THE INFLUENCE OF MENISCECTOMY AND OVARIECTOMY ON THE OVINE ANTERIOR CRUCIATE LIGAMENT

Alison R Daniel BSc Hons

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University

2013
I declare that this thesis is my own account of my research, and contains as its main content work which has not previously been submitted for degree at any tertiary educational institution.

Alison Daniel

30th May 2013
ABSTRACT

Current research supports a link between osteoarthritis (OA) and the decline in oestrogen levels at menopause. It is not known whether altered hormone levels exert their effect primarily on articular cartilage, or whether associated degeneration of other oestrogen-responsive joint tissues such as cruciate ligaments may significantly contribute. This study investigated the influence of ovariectomy and/or the presence of concurrent osteoarthritis (bilateral meniscectomy model) on the fibrillar structure of collagen within the anterior cruciate ligament (ACL).

Sheep (n=24) were treated experimentally with one or more of the following treatments: ovariectomy (OVX), meniscectomy (MENX) or non-operated control (NOC). ACLs were examined using transmission and scanning electron microscopy (TEM & SEM), gene expression, biochemical analysis and histology.

TEM studies showed OVX and MENX affect collagen fibril size and arrangement, while the combination of prior OVX and concurrent osteoarthritis (MENX) produced a different pattern of derangement to either treatment alone and may indicate a synergistic effect. Observed structural changes complemented molecular findings of altered mRNA expression, and changes in the collagen and sulphated glycosaminoglycan content of ACL tissue.

This study demonstrates that ovariectomy significantly affects ACL collagen fibril structure, and influences the response of the ACL to surgical OA (MENX). These results show the potential for changes in ACL structure post-menopause to influence joint integrity.
TABLE OF CONTENTS

Declaration ... i
Abstract ... ii
Table of Contents ... iii
Index to Figures ... viii
Index to Tables .. xii
Conference Presentations ... xiii
Acknowledgements ... xiv
List of Abbreviations ... xv
Preface .. xvii

CHAPTER 1: GENERAL INTRODUCTION TO CONNECTIVE TISSUE AND THE CRUCIATE LIGAMENTS 1

1.1 CONNECTIVE TISSUE .. 1
 1.1.1 Classification of Connective Tissues ... 1
 1.1.1.1 Embryonic Connective Tissue ... 3
 1.1.1.2 Connective Tissue Proper ... 4
 1.1.1.2.1 Loose Connective Tissue ... 4
 1.1.1.2.2 Dense Connective Tissue ... 4
 1.1.1.3 Specialised Connective Tissue ... 5

1.2 COMPOSITION OF LIGAMENT .. 6
 1.2.1 The Cells of Ligament .. 7
 1.2.2 The Extracellular Matrix ... 12
 1.2.2.1 Fibres ... 12
 1.2.2.1.1 Collagen Fibres .. 12
 1.2.2.1.2 Elastic Fibres ... 17
 1.2.2.2 Water .. 18
 1.2.2.3 Ground Substance .. 18
 1.2.2.3.1 Proteoglycans .. 19

1.3 THE CRUCIATE LIGAMENTS ... 24
 1.3.1 Structure and Function .. 24
 1.3.2 Blood Supply and Innervation ... 28
 1.3.3 Cruciate Ligament Rupture ... 30
 1.3.3.1 Inflammation ... 30
 1.3.3.2 Mechanical Loading .. 32
 1.3.3.3 Age ... 34
 1.3.3.4 Gender ... 34
 1.3.4 Cruciate Ligament Healing Capacity .. 35

1.4 STUDY OVERVIEW ... 38
CHAPTER 2: METHODS AND MATERIALS

2.1 EXPERIMENTAL GROUPS

2.1.1 Preliminary Study

2.1.2 Main Study

2.2 SURGICAL PROCEDURES

2.2.1 Anaesthesia

2.2.2 Meniscectomy

2.2.3 Ovariectomy

2.3 SACRIFICE AND TISSUE COLLECTION

2.3.1 Preliminary Study

2.3.2 Main Study

2.4 MOLECULAR BIOLOGY

2.4.1 Tissue Homogenisation

2.4.1.1 Equipment Required

2.4.1.2 Preparations for Tissue Homogenisation

2.4.1.3 Homogenising the Tissue

2.4.2 RNA Extraction

2.4.2.1 Equipment Required

2.4.2.2 Preparations for RNA Extraction

2.4.2.3 Retrieving the Aqueous Phase

2.4.2.4 Loading the Spin Columns

2.4.2.5 Washing the Spin Columns

2.4.2.6 Eluting the RNA

2.4.3 Reverse Transcription of RNA to cDNA

2.4.3.1 Equipment Required

2.4.3.2 Preparations for Reverse Transcription of RNA

2.4.3.3 Procedure for Reverse Transcription of RNA

2.4.4 Real Time PCR Analysis

2.5 BIOCHEMICAL ANALYSIS

2.5.1 Sulfated Glycosaminoglycans (S-GAG)

2.5.1.1 Equipment Required

2.5.1.2 Tissue Preparation: Papain Digest

2.5.1.3 Experimental Procedure

2.5.2 Collagen

2.5.2.1 Equipment Required

2.5.2.2 Tissue Preparation: Acid Digest

2.5.2.3 Experimental Procedure

2.6 TRANSMISSION ELECTRON MICROSCOPY (TEM)

2.6.1 Processing of Biological Tissue

2.6.2 Image Analysis

2.7 SCANNING ELECTRON MICROSCOPY (SEM)
2.8 GROSS MORPHOLOGICAL ASSESSMENT ... 64

2.9 HISTOLOGY ... 67
 2.9.1 Processing of Ligament Tissue ... 67
 2.9.2 Special Stains - Toluidine Blue .. 68
 2.9.3 Processing of Cartilage Tissue .. 68
 2.9.4 Processing of Synovial Membrane ... 69
 2.9.5 Histopathology ... 69

2.10 STATISTICAL METHODS .. 73

CHAPTER 3: THE INFLUENCE OF MENISCECTOMY ON THE
ANTEIOR CRUCIATE LIGAMENTS OF SHEEP .. 76

3.1 INTRODUCTION .. 76
 3.1.1 The Structure of Cartilage ... 76
 3.1.1.1 Chondrocytes ... 76
 3.1.1.2 Extracellular Matrix ... 77
 3.1.1.3 Collagen .. 77
 3.1.1.4 Proteoglycans ... 77
 3.1.1.5 Ultrastructure ... 80
 3.1.2 Osteoarthritis ... 82
 3.1.2.1 Pathophysiology ... 82
 3.1.2.2 Epidemiology ... 85
 3.1.2.3 Diagnosis .. 87
 3.1.2.4 Treatment ... 87
 3.1.3 The Role of Ligament in OA ... 88
 3.1.3.1 Animal Studies ... 89
 3.1.3.2 Human Studies .. 91
 3.1.4 The Meniscectomy Model of Osteoarthritis 95

3.2 AIMS & HYPOTHESES .. 97

3.3 RESULTS .. 98
 3.3.1 Molecular Biology .. 98
 3.3.1.1 Gene Expression Normalised to Total RNA 99
 3.3.1.2 Gene Expression Normalised to β-actin 99
 3.3.2 Biochemistry ... 99
 3.3.2.1 Collagen Content ... 99
 3.3.2.2 Sulfated Glycosaminoglycans (S-GAG) Content 100
 3.3.3 Transmission Electron Microscopy (TEM) 100
 3.3.3.1 Fibril Size and Arrangement ... 100
 3.3.4 Scanning Electron Microscopy (SEM) ... 103
 3.3.5 Gross Morphology ... 106
 3.3.5.1 Articular Cartilage OA Scores .. 106
 3.3.5.2 Osteophytes ... 107
 3.3.6 Histology ... 108
 3.3.6.1 Ligament .. 108
3.3.6.2 Cartilage ... 109
3.3.6.2.1 Correlation Between Cartilage Degeneration & Ligament Change in Individuals 110
3.3.6.3 Synovium ... 112

3.4 DISCUSSION ... 113

CHAPTER 4: THE INFLUENCE OF OVARIECTOMY ON THE ANTERIOR CRUCIATE LIGAMENTS IN NORMAL AND OSTEOARTHRITIC (MENISCECTOMISED) SHEEP 122

4.1 INTRODUCTION .. 122
4.1.1 The Ovaries ... 122
4.1.2 The Ovarian Hormones .. 123
 4.1.2.1 Oestrogen ... 123
 4.1.2.2 Progesterone .. 125
 4.1.2.3 Peptide Hormones .. 125
4.1.3 The Influence of Sex Hormones on Ligament .. 126
 4.1.3.1 Hormone Receptors ... 126
 4.1.3.2 Animal Studies ... 128
 4.1.3.3 Human Studies .. 136
 4.1.3.4 Conclusions .. 148
4.1.4 The Influence of Sex Hormone Deficiency on Connective Tissues 150
 4.1.4.1 Effects on Bone .. 150
 4.1.4.2 Effects on Cartilage .. 154
 4.1.4.3 Effects on Other Connective Tissue 159
 4.1.4.4 Effects on Ligament .. 162
4.1.5 The Ovine Oestrous Cycle ... 164

4.2 AIMS & HYPOTHESES .. 165

4.3 RESULTS .. 167
4.3.1 Molecular Biology ... 167
 4.3.1.1 Preliminary OVX Study .. 167
 4.3.1.2 Main Study ... 169
 4.3.1.2.1 Gene Expression Normalised to Total RNA 170
 4.3.1.2.2 Compared to MENX Results 170
4.3.2 Biochemistry ... 171
 4.3.2.1 Collagen ... 171
 4.3.2.1.1 Compared to MENX Results 171
 4.3.2.2 Sulfated Glycosaminoglycans 171
 4.3.2.2.1 Compared to MENX Results 171
4.3.3 Transmission Electron Microscopy ... 172
 4.3.3.1 Fibril Size and Arrangement .. 172
4.3.4 Scanning Electron Microscopy ... 176
4.3.5 Gross Morphology .. 181
 4.3.5.1 Articular Cartilage ... 181
INDEX TO FIGURES

1.1 Classification of connective tissues 2
1.2 Diagrammatical representation of an active fibroblast 8
1.3 TEM micrograph of a fibroblast surrounded by collagen fibrils 9
1.4 Schematic drawing of gap junction channels 10
1.5 TEM micrograph showing interconnection of fibroblasts 11
1.6 Diagrammatical representation of a tropocollagen molecule 13
1.7 Arrangement of tropocollagen in a collagen fibril 14
1.8 Hierarchical organization of collagen in midsubstance ligament 15
1.9 Anterior view of the knee joint 25
1.10 Histological section of ACL showing collagen fibre crimp 33

2.1 TEM image modification for analysis 62
2.2 Adjusting the threshold in Image J64 63
2.3 Measuring the dimensions of the collagen fibrils 63
2.4 Separation of the femorotibial joint 64
2.5 Morphological extremes of the cartilage integrity scale 66
2.6 Demonstration of the features associated with pathology scores 72

3.1 Schematic representation of the structure of aggrecan 79
3.2 Cross sectional diagram of the normal structure of cartilage 81
3.3 Schematic representation of the progression of OA 82
3.4 Histological sections of normal vs. OA sheep articular cartilage 83
3.5 Histological section showing chondrocyte cloning 84
3.6 Biochemical analysis of ACL collagen and S-GAG 100
3.7 TEM 37000x ACL collagen fibrils NOC and MENX 101
3.8 Distribution of collagen fibrils in NOC ACL 101
3.9 Distribution of collagen fibrils in MENX vs. NOC ACL 102
3.10 SEM 170x MENX ACL tissue 104
3.11 SEM 170x NOC ACL tissue 104
3.12 SEM 2000x MENX ACL tissue 105
3.13 SEM 2000x NOC ACL tissue 105
3.14 Macroscopic scoring of articular cartilage NOC and MENX 106
3.15 Macroscopic scoring of osteophytes NOC and MENX 107
3.16 Histological sections of ACL tissue H&E and Tol Blue 108
3.17 Microscopic scoring of articular cartilage NOC and MENX 109
3.18 Regression analysis plot - OA score vs. decorin expression 110
3.19 Regression analysis plot - OA score vs. elastin expression 110
3.20 Regression analysis plot - OA score vs. ACL fibril size 111
3.21 Microscopic scoring of synovium NOC and MENX 112
3.22 mRNA expression of β-actin in ACL tissue 115
3.23 mRNA expression of GAPDH in ACL tissue 115

4.1 Illustrated structure of an ovary 123
4.2 Biochemical analysis of ACL collagen and S-GAG 172
4.3 TEM 37000x ACL collagen fibrils NOC and OVX 173
4.4 Distribution of collagen fibrils in OVX vs. NOC ACL 173
4.5 TEM 37000x ACL collagen fibrils NOC and O+M 174
4.6 Distribution of collagen fibrils in O+M vs. NOC ACL
4.7 Distribution of collagen fibrils - all groups
4.8 SEM 170x NOC ACL tissue
4.9 SEM 170x OVX ACL tissue
4.10 SEM 2000x NOC ACL tissue
4.11 SEM 2000x OVX ACL tissue
4.12 SEM 3016x OVX ACL tissue
4.13 SEM 170x and 2000x O+M ACL tissue
4.14 SEM 2000x O+M ACL tissue
4.15 Macroscopic scoring of articular cartilage OVX and O+M
4.16 Macroscopic scoring of osteophytes OVX and O+M
4.17 Histological sections of ACL tissue H&E and Tol Blue
4.18 Microscopic scoring of articular cartilage OVX and O+M
4.19 Microscopic scoring of synovium OVX and O+M

A4.1 Collagen type I total RNA expression for NOC1 vs. OVX1
A4.2 Collagen type II total RNA expression for NOC1 vs. OVX1
A4.3 Collagen type III total RNA expression for NOC1 vs. OVX1
A4.4 Decorin total RNA expression for NOC1 vs. OVX1
A4.5 Fibromodulin total RNA expression for NOC1 vs. OVX1
A4.6 Biglycan total RNA expression for NOC1 vs. OVX1
A4.7 GAPDH total RNA expression for NOC1 vs. OVX1
A4.8 Aggrecan total RNA expression
A4.9 Aggrecan expression normalised to β-actin
A4.10 Basic FGF total RNA expression
A4.11 Basic FGF expression normalised to β-actin
A4.12 Biglycan total RNA expression
A4.13 Biglycan expression normalised to β-actin
A4.14 Type I collagen total RNA expression
A4.15 Type I collagen expression normalised to β-actin
A4.16 Type II collagen total RNA expression
A4.17 Type II collagen expression normalised to β-actin
A4.18 Type III collagen total RNA expression 36 weeks
A4.19 Type III collagen expression normalised to β-actin 36 weeks
A4.20 CTGF total RNA expression 36 weeks
A4.21 CTGF expression normalised to β-actin
A4.22 Decorin total RNA expression
A4.23 Decorin expression normalised to β-actin
A4.24 Elastin total RNA expression
A4.25 Elastin expression normalised to β-actin
A4.26 Fibromodulin total RNA expression
A4.27 Fibromodulin expression normalised to β-actin
A4.28 iNOS total RNA expression
A4.29 iNOS expression normalised to β-actin
A4.30 Lubricin total RNA expression
A4.31 Lubricin expression normalised to β-actin
A4.32 Lumican total RNA expression
A4.33 Lumican expression normalised to β-actin
A4.34 MMP-1 total RNA expression
A4.35 MMP-1 expression normalised to β-actin
A4.36 PDGF total RNA expression 254
A4.37 PDGF expression normalised to β-actin 254
A4.38 ACL collagen content - charted results 257
A4.39 ACL S-GAG - charted results 258
A4.40 TEM ACL average number of fibrils charted results 259
A4.41 TEM ACL average fibril diameter charted results 259
A4.42 TEM ACL average fibril area charted results 260
A4.43 TEM ACL total fibril area charted results 260
A4.44 TEM ACL fibril density (% of total field) 261
A4.45 ACL fibril diameter (size) distribution for all groups 262
A4.46 TEM 37000x NOC, MENX, OVX, O+M images 263
A4.47 TEM 37000x image of NOC ACL, sheep # 69L 264
A4.48 TEM 37000x image of NOC ACL, sheep # 69R 264
A4.49 TEM 37000x image of NOC ACL, sheep # 70L 265
A4.50 TEM 37000x image of NOC ACL, sheep # 70R 265
A4.51 TEM 37000x image of NOC ACL, sheep # 71L 266
A4.52 TEM 37000x image of NOC ACL, sheep # 71R 266
A4.53 TEM 37000x image of NOC ACL, sheep # 72L 267
A4.54 TEM 37000x image of NOC ACL, sheep # 72R 267
A4.55 TEM 37000x image of NOC ACL, sheep # 77L 268
A4.56 TEM 37000x image of NOC ACL, sheep # 77R 268
A4.57 TEM 37000x image of NOC ACL, sheep # 94L 269
A4.58 TEM 37000x image of NOC ACL, sheep # 94R 269
A4.59 TEM 37000x image of MENX ACL, sheep # 68L 270
A4.60 TEM 37000x image of MENX ACL, sheep # 68R 270
A4.61 TEM 37000x image of MENX ACL, sheep # 76L 271
A4.62 TEM 37000x image of MENX ACL, sheep # 76R 271
A4.63 TEM 37000x image of MENX ACL, sheep # 78L 272
A4.64 TEM 37000x image of MENX ACL, sheep # 78R 272
A4.65 TEM 37000x image of MENX ACL, sheep # 79L 273
A4.66 TEM 37000x image of MENX ACL, sheep # 79R 273
A4.67 TEM 37000x image of MENX ACL, sheep # 95L 274
A4.68 TEM 37000x image of MENX ACL, sheep # 95R 274
A4.69 TEM 37000x image of OVX ACL, sheep # 45L 275
A4.70 TEM 37000x image of OVX ACL, sheep # 45R 275
A4.71 TEM 37000x image of OVX ACL, sheep # 52L 276
A4.72 TEM 37000x image of OVX ACL, sheep # 52R 276
A4.73 TEM 37000x image of OVX ACL, sheep # 60L 277
A4.74 TEM 37000x image of OVX ACL, sheep # 60R 277
A4.75 TEM 37000x image of OVX ACL, sheep # 63L 278
A4.76 TEM 37000x image of OVX ACL, sheep # 63R 278
A4.77 TEM 37000x image of OVX ACL, sheep # 91L 279
A4.78 TEM 37000x image of OVX ACL, sheep # 91R 279
A4.79 TEM 37000x image of OVX ACL, sheep # 92L 280
A4.80 TEM 37000x image of OVX ACL, sheep # 92R 280
A4.81 TEM 37000x image of O+M ACL, sheep # 03L 281
A4.82 TEM 37000x image of O+M ACL, sheep # 03R 281
A4.83 TEM 37000x image of O+M ACL, sheep # 08L 282
A4.84 TEM 37000x image of O+M ACL, sheep # 08R 282
A4.85 TEM 37000x image of O+M ACL, sheep # 10L 283
A4.86 TEM 37000x image of O+M ACL, sheep # 10R 283
A4.87 TEM 37000x image of O+M ACL, sheep # 21L 284
A4.88 TEM 37000x image of O+M ACL, sheep # 21R 284
A4.89 TEM 37000x image of O+M ACL, sheep # 27L 285
A4.90 TEM 37000x image of O+M ACL, sheep # 27R 285
A4.91 TEM 37000x image of O+M ACL, sheep # 58L 286
A4.92 TEM 37000x image of O+M ACL, sheep # 58R 286
A4.93 SEM 2000x ACL tissue samples NOC, MENX, OVX, O+M 287
A4.94 SEM 170x ACL tissue samples NOC, MENX, OVX, O+M 288
A4.95 H&E 200x longitudinal sections of ACL tissue from NOC sheep 289
A4.96 Tol Blue 200x longitudinal sections of ACL tissue from NOC sheep 290
A4.97 H&E 200x longitudinal sections of ACL tissue from MENX sheep 291
A4.98 Tol Blue 200x longitudinal sections of ACL tissue from MENX sheep 292
A4.99 H&E 200x longitudinal sections of ACL tissue from OVX sheep 293
A4.100 Tol Blue 200x longitudinal sections of ACL tissue from OVX sheep 294
A4.101 H&E 200x longitudinal sections of ACL tissue from O+M sheep 295
A4.102 Tol Blue 200x longitudinal sections of ACL tissue from O+M sheep 296
A5.1 Force Displacement Curve 297
A5.2 Effect of Ovariectomy on Joint Displacement 298
A5.3 Effect of Ovariectomy on Ligament Stiffness 299
INDEX TO TABLES

2.1 Ear tag numbers of sheep - preliminary study 42
2.2 Ear tag numbers of sheep - main study 42
2.3 Summary of main study groups 43
2.4 PCR master mix ingredients 54
2.5 Chondroitin sulfate standard curve dilutions 57
2.6 Hydroxyproline standard curve volumes 60
2.7 Macroscopic scoring of osteophytes 65
2.8 Macroscopic scoring of cartilage 65
2.9 Microscopic scoring of ovine synovial membrane 70
2.10 Microscopic scoring of ovine cartilage 71
3.1 RNA expression of target genes in ACL tissue total RNA 98
3.2 RNA expression of target genes in ACL tissue normalised data 98
3.3 Combined fibril diameter data for MENX ACL 102
3.4 Macroscopic scoring of articular cartilage NOC and MENX 106
3.5 Macroscopic scoring of osteophytes NOC and MENX 107
3.6 Microscopic scoring of articular cartilage NOC and MENX 109
3.7 Microscopic scoring of synovium NOC and MENX 112
4.1 Preliminary Study - RNA expression of target genes ACL and PCL 167
4.2 RNA expression of target genes in ACL tissue total RNA 169
4.3 RNA expression of target genes in ACL tissue normalised data 169
4.4 Combined fibril diameter data for OVX and O+M ACL 175
4.5 Macroscopic scoring of articular cartilage OVX and O+M 181
4.6 Macroscopic scoring of osteophytes OVX and O+M 182
4.7 Microscopic scoring of articular cartilage OVX and O+M 185
4.8 Microscopic scoring of synovium OVX and O+M 186
A2.1 List of RT-PCR primer sequences 237
A4.1 Preliminary study - PCR results 241
A4.2 Preliminary study - PCR statistical analysis 244
A4.3 Main study - PCR collective results total RNA 245
A4.4 Main study - PCR collective results normalised to B-actin 246
A4.5 Statistical analysis (T-test) results for total RNA 255
A4.6 Statistical analysis (T-test) results for normalised to B-actin 256
A4.7 ACL collagen content - results for all groups 257
A4.8 ACL collagen - statistical analysis 257
A4.9 ACL S-GAG content - results for all groups 258
A4.10 ACL S-GAG - statistical analysis 258
A4.11 TEM Results for ACL, average number of fibrils 259
A4.12 TEM Results for ACL, average fibril diameter 259
A4.13 TEM results for ACL, average fibril area 260
A4.14 TEM results for ACL, total fibril area 260
A4.15 TEM results for ACL fibril density (% of total field) 261
A4.16 Statistical data for TEM fibril analysis 261
A4.17 TEM results for ACL fibril diameter distribution 262
A5.1 Summary of biomechanical testing - joint displacement 298
A5.2 Summary of biomechanical testing - ligament stiffness 299
CONFERENCE PRESENTATIONS

ACKNOWLEDGEMENTS

I would like to thank the following people for their assistance with this study:

Professor Rick Read and Associate Professor Martin Cake (Murdoch University, Veterinary & Biomedical Sciences) for all their support and guidance, and for providing me with the opportunity to undertake this study.

Dr Margaret Smith of the Raymond Purves Bone and Joint Research Laboratories (Royal North Shore Hospital, Sydney) for her invaluable assistance with the RT-PCR protocols, and for kindly providing me with the ovine primer sequences used in this study.

Mr Peter Fallon (Murdoch University, Biological Sciences) for his instruction in the use of the transmission electron microscope and assistance in the cutting of the grids.

Ms Susan Smith of the Raymond Purves Bone and Joint Research Laboratories (Royal North Shore Hospital, Sydney) for providing me with the ligament tissue processing protocols for the histology sections and advice on special stains.

Mr Gerard Spoelstra and Mr Mike Slavin (Murdoch University, Veterinary & Biomedical Sciences) for use of their lab and assistance in cutting and staining of the histology sections.

Mr Richard Krummins and anatomy staff (Murdoch University, Veterinary & Biomedical Sciences) for their support and for kindly allowing me to use their dissection labs and equipment whenever necessary.

Associate Professor Phil Nicholls and the pathology department (Murdoch University, Veterinary & Biomedical Sciences) for use of their digital photographic microscope.

The staff of the Western Australian Institute for Medical Research (Perth) for allowing me to use their Agilent bioanalyser.

Mr Kim Thomas and the Murdoch University farm staff for their care of the animals.

Murdoch University for providing my scholarship.

Most of all thanks to my family for all their love, support and encouragement.
LIST OF ABBREVIATIONS

ACL anterior cruciate ligament
AM anteromedial
Basic FGF basic fibroblast growth factor
BMD bone mineral density
CaCL caudal cruciate ligament
CCL cranial cruciate ligament
cDNA complimentary deoxyribonucleic acid
COX cyclooxygenase
CS chondroitin sulfate
CTGF connective tissue growth factor
DC dendritic cells
DH Dunkin Hartley
DMAB dimethyaminobenzaldehyde
DMMB dimethylmethylene blue
DNA deoxyribonucleic acid
DNase deoxyribonuclease
E1 oestrone
E2 oestadiol
E3 oestriol
ECM extracellular matrix
EDTA ethylenediaminetetraacetic acid
ER endoplasmic reticulum
EtOH ethanol
FSH follicle stimulating hormone
G1 amino-terminal globular domain
G2 additional globular domain
G3 carboxy-terminal domain
GAGs glycosaminoglycans
GAPDH glyceraldehyde 3-phosphate dehydrogenase
H&E haematoxylin and eosin
HCl hydrochloride
HRT hormone replacement therapy
IDO indoleamine 2-3 dioxygenase
IFN- interferon
IgG serum immunoglobulin G
IL- interleukin
IL-ß interleukin beta
IVD intervertebral disc
KS keratan sulfate
LAPs large aggregating proteoglycans
LCL lateral collateral ligament
LH luteinising hormone
M molar
MCL medial collateral ligament
MENX meniscectomised
mg milligram
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>MGA</td>
<td>middle genicular artery</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>MMPs</td>
<td>matrix metalloproteinases</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger ribonucleic acid</td>
</tr>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>nm</td>
<td>nanometres</td>
</tr>
<tr>
<td>NOC</td>
<td>non-operated control</td>
</tr>
<tr>
<td>NTC</td>
<td>non-template control</td>
</tr>
<tr>
<td>O+M</td>
<td>ovariectomised and meniscectomised</td>
</tr>
<tr>
<td>OA</td>
<td>osteoarthritis</td>
</tr>
<tr>
<td>OH</td>
<td>hydroxyproline</td>
</tr>
<tr>
<td>OVX</td>
<td>ovariectomised</td>
</tr>
<tr>
<td>PCL</td>
<td>posterior cruciate ligament</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PDGF</td>
<td>platelet derived growth factor</td>
</tr>
<tr>
<td>PL</td>
<td>posterolateral</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>RNase</td>
<td>ribonuclease</td>
</tr>
<tr>
<td>SABC</td>
<td>state agricultural biotechnology centre</td>
</tr>
<tr>
<td>SEM</td>
<td>scanning electron microscopy</td>
</tr>
<tr>
<td>S-GAG</td>
<td>sulfated glycosaminoglycan</td>
</tr>
<tr>
<td>SLRPs</td>
<td>small leucine rich proteoglycans</td>
</tr>
<tr>
<td>SYSADOA</td>
<td>symptomatic slow-acting drugs in OA</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>TGF-β</td>
<td>transforming growth factor beta</td>
</tr>
<tr>
<td>TIMP</td>
<td>tissue inhibitor of matrix metalloproteinases</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumour necrosis factor alpha</td>
</tr>
<tr>
<td>Tol Blue</td>
<td>toluidine blue</td>
</tr>
<tr>
<td>TPA</td>
<td>tibial plateau angle</td>
</tr>
<tr>
<td>ul</td>
<td>microlitre</td>
</tr>
<tr>
<td>um</td>
<td>micrometers</td>
</tr>
<tr>
<td>β-actin</td>
<td>beta actin</td>
</tr>
</tbody>
</table>
PREFACE

This study was conducted to investigate the influence of knee osteoarthritis on other important joint structures, specifically the anterior cruciate ligament, and determine what effect the decline in ovarian hormones associated with menopause has on ligament tissue. It was conducted concurrently with another study investigating cartilage changes in ovariectomised and meniscectomised sheep. The author was involved both studies, including all surgical procedures and tissue harvesting, and is personally responsible for all ligament investigations presented in this thesis. Prof Rick Read and his research team, in co-operation with the Raymond Purves Bone and Joint Research Laboratories (Royal North Shore Hospital, Sydney) generated the cartilage results, some of which have been included to confirm the occurrence of osteoarthritis as induced by the meniscectomy model.

For efficiency, and to minimise the number of animal subjects used, several hypotheses were tested within the design of a single large trial. The reader is initially provided with a general introduction relevant to all subsequent chapters (Chapter 1) followed by details of the methods and materials used in the study (Chapter 2). The thesis then discusses the effect of each treatment individually by chapter, first investigating the effect of osteoarthritis alone (Chapter 3), and then the effect of ovariectomy with or without concurrent osteoarthritis (Chapter 4). Chapters 3-4 are presented each with their own specific introductory information, results and discussion, while the combined results, providing the opportunity to compare and contrast the results from all test groups, are available to view in the appendices. For each method of investigation, all samples from the four groups were processed as a single batch to avoid variation between groups and therefore allow them to be directly compared. Finally, Chapter 5 presents a review of all hypotheses and potential areas for future research are discussed.