FROM MOLECULES TO BIRD COMMUNITIES:

A MISTLETOE STORY

This thesis was submitted in fulfilment of the requirements for the degree of Doctor of Philosophy (Veterinary Studies), Murdoch University, by:

Kathryn Renee Napier

BSc., BSc. (Hons)

School of Veterinary and Life Sciences

Murdoch University

Murdoch, Western Australia

June 2013
DECLARATION

I declare that this thesis is my own account of my research and contains as its main content of work, which has not previously been submitted for a degree at any tertiary education institution.

Kathryn Renee Napier
ABSTRACT

Worldwide, mistletoes act as a keystone resource, providing food (nectar, fruit and foliage) and structural (nesting sites) resources to hundreds of fauna species. 75 species of ‘showy’ Loranthaceae mistletoes are native to Australia, and are found in wooded habitats throughout the mainland. The mistletoebird (*Dicaeum hirundinaceum*) is considered the primary disperser of mistletoe fruit in south-west Western Australia (WA). Other ‘generalist’ species, including several honeyeater species and the silveryeye (*Zosterops lateralis*), also regularly consume and disperse mistletoe fruits.

This thesis takes a broad, eco-physiological approach to investigate the interactions between two Australian loranthaceous mistletoes species (*Amyema miquelii* and *A. preissii*), their host plants and their avian consumers. This was achieved through a combination of intensive field surveys and sampling at five sites where mistletoe was extremely abundant, and laboratory experiments assessing various aspects of avian digestive physiology of three frugivorous bird species; the mistletoebird (specialised frugivore), silveryeye (generalist frugivore) and singing honeyeater (*Lichenostomus virescens*; generalist nectarivore).

A stable isotope approach was used to investigate the parasitic relationship between *A. miquelii* and *A. preissii* and their eucalypt or acacia hosts (respectively). Results demonstrate that these mistletoes regulate their water use in relation to the supply of nitrogen available from the host.

Next, the importance of mistletoe to bird communities in south-west WA was investigated through surveys and the use of stable isotopes. The presence of fruiting
(but not flowering) mistletoe was associated with significant changes in bird community structure. Mistletoebirds were more likely to be recorded during months when ripe mistletoe fruit was present, and overall bird species richness was higher for these survey months. The contribution of mistletoe fruit to the diet of mistletoebirds ranged from 33% to 55%, demonstrating that despite mistletoe fruit being low in nitrogen, it is an important source of nutrients. Fruiting mistletoes therefore provide important food resources to bird communities in south-west WA.

Various aspects of avian digestive physiology were compared for three species that include mistletoe fruit in varying degrees to their diet. Mistletoebirds, silvereyes and singing honeyeaters demonstrated similar patterns of sugar preferences with similarly high (>97.5%) apparent assimilation efficiencies (AE*) for sucrose, glucose and fructose and lower AE* for the pentose monosaccharide xylose (56-78%), yet demonstrated differences in their absorption of dietary sugars. Mistletoebirds, in contrast to the other two species, did not vary bioavailability (f) with diet concentration, and appear to absorb xylose through both mediated and paracellular mechanisms. This may be a result of the short, specialised intestinal tract of mistletoebirds, which facilitates faster transit rates of mistletoe fruit compared to silvereyes and honeyeaters.

This thesis presents new insight into the parasitic relationship between mistletoes and hosts, and the relationship between mistletoes and its avian consumers. Mistletoebirds differ from other opportunistic mistletoe feeders in their ability to process large numbers of mistletoe fruit quickly, while obtaining sufficient nutrients such as nitrogen and carbohydrates from these fruits.
ACKNOWLEDGMENTS

Firstly, I’d like to thank my supervisors – Patricia Fleming, Todd McWhorter and Carlos Martínez del Río. I don’t think I could express just how much I have enjoyed working with you over the last 6+ years. Trish, you have taught me more than I would have ever thought possible – your brilliant advice, encouragement, and unbelievable dedication to your students are such an inspiration. I would not be at this stage in my research career nor have experienced such fantastic opportunities without your constant encouragement, support, patience and friendship, and I will always be grateful.

Todd, I really appreciate the encouragement, support and advice given over the long distances between Perth, Laramie and Adelaide. Your patience, kind words and knowledge freely given have helped me immensely over the years. I have dearly missed working with you in person, and hope that I may rejoin you someday in the lab.

Carlos, you gave me the opportunity of a lifetime by accepting me into your lab group at the University of Wyoming. I thank you and Martha for the support and help you gave in those first few weeks at 2184 m! Laramie and Wyoming now have a special place in my heart, and the Medicine Bow Mountains are one of my favourite places on this earth.

My deepest gratitude is also given to my sources of funding and awards, without which this research would not have been possible: the 2010 Western Australian Fulbright Scholarship and Gregory Schwartz Enrichment Grant (Australian-American Fulbright Association), the Holsworth Wildlife Research Endowment, the Stuart Leslie Bird Research Award and travel grant (Birdlife Australia and Birdlife WA), and the
Jean Gilmore Postgraduate research bursary (Federation of University Women, SA). The financial support given by Murdoch University is also very much appreciated.

Sincere thanks are also given to the staff at the Araluen Country Club and Resort, Dr Manda Page and Jo Kuiper from the Australian Wildlife Conservancy, and Peter Monger and family in York for allowing access to their field sites. I would also like to thank reviewers whose comments greatly improved previous versions of the manuscripts in Chapters 3, 5 and 6.

I would also like to thank Suzanne Mather for her assistance with bird surveys (and your willingness to get up at 4 am!), the use of your ladder, and for worrying if I would fall off the ladder. You’re an inspiration.

I would also like to thank the following people for their assistance with various aspects of my research: Tony Start (Western Australian Herbarium, Department of Environment and Conservation) for his mistletoe knowledge and comments on a draft version of Chapter 3; Simon Cherriman, for climbing trees and tagging them for me at Paruna; Joao Paulo Coimbra (University of Western Australia) for the provision of avian intestinal tissues; Clare Auckland and John McCooke (Murdoch University) for their assistance with intestinal enzyme assays; Bill Bateman for demonstrating his sensational grasshopper catching skills and assisting with mist-netting; Shannon Dundas, Tracey Moore and Penny Nice (Murdoch University) for their assistance with field work; the staff at the Murdoch University Animal House, particularly Derek Mead-Hunter, for their assistance in keeping birds in captivity; David Perry (University of Wyoming Macromolecular Analysis Core) for HPLC analysis; and the staff at the University of Wyoming Stable Isotopes Facility for being so very patient with me while
we processed hundreds of samples. Special thanks must also go to Susan Nicolson (University of Pretoria) for her advice and collaboration.

To my fellow research students in the dungeon and bat cave offices, past and present, I thank you for your friendship and support. To Penny, Tracey, Narelle, Wil, Heather, Gill, Shannon, Ivan, Chelsea, Bryony, Renata, John, Kelly, Tegan (honorary dungeon member), Buddy and Rocket (dungeon mascots) – my time at Murdoch was a truly enjoyable experience thanks to you wonderful, fantastic people (and animals). To Jon and Brenna in Laramie, I thank you for your friendship and advice, and for not laughing at me (too much) during my first bear encounter. I look forward to future collaborations!

Last, but not least, I would like to thank my family and friends for their constant support and love: to my parents, Jeff and Clarice Napier, Sandy Chaney, siblings David and Alison Napier and future brother in-law Eddie Terry, friends Brett and Lois Andrijich and Liz Snyder-Campion, and my husband Simon Aplin. Simon, your love, our adventures, and your constant support of my academic endeavours enrich my life in countless ways. I thank you from the bottom of my heart.
DISCLAIMER

This PhD thesis consists of chapters that have been prepared as stand-alone manuscripts. These manuscripts have either been accepted for publication (Chapters 3 and 5), submitted for consideration of publication (Chapter 6), or are being prepared for future submission (Chapters 2 and 4). As a consequence, there may be some repetition between chapters. To reduce unnecessary replication of references between chapters, the references are compiled together in Chapter 8.

To maintain consistency in formatting throughout the thesis, the chapters may differ slightly from the future published manuscripts.
PUBLICATIONS ARISING FROM THIS THESIS

OTHER PUBLICATIONS ARISING FROM THE PERIOD OF CANDIDATURE

TABLE OF CONTENTS

DECLARATION .. II
ABSTRACT .. III
ACKNOWLEDGMENTS .. V
DISCLAIMER ... VIII
PUBLICATIONS ARISING FROM THIS THESIS ... IX
OTHER PUBLICATIONS ARISING FROM THE PERIOD OF CANDIDATURE IX
TABLE OF CONTENTS ... XI
LIST OF FIGURES ... XVI
LIST OF TABLES ... XVIII

1 GENERAL INTRODUCTION ... 1
 1.1 MISTLETOE-HOST INTERACTIONS ... 2
 1.2 MISTLETOE-ANIMAL INTERACTIONS .. 5
 1.2.1 Provision of resources .. 5
 1.2.2 Pollination and dispersal .. 7
 1.3 PHYSIOLOGICAL ADAPTATIONS TO FRUGIVORY .. 9
 1.4 STUDY AIM .. 13
 1.5 MISTLETOE STUDY SPECIES ... 13
 1.6 AVIAN STUDY SPECIES ... 18
 1.6.1 Mistletoebird (Dicaeum hirundinaceum) .. 18
 1.6.2 Silvereye (Zosterops lateralis) ... 19
 1.6.3 Singing honeyeater (Lichenostomus virescens) .. 19

2 CARBON AND NITROGEN STABLE ISOTOPES OF AUSTRALIAN MISTLETOES AND THEIR HOSTS .. 22
 STATEMENT OF AUTHOR CONTRIBUTION .. 23
 2.1 ABSTRACT ... 24
 2.2 INTRODUCTION .. 25
5.3 MATERIALS AND METHODS ... 108

5.3.1 Birds and their maintenance ... 108
5.3.2 Apparent assimilation efficiency (AE*) .. 109
5.3.3 Sugar preference trials .. 111
5.3.4 Intestinal enzymes .. 113
5.3.5 Foraging data and Australian nectar composition .. 117
5.3.6 General statistical analysis ... 118

5.4 RESULTS .. 120

5.4.1 Apparent assimilation efficiency (AE*) .. 120
5.4.2 Sugar preferences .. 120
5.4.3 Intestinal enzymes .. 123
5.4.4 Foraging data and Australian nectar composition .. 126

5.5 DISCUSSION .. 132

5.5.1 Are there differences in apparent assimilation efficiency between sugar types? 133
5.5.2 Can we explain hexose preferences on dilute diets? ... 134
5.5.3 Can we explain sucrose preference on concentrated diets? ... 135
5.5.4 Do laboratory results reflect foraging preferences in the wild? .. 136
5.5.5 Conclusions ... 137

6 MISTLETOEBIRDS AND XYLOSE: AUSTRALIAN FRUGIVORES DIFFER IN THEIR HANDLING OF DIETARY SUGARS ... 139

| 6.1 ABSTRACT ... 141 |
| 6.2 INTRODUCTION .. 142 |
| 6.3 MATERIALS AND METHODS .. 147 |

| 6.3.1 Study species .. 147 |
| 6.3.2 Apparent assimilation efficiency (AE*): .. 149 |
| 6.3.3 Pharmacokinetic experiments ... 151 |
| 6.3.4 Gut passage times (GPT) .. 152 |
| 6.3.5 Statistical analysis .. 153 |
6.4 RESULTS ... 153

6.4.1 Apparent assimilation efficiency (AE*) ... 153

6.4.2 Pharmacokinetic experiments ... 156

6.4.3 Gut passage times (GPT) ... 160

6.5 DISCUSSION ... 160

6.5.1 Apparent assimilation efficiency (AE*) ... 161

6.5.2 Mechanism of sugar absorption ... 162

6.5.3 Metabolism of xylose ... 165

6.5.4 Conclusions .. 166

7 GENERAL CONCLUSIONS .. 167

7.1 MISTLETOE-HOST INTERACTIONS ... 167

7.2 MISTLETOE-ANIMAL INTERACTIONS .. 168

7.3 PHYSIOLOGICAL ADAPTATIONS TO FRUGIVORY .. 170

7.4 FUTURE DIRECTIONS .. 172

7.5 CONCLUSIONS .. 174

8 REFERENCES .. 176
LIST OF FIGURES

Figure 1.1 The location of five study sites in south-west Western Australia. ... 16

Figure 1.2 Two Loranthaceae mistletoe species common in south-west Western Australia: the box (or stalked) mistletoe *Amyema miquelii* and wireleaf mistletoe *Amyema preissii* ... 17

Figure 1.3 Digestive adaptations associated with consuming a mistletoe fruit diet were investigated for three focal frugivorous bird species. .. 21

Figure 2.1 Stable isotope values and percentages of carbon and nitrogen for mistletoe, infected and uninfected host samples on acacia (black symbols) or eucalyptus (white symbols) hosts........... 35

Figure 2.2 Correlations between mistletoe and host a) δ¹³C (‰), b) carbon content (%), c) δ¹⁵N (‰) and d) nitrogen content (%) .. 38

Figure 3.1 Flowering and fruiting phenology of the mistletoes *Amyema preissii* (left hand panel) and *Amyema miquelii* (right hand panel) from February 2010 to January 2011... 58

Figure 3.2 The number of bird species recorded at each site in the presence (1) or absence (0) of open flowers (a) and ripe fruit (c), and the number of nectarivorous bird species recorded at each site in the presence (1) and absence (0) of open flowers (b). .. 59

Figure 4.1 Median, 25th and 75th quartile values of δ¹⁵N (‰) signatures of arthropods sampled at three sites in south-west Western Australia. ... 82

Figure 4.2 δ¹³C (a) and δ¹⁵N (b) values (‰) of breath, whole blood and feathers for mistletoebirds at three sites in south-west Western Australia. ... 86

Figure 4.3 δ¹³C and δ¹⁵N values (‰) of a) whole blood and feathers from individual mistletoebirds and b) average whole blood values for mistletoebirds, silvereyes, brown honeyeaters and yellow-rumped thornbills at three sites in south-west Western Australia. ... 89

Figure 4.4 Proportional contribution of fruit and insects to the whole blood of mistletoebirds a) and proportional contribution of mistletoe fruit to individual mistletoe birds b) obtained from a dual-isotope (δ¹³C, δ¹⁵N) Bayesian isotope mixing model (SIAR). ... 90

Figure 5.1 Evolutionary relationships. ... 116

Figure 5.2 Concentration-dependent total sugar intake. ... 121

Figure 5.3 Concentration-dependent sugar preferences. ... 122
Figure 5.4 Gut nominal surface area and intestinal enzymes. .. 125

Figure 5.5 Feeding observations for New Holland honeyeaters, red wattlebirds, singing honeyeaters and silvereyes in Western Australia (Brown et al. 1997) and rainbow lorikeets in Western Australia and the Queensland-New South Wales border region (Cannon 1984; Brown et al. 1997). 127

Figure 5.6 Average nectar composition from 16 Australian plant genera (mean fructose, glucose, sucrose). .. 129

Figure 6.1 Apparent assimilation efficiency (AE*) of D-xylose (solid) and D-glucose (lines). 155

Figure 6.2 Bioavailability (f, %) of radiolabelled L-glucose (white) and D-xylose (grey) at two diet concentrations (0.25 and 1 mol·L⁻¹, solid and lines respectively). .. 159
LIST OF TABLES

Table 2.1 The characteristics of the five field sites in south-west Western Australia. 29

Table 2.2 Leaf carbon and nitrogen content (%), δ¹³C and δ¹⁵N values (%) of mistletoe, host and uninfected host plants. .. 31

Table 2.3 δ¹³C and δ¹⁵N values (%) and carbon and nitrogen content (%) for all samples (mistletoe, infected and uninfected hosts) were analysed as dependent variables in separate mixed-model ANOVAs. .. 34

Table 3.1 The characteristics of the five sites surveyed in south-west Western Australia. 51

Table 3.2 Bird species recorded in 53 surveys over 5 sites in south-west Western Australia from February 2010 to January 2011. .. 68

Table 4.1 The characteristics of the three field sites in south-west Western Australia. 75

Table 4.2 Stable isotope values δ¹³C and δ¹⁵N (‰) and carbon and nitrogen concentrations (%) for mistletoebird tissues (breath, blood and feathers) and diet sources (arthropods and mistletoe fruit). .. 85

Table 5.1 Summary of sugar type preferences, apparent assimilation efficiency (AE*) and digestive capacity. .. 107

Table 5.2 Details of birds euthanased for digestive enzymes ... 119

Table 5.3 Summary of maltase activity ... 130

Table 5.4 Nectar composition of 16 Australian plant genera ... 131

Table 6.1 Relative sugar composition (% dry mass±SEM) of mistletoe fruit viscin 146

Table 6.2 Parameters used to determine bioavailability (f) of radiolabelled L-glucose and D-xylose in mistletoebirds, silveryeyes and singing honeyeaters at two diet concentrations (0.25 and 1 mol·L⁻¹ hexose solutions) .. 158