.2 New Management and Commerce .. 80
5.3 New Forms of Environmental and Resource Management 83
5.4 New Administration and Governance ... 89
5.5 Summary .. 93

CHAPTER 6
SUSTAINABLE CITIES MOVEMENT .. 95

6.1 Introduction ... 95
6.2 Cities and Sustainability ... 96
6.3 The Challenge Ahead .. 97
6.4 An Emerging Framework - The City As An Ecosystem 100
6.5 But What Might a Sustainable City Look Like? ... 103
6.6 From Scale to Scope .. 105
6.7 But How Do We Get There? .. 106

CHAPTER 7
PRESENT MILIEUX OF PROFESSIONAL PRAXIS AND URBAN WATER 114

7.1 Introduction ... 114
7.2 What Are The Urban Water Sustainability Issues? .. 114
7.2.1 Agenda 21 and Water .. 115
7.2.2 Australian Urban Water Sustainability Issues .. 117
7.3 What Are The Origins Of These Issues? ... 119
7.3.1 History and politics .. 119
7.3.2 The Water System and Urban Form .. 122
7.3.3 Institutional .. 124
7.3.4 Financial .. 124
7.3.5 Stormwater ... 125
7.3.6 Urban Form and Water Consumption .. 127
7.4 Contemporary Responses And Comments ... 127
7.4.1 Water Law and Administrative Structures .. 127
7.4.2 Institutional Setting - The Shift To Commercialisation 129
7.4.3 National Water Quality Management Strategy ... 130
7.4.4 Pricing Reform ... 131
7.4.5 Consultative Processes in Water and Wastewater Planning 133
7.4.6 Demand Management and Water Conservation ... 134
7.4.7 Environmental Management Systems in the Water Sector 136
CHAPTER 8
EMERGING ARTEFACTS AND TECHNICAL SYSTEMS

8.1 Introduction .. 150

8.2 Background and Context ... 151
 8.2.1 Innovations and the Barriers of Path-Dependency 151
 8.2.2 Innovations and Values 155

8.3 Examples of Emerging Artefacts and Technical Systems 158
 8.3.1 Biomax .. 159
 History and Description 159
 Research and Development Process 161
 Approvals and Barriers 162
 Analysis and Success Factors 164
 8.3.2 Ecomax .. 165
 History and Description 165
 Research and Development Process 168
 Barriers and Approvals 169
 Analysis and Success Factors 170
 8.3.3 Memtec .. 171
 History and Description 171
 Research and Development Process 172
 Approvals and Barriers 174
 Analysis and Success Factors 175
 8.3.4 Dowmus .. 176
 History and Description 176
 Research and Development Process 180
 Approvals and Barriers 181
 Analysis and Success Factors 182
 8.3.5 Solar Aquatic Systems .. 184
 History and Description 184
 Research and Development Process 186
 Analysis .. 187
 8.3.6 Stormwater Management: Confucian or Taoist ? 188
 History and Description 188
 Analysis and Success Factors 190
 8.3.7 Enhancing the Innovation Process 191

8.4 Discussion .. 192
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 The Designs</td>
<td>255</td>
</tr>
<tr>
<td>11.3.1 Introduction</td>
<td>255</td>
</tr>
<tr>
<td>11.3.2 The Site and History of the Development Proposal</td>
<td>255</td>
</tr>
<tr>
<td>11.3.3 Site Analysis</td>
<td>258</td>
</tr>
<tr>
<td>11.3.4 Description of Design</td>
<td>259</td>
</tr>
<tr>
<td>11.4. Evaluation</td>
<td>271</td>
</tr>
<tr>
<td>11.4.1 Financial Factors</td>
<td>277</td>
</tr>
<tr>
<td>11.4.2 Urban Efficiency Factors</td>
<td>287</td>
</tr>
<tr>
<td>11.4.3 Water Sensitive Objectives</td>
<td>288</td>
</tr>
<tr>
<td>11.4.4 Planning Process and Community Consultation</td>
<td>294</td>
</tr>
<tr>
<td>11.4.5 Institutional Issues</td>
<td>298</td>
</tr>
<tr>
<td>11.4.6 Aesthetic and Market Considerations</td>
<td>302</td>
</tr>
<tr>
<td>11.5 Summary</td>
<td>303</td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>308</td>
</tr>
<tr>
<td>12.1.1 Background</td>
<td>308</td>
</tr>
<tr>
<td>12.1.2 Case Study Selection</td>
<td>309</td>
</tr>
<tr>
<td>12.1.3 Structure of Chapter</td>
<td>310</td>
</tr>
<tr>
<td>12.2 The Bayswater Main Drain Catchment</td>
<td>310</td>
</tr>
<tr>
<td>12.2.1 Context</td>
<td>310</td>
</tr>
<tr>
<td>12.2.2 Physiography</td>
<td>312</td>
</tr>
<tr>
<td>12.2.3 Catchment Development and Land Use</td>
<td>313</td>
</tr>
<tr>
<td>12.2.4 The Drainage System</td>
<td>322</td>
</tr>
<tr>
<td>12.3. The BICM Process</td>
<td>323</td>
</tr>
<tr>
<td>12.3.1 Introduction</td>
<td>323</td>
</tr>
<tr>
<td>12.3.2 Analysing the Bayswater ICM process</td>
<td>324</td>
</tr>
<tr>
<td>12.3.3 Context</td>
<td>324</td>
</tr>
<tr>
<td>12.3.4 Legitimation</td>
<td>325</td>
</tr>
<tr>
<td>12.3.5 Organisational Attitudes</td>
<td>327</td>
</tr>
<tr>
<td>12.3.6 Process & Mechanisms</td>
<td>328</td>
</tr>
<tr>
<td>12.3.7 Functions</td>
<td>330</td>
</tr>
<tr>
<td>12.3.8 Structures</td>
<td>331</td>
</tr>
<tr>
<td>12.3.9 Products</td>
<td>332</td>
</tr>
<tr>
<td>12.3.10 BICM and Models of UICM</td>
<td>333</td>
</tr>
<tr>
<td>12.3.11 Summary</td>
<td>335</td>
</tr>
<tr>
<td>12.4 A Framework For Linking UICM & WSUD</td>
<td>337</td>
</tr>
<tr>
<td>12.4.1 Introduction</td>
<td>337</td>
</tr>
<tr>
<td>12.4.2 Catchment Goals for the Swan & Canning Rivers</td>
<td>338</td>
</tr>
<tr>
<td>12.4.3 Community Goals - BICM Objectives</td>
<td>340</td>
</tr>
<tr>
<td>12.4.4 Land and Water Integration Goals - WSUD Objectives</td>
<td>341</td>
</tr>
<tr>
<td>12.4.5 Integrated Goals and Objectives for Bayswater</td>
<td>341</td>
</tr>
<tr>
<td>12.5 Developing A Local Action Plan</td>
<td>348</td>
</tr>
<tr>
<td>12.5.1 Introduction</td>
<td>348</td>
</tr>
<tr>
<td>12.5.2 Local Action Plan - WRPU # 3</td>
<td>348</td>
</tr>
<tr>
<td>12.5.3 Summary</td>
<td>350</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Dimensions of Technology - Framework for Change</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Walking City</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Transit City</td>
<td>25</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Automobile City</td>
<td>26</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Future city</td>
<td>31</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Times of Transition in the Water Sector</td>
<td>33</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Poorly Integrated Policy Processes Lead to Unstable Development</td>
<td>48</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Reactionary Management or Management by Accident</td>
<td>49</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Stages of possible environmental impact from new and existing activities</td>
<td>50</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Emergence in Complex systems</td>
<td>71</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Ecological Integrity and SD in Self-Organising Terms</td>
<td>73</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>An Ecosystem Model of the City</td>
<td>102</td>
</tr>
<tr>
<td>Figure 6.2</td>
<td>Transition from Scale to Scope: Stormwater</td>
<td>107</td>
</tr>
<tr>
<td>Figure 6.3</td>
<td>Transition from Scale to Scope: Wastewater</td>
<td>107</td>
</tr>
<tr>
<td>Figure 6.4</td>
<td>Transition from Scale to Scope: Energy</td>
<td>108</td>
</tr>
<tr>
<td>Figure 6.5</td>
<td>Transition from Scale to Scope: Transport</td>
<td>108</td>
</tr>
<tr>
<td>Figure 6.6</td>
<td>Ecosystem Based Decision Making</td>
<td>112</td>
</tr>
<tr>
<td>Figure 7.1</td>
<td>Stages of Implementation and Review of Environmental Management Systems</td>
<td>137</td>
</tr>
<tr>
<td>Figure 8.1</td>
<td>Biomax</td>
<td>161</td>
</tr>
<tr>
<td>Figure 8.2</td>
<td>Ecomax</td>
<td>167</td>
</tr>
<tr>
<td>Figure 8.3</td>
<td>Memtec Membrane Treatment System</td>
<td>172</td>
</tr>
<tr>
<td>Figure 8.4</td>
<td>Dowmus Compost Filtration System</td>
<td>178</td>
</tr>
<tr>
<td>Figure 8.5</td>
<td>Solar Sewage Wall</td>
<td>185</td>
</tr>
<tr>
<td>Figure 8.6</td>
<td>Solar Aquatic System</td>
<td>185</td>
</tr>
<tr>
<td>Figure 8.7</td>
<td>Images of Confucian and Taoist Water Systems</td>
<td>189</td>
</tr>
<tr>
<td>Figure 9.1</td>
<td>The City And Its Water Flows As A Box</td>
<td>200</td>
</tr>
<tr>
<td>Figure 9.2</td>
<td>The Box Model Of The City Broken Into Cells To Aid</td>
<td>202</td>
</tr>
<tr>
<td>Figure 9.3</td>
<td>Internalising Of Urban Water Problems</td>
<td>213</td>
</tr>
<tr>
<td>Figure 9.4</td>
<td>Dynamic Urban ICM Performance Model</td>
<td>216</td>
</tr>
<tr>
<td>Figure 11.1</td>
<td>Location</td>
<td>260</td>
</tr>
<tr>
<td>Figure 11.2</td>
<td>Site Analysis</td>
<td>261</td>
</tr>
<tr>
<td>Figure 11.3</td>
<td>Conventional Design</td>
<td>265</td>
</tr>
<tr>
<td>Figure 11.4</td>
<td>Proposed Design</td>
<td>266</td>
</tr>
<tr>
<td>Figure 11.5</td>
<td>Towards Sustainable Design</td>
<td>272</td>
</tr>
<tr>
<td>Figure 11.6</td>
<td>Stormwater Management</td>
<td>273</td>
</tr>
<tr>
<td>Figure 11.7</td>
<td>Stormwater Management Details</td>
<td>274</td>
</tr>
<tr>
<td>Figure 11.8</td>
<td>Sewerage Management Systems</td>
<td>275</td>
</tr>
<tr>
<td>Figure 11.9</td>
<td>Typical View of Development</td>
<td>276</td>
</tr>
<tr>
<td>Figure 11.10</td>
<td>Water Budget Comparison</td>
<td>292</td>
</tr>
<tr>
<td>Figure 12.1</td>
<td>Locality Plan</td>
<td>314</td>
</tr>
<tr>
<td>Figure 12.2</td>
<td>Soil Types and Drainage</td>
<td>315</td>
</tr>
<tr>
<td>Figure 12.3</td>
<td>Groundwater</td>
<td>316</td>
</tr>
<tr>
<td>Figure 12.4</td>
<td>Catchment Development</td>
<td>320</td>
</tr>
<tr>
<td>Figure 12.5</td>
<td>Land Use</td>
<td>321</td>
</tr>
<tr>
<td>Figure 12.6</td>
<td>Planning Framework</td>
<td>339</td>
</tr>
<tr>
<td>Figure 12.7</td>
<td>Water Sensitive Planning Units</td>
<td>351</td>
</tr>
<tr>
<td>Figure 12.8</td>
<td>Local Action Plan WSUP #3</td>
<td>355</td>
</tr>
<tr>
<td>Figure 12.9a</td>
<td>Redevelopment - Homestwest Option</td>
<td>366</td>
</tr>
<tr>
<td>Figure 12.9b</td>
<td>Redevelopment - WSD Option</td>
<td>367</td>
</tr>
<tr>
<td>Figure 12.9c</td>
<td>Redevelopment - Modified WSD / Homestwest Option</td>
<td>368</td>
</tr>
<tr>
<td>Figure 12.9d</td>
<td>Public Open Space & Drainage System</td>
<td>369</td>
</tr>
<tr>
<td>Figure 12.9e</td>
<td>Public Open Space Sketches</td>
<td>370</td>
</tr>
<tr>
<td>Figure 12.10</td>
<td>Infill Development</td>
<td>375</td>
</tr>
<tr>
<td>Figure 12.11</td>
<td>Redevelopment</td>
<td>378</td>
</tr>
<tr>
<td>Figure 12.12a</td>
<td>Creek Restoration Opportunities</td>
<td>380</td>
</tr>
<tr>
<td>Figure 12.12b</td>
<td>Creek Restoration Opportunities</td>
<td>381</td>
</tr>
<tr>
<td>Figure 12.12c</td>
<td>Creek Restoration Opportunities</td>
<td>382</td>
</tr>
<tr>
<td>Figure 13.1</td>
<td>Location</td>
<td>395</td>
</tr>
<tr>
<td>Figure 13.2</td>
<td>Land uses</td>
<td>396</td>
</tr>
<tr>
<td>Figure 13.3</td>
<td>Media Response to River Pollution</td>
<td>397</td>
</tr>
</tbody>
</table>
List of Tables

Table 6.1 Potential Focus For Urban Ecology/Ecosystem Approaches ... 103
Table 7.1 Summary Of Issues Relevant To The Water Sector Based On Agenda 21 And The National Ecologically Sustainable Development Strategy ... 120
Table 9.1 Conceptual Levels Of Integrated Catchment Management ... 204
Table 9.2 Attributes Of Integrated Or Ecosystem Approaches To Natural Resource Management And Development ... 205
Table 9.3 Models Of ICM .. 207
Table 9.4 Elements of Mitchell's Conceptual Framework ... 208
Table 9.5 Hierarchy of Cost Sensitive Management Options for Catchment Management 209
Table 9.6 Planning measures to implement water resource management 210
Table 9.7 WSUD Objectives ... 211
Table 9.8 Water Sensitive Design Planning And Management Principles 212
Table 9.9 Best Planning Practices & Groupings of Best Management Practices 214
Table 9.10 Ecological Integrity Factors ... 215
Table 10.1 A Chronology of WSUD's Evolution (continued) ... 230
Table 11.1 Water Sensitive Urban Design Check List ... 252
Table 11.2 Applicability of WSUD Objectives To Palmyra ... 256
Table 11.3 And Summary Of Water Elements Of The Three Designs .. 271
Table 11.4 Development Statistics And Capital Cost .. 281
Table 11.5 Annual Water Related Operating Costs & Rates Estimate ... 282
Table 11.6 Achievement of WSUD Objectives .. 290
Table 11.7 Household Water Use Estimates (kl/ Annum) For Conventional And Towards Sustainable Designs ... 291
Table 11.8 Total Development Water Use Estimates ... 293
Table 11.8 All Uses (kl/ annum) ... 293
Table 12.1 Housing And Population Projections ... 319
Table 12.2 Common Stormwater Management Responses ... 323
Table 12.3 BICM & Models of ICM .. 334
Table 12.4 Land Use And Development Comparisons For Redevelopment Site 361
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANZECC</td>
<td>Australian New Zealand Environment and Conservation Council</td>
</tr>
<tr>
<td>AWRC</td>
<td>Australian Water Resource Council</td>
</tr>
<tr>
<td>BICM</td>
<td>Bayswater Integrated Catchment Management</td>
</tr>
<tr>
<td>BMPs</td>
<td>Best Management Practices</td>
</tr>
<tr>
<td>BPPs</td>
<td>Best Planning Practices</td>
</tr>
<tr>
<td>CUDS</td>
<td>Canning Urban Drainage Study</td>
</tr>
<tr>
<td>DPUD</td>
<td>Department of Planning and Urban Development</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Authority</td>
</tr>
<tr>
<td>ESD</td>
<td>Ecologically Sustainable Development</td>
</tr>
<tr>
<td>ICM</td>
<td>Integrated Catchment Management</td>
</tr>
<tr>
<td>IUWM</td>
<td>Integrated Urban Water Management</td>
</tr>
<tr>
<td>LCP</td>
<td>Least Cost Planning</td>
</tr>
<tr>
<td>OCM</td>
<td>Office of Catchment Management</td>
</tr>
<tr>
<td>POS</td>
<td>Public Open Space</td>
</tr>
<tr>
<td>SAS</td>
<td>Solar Aquatic Systems</td>
</tr>
<tr>
<td>SD</td>
<td>Sustainable Development</td>
</tr>
<tr>
<td>UICM</td>
<td>Urban Integrated Catchment Management</td>
</tr>
<tr>
<td>WAWA</td>
<td>Water Authority of Western Australia</td>
</tr>
<tr>
<td>WAWRC</td>
<td>Western Australian Water Resource Council</td>
</tr>
<tr>
<td>WB</td>
<td>Water Balance</td>
</tr>
<tr>
<td>WC</td>
<td>Water Conservation</td>
</tr>
<tr>
<td>WQ</td>
<td>Water Quality</td>
</tr>
<tr>
<td>WRMU</td>
<td>Water Resource Management Unit</td>
</tr>
<tr>
<td>WSPU</td>
<td>Water Sensitive Planning Unit</td>
</tr>
<tr>
<td>WSUD</td>
<td>Water Sensitive Urban Design</td>
</tr>
<tr>
<td>WSUDRG</td>
<td>Water Sensitive Urban Design Research Group</td>
</tr>
</tbody>
</table>
Acknowledgments

This thesis would not have been possible without the help of many people. The project would never have started if it had not been for the funding provided by the Urban Water Research Association of Australia which established the opportunity to investigate urban water sustainability issues and to undertake the case studies presented in Chapters 11 & 12. Funding was also much appreciated for the case study in Chapter 13 from the Commonwealth Department of Housing and Regional Development's Local Integrated Area Planning Program, with assistance from the City of Canning.

Support for what was initially seen as a "fringe" idea was provided principally by Mr Roger Bulstrode, from the Water Authority of Western Australia. He may not have always agreed with all the ideas being developed but had the foresight to allow the research process to evolve.

The project could not have proceeded without the support of a number of individuals who helped to both inspire the project and give it direction. David Hedgcock was instrumental in widening my horizons to the social and political dimensions of the task and assisted periodically in reviewing progress. His contribution to Chapter 10 needs to be acknowledged. Important contributions to the conceptual development of the ideas were made by Richard Clark and Leon Collett, both of whose fertile imagination's could see the fragments of a different form of water service delivery. I also wish to thank my colleague and friend Herbert Dreiseitl for illustrating that what I was dreaming about could actually be built.

I need to acknowledge with special thanks my colleagues and friends: Trevor Moran, Marino Evangelisti and Phil Palmer, the core group of practitioners who took the Water Sensitive Urban Design idea from concept to reality. They were involved in developing Water Sensitive Urban Design Guidelines and participated in the case studies reported in Chapters 11, 12 & 13. Their practical knowledge of the urban development and urban
water management process meant that the project was never far from reality even if its focus was often way beyond present practice. The assistance of Terry Thompson and Peter Driscoll for their assistance with part of Chapter 13 also needs to be acknowledged.

I need to pay tribute to all of my colleagues at the Institute for Science and Technology Policy - Murdoch University. It is a special place, full of special people with fertile imaginations, scholarly insights and helpful suggestions. I could not have done this thesis in any other setting. It allowed me to drift from the practical, to the academic and even through the spiritual dimensions of my thinking, never placing artificial barriers and always providing support.

Geoff Diver and Bryce Bunny need special mention. Geoff provided technical and moral support as well as helping edit early versions of some chapters, particularly Chapter 11. Bryce assisted in the wider project from which Chapter 13 has been drawn and provided a quiet place to work while every thing else arround me was too hectic - thanks again. In addition I would like to acknowledge the help of Glen Albrecht for providing a critical review in the final phase of the thesis preparation; his moral and academic support helped finish the process. I would also like to acknowledge Diana Frylink and Jill Albrecht for assisting in the editing task - no mean feat on a manuscript from someone who just can't spell.

Special acknowledgment needs to be made to my supervisor and friend, Associate Professor Peter Newman who was responsible for guiding the project (and editing untidy manuscripts). Without his confidence, support and supervision what has been a long, slow process of examining and documenting the interface between water, cities and sustainability would never have been possible.

To these people and all the others that helped along the way I am truly grateful.
Above all, my deepest gratitude and appreciation goes to my wife, partner and friend Fiona and my children Tom, Joel and Liam (da boys !!) for putting up with a husband and father who was preoccupied with this project for longer than it should have taken. They sacrificed more than I can imagine. Fiona continually provided moral support and has inspired me with her strength of will and dedication. I could not have started, let alone finished this project without Fiona's love and support.

I hope this document provides a contribution to an evolving sustainability of the urban water systems, natural and human made. However, as Christopher Titmus suggests in his inspirational book - The Green Buddha:

So we must ask: What will awaken the heart? Rather than concentrating on gaining knowledge, we must explore different routes to realising the intimacy of human beings with each other and with the Earth. It is futile to shuffle between knowing a little and appearing to know a lot. Both are deceptions. It is not knowledge that we are short of but the inspiration to transform our life, to break out of the mould of mechanical existence, and live on the edge of simplicity with others in a communal respect for the ordinary (p 31).

To all those who have helped and provided inspiration along the way - thank you.

Mike Mouritz
May 1996