Evolutionary history of Australian Salmon (Arripidae) in Australian waters

Preliminary results of PhD study

Glenn Moore, Jennie Chaplin & Ian Potter
Arripidae

- Endemic to temperate waters of Australia & New Zealand region
- 4 species in a single genus – *Arripis*
- Neritic predators
- Obligate schoolers
- Perciformes
A. trutta (Eastern)
A. truttaceus (Western)
A. xylabion (Northern)
A. georgianus (Herring)
West-East geminate species

Hutchins (1994) lists 25 species pairs
Western (to 95 cm)

Eastern (to 85 cm)
Herring (adult)
(to 40 cm)

Eastern (juvenile)
Aims

• Primarily Eastern versus Western Australian Salmon

1. Compare population genetic structures

2. Compare aspects of recent demographic history
Sample Sites

http://researchrepository.murdoch.edu.au/20473/
Methods

mtDNA
- Cytochrome b sequence (483 bp)

nDNA
- EPIC, length polymorphism
- universal primers
Results
Haplotype Network

Western (N = 36)

Herring (N = 30)

Northern (N = 11)

Eastern (N = 25)

61 steps
Population Genetic Structure

- pelagic larvae
- highly vagile at all post-settlement stages
Movement of *Arripis* species in Australia

I Larval
II Juvenile
III Immature
IV Adult

Western

Eastern

Herring

Population Genetics

- large potential for movement of individuals during life

prediction of

no genetic subdivision
Population Genetic Structure

- No evidence of genetic subdivision in any species across the Australian distribution

<table>
<thead>
<tr>
<th>EPIC loci</th>
<th># loci</th>
<th># sites</th>
<th>N</th>
<th>F_{ST}</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern</td>
<td>3</td>
<td>3</td>
<td>92</td>
<td>0.000</td>
<td>0.73</td>
</tr>
<tr>
<td>Western</td>
<td>2</td>
<td>5</td>
<td>169</td>
<td>0.005</td>
<td>0.22</td>
</tr>
<tr>
<td>Herring</td>
<td>4</td>
<td>7</td>
<td>231</td>
<td>0.005</td>
<td>0.13</td>
</tr>
</tbody>
</table>
Recent Demographic History

- Star shape phylogeny
- Population expansion in both salmon

61 steps
Recent Demographic History

- evidence of recent population expansion in both Eastern and Western Australian Salmon

<table>
<thead>
<tr>
<th></th>
<th>Fu’s Fs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern</td>
<td>-9.31*</td>
</tr>
<tr>
<td>Western</td>
<td>-3.69*</td>
</tr>
<tr>
<td>Herring</td>
<td>0.06</td>
</tr>
</tbody>
</table>

* p<0.001
Time of expansion

- population expansion may have been more recent in the Western Australian Salmon

<table>
<thead>
<tr>
<th></th>
<th>years</th>
<th>95% C.I.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern</td>
<td>53,200</td>
<td>(29,000 – 87,000)</td>
</tr>
<tr>
<td>Western</td>
<td>8,600</td>
<td>(0 – 38,000)</td>
</tr>
</tbody>
</table>

estimated using ‘standard’ rate of mutation for cytochrome b in marine fish (2%/Mya) and equation $T = 2ut$ (Li, 1977)
Conclusions

• Eastern and Western Australian Salmon appear to be panmictic across their Australian distribution

• Both Eastern and Western Australian Salmon appear to have undergone recent population expansion
 - the latter possibly more recently
Acknowledgements

Steeg Hoeksema, Ben Chuwen (Murdoch)
John Stewart, Julian Hughes (NSW DPI)
Selim Fisheries
Dumpy Wheatcroft
Kyle Armstrong (Adelaide University)
Ian Kerr (Lord Howe Is. Marine Park)
Roddy Hale (Lincoln University)
and many anonymous fisherfolk!