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Abstract  

Sol-gel dip-coated optical coatings, copper-cobalt oxides on aluminium substrates, were 

thermally treated at different annealing temperatures in the range 500 – 650
 
°C. The resulting 

films were characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy 

(XPS), UV-Vis-NIR spectrophotometry and nanoindentation techniques. The crystallinity of 

CoCu2O3 enhanced significantly, with increasing annealing temperature from 500 to 650 °C, 

while the electronic structure and bonding states of the copper-cobalt oxides matrix remained 

unchanged. UV-Vis-NIR analysis showed that the solar absorptance (α) of the coatings 

changed with increasing of annealing temperature and an optimum α (84.4%) was achieved at 

550 °C, which also coincides to the maximum tensile residual stress of the coating. 

Nanoindentation tests exhibited an increasing trend in both the hardness (H) and elastic 

modulus (E) of the coatings with increase in annealing temperature, although a slight decrease 

in the H/E ratio was also observed. The experimental studies were complemented by Finite 

Element Modelling (FEM). The results showed that, under mechanical loading, the stress and 

plastic deformation were concentrated within the coating layers. As such, the likelihood of 

delamination of the coating layer upon unloading would be reduced.  

Keywords: Thin film coating; annealing; copper cobalt oxides; solid state ionics; finite 

element modelling 
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1. Introduction 

Copper cobalt oxides are a family of metal oxides which have found important applications 

in electro-catalytic reactions and as thermoelectric material [1-13]. To enable improved 

designs for optimal performance in these applications, their physicochemical, 

electrochemical, magnetic, conductivity as well as thermal properties have been intensely 

studied, in conjunction with their structural characteristics [6, 8, 13-16]. From these previous 

studies, it can be construed that temperature change in the synthesis process or application has 

substantial influence on their physicochemical properties.  

The temperature effect on the structural, magnetic and electronic structure properties in the 

delafossite-type of copper cobalt oxides were established [13]. The thermal analysis showed 

the compounds are stable up to 680°C, whereupon a phase transition event occurs. A weak 

temperature dependent magnetic susceptibility exists, which remains negative in the 

temperature range from ~20 K to 300 K. There is no ferromagnetic or paramagnetic impurity 

contribution from samples at temperatures as low as 2 K [13]. The temperature independent 

diamagnetism reported for this type of copper cobalt oxide is in agreement with formal charge 

assignments of Cu
+ 

(d
10

) and Co
3+ 

(d
6
, low spin) as suggested by Shannon et al.

 
[17] as well as 

from analysis of the electronic band structure determined by density functional theory (DFT) 

calculations [12, 13]. The spinel-type of copper cobalt oxides tends to form a low crystallized 

single phase of copper cobalt oxide with a partially inverted spinel structure and minor 

segregations of new cobalt and/or copper oxide phases, which depend on the Cu/Co ratio in 

the precursor salt as well as the calcination temperature [8, 18]. The increase of calcination 

temperature is typically accompanied by an increase in the degree of crystallinity of phases in 

copper cobalt oxides [16]. Nonetheless, the opposite result was observed by Shaheen [16], 

where the degree of crystallinity of detected phase in copper cobalt oxide decreased when 

synthesized by lower content of copper in Cu/Co ratio. Indeed, this discrepancy can be 
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addressed by considering the dissolution of more cobalt species in the lattice of the copper 

cobaltite phase, thus producing a more homogeneous solid solution [16].  

Compared to the above mentioned properties, the mechanical properties of optical copper 

cobalt mixed oxides are seldom studied and, to the best of our knowledge, there is no 

integrated experimental and modelling study on the mechanical properties of copper cobalt 

oxides coatings. This is quite surprising, in view of the fact that mechanical strength and 

durability are important in extending their service life. In our previous work, the copper cobalt 

oxide thin films were deposited on aluminium substrate via the sol-gel dip-coating route [19, 

20, 21]. The resulting coatings exhibited distinctive optical properties with a spectrally 

selective profile in the UV-Vis-NIR wavelengths region. There are, however, still many 

unresolved engineering issues, especially those as regards to the understanding of the 

influence of annealing temperatures on the physicochemical and mechanical properties of the 

coatings. Therefore, the aim of this work is to investigate the structural, surface compositions, 

optical and mechanical properties of copper cobalt oxide thin film coatings synthesized at 

different annealing temperatures using XRD, XPS, UV-Vis-NIR and nanoindentation. 

Moreover, the experimental results are used to evaluate the mechanical behaviour of the 

coatings by Finite Element Modelling (FEM). The high absorptance value accompanied by 

the high mechanical robustness of the copper cobalt oxide coating renders these coatings a 

promising material for various applications, especially for solar selective absorption. 

 

2. Experimental 

2.1. Preparation of thin film coatings 

Copper-cobalt oxide thin film coatings were deposited using a sol-gel dip-coating 

technique described in our previous reports [19, 20] with some variations as elucidated in the 

following. Copper (II) acetate monohydrate (Cu(OOCCH3)2.H2O, Alfa Aesar, 98 %), Cobalt 

(II) chloride (CoCl2.6H2O, APS Chemical, > 99 %), propionic acid (C2H5COOH, Chem 
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Supply, 99 %) and absolute ethanol (Merck) were used as received. Commercial aluminium 

(Anofol, size: 2×4 cm
2
) was used as substrate. The copper and cobalt precursors (at 0.25 M 

for each) were mixed using absolute ethanol. Propionate acid was then added to the solution 

as complexing agent and stirred for 2 hours. The resulting solution was then used for 

deposition on aluminium substrates using a dip-coater at a withdrawal rate of 120 mm/min 

with relative humidity being controlled below 55%, and subsequently heated on a hot plate at 

150°C for 10 seconds. The dip-heating cycles were conducted four times before final 

annealing at temperatures from 500°C to 650°C for 1 hour. Four dip-heating cycles process 

was adopted because it could provide an optimized reflective system compared to other 

numbers of cycles [20]. If the annealing temperature was set lower, residual organic groups 

would not be completely removed, while temperatures higher than 650°C could also not be 

applied since it was limited by the melting point of aluminium substrate. The ramp-rates of 

50°C/min was selected for the heating process before reaching the final annealing 

temperatures, while cooling to room temperature was allowed to occur naturally inside the 

closed furnace. 

2.2. Characterizations 

 

Mineralogical characteristics of the thin films were analyzed using a X-Ray Diffractometer 

(Bruker Advance D8 X-Ray Diffractometer) equipped with a Lynx-Eye detector, Cu-tube and 

operated at 40 kV and 40 mA [22]. Conditions of analysis were set as follows: 15 rpm 

rotation, 10-60° of 2θ, 0.01 degree increment, 1.2 sec/step-time per step, 0.26 degree fixed 

divergence slit and 2.20 degree fixed anti-scatter slit. The surface bonding structures of 

samples were probed by X-ray photoelectron spectroscopy (XPS) (Kratos Axis Ultra XPS 

spectrometer, Manchester, UK) with Al Kα radiation (hν=1486.6 eV) [23]. The samples were 

mounted horizontally on the holder and normal to the electrostatic lens, using double-sided 

Cu sticky tape. The vacuum pressure of the analyzer chamber was less than 10
-9 

Torr. The 

voltage and emission current of the X-ray source were held at 12 kV and 12 mA, respectively. 
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Initial survey scans used a pass energy of 80 eV. To ensure a high resolution and good 

sensitivity for the features of interests, a pass energy of 10 eV was used. The XPS spectra 

energy scale was calibrated using Cu 2p (932.67 eV), Ag 3d (368.27 eV), C 1s (284.8 eV; 

hydrocarbon: C–H) and Au 4f (83.98 eV). The electrostatic lens mode and analyzer entrance 

of the XPS instrument were selected using the Hybrid and Slot mode (iris=0.6 and 

aperture=49), respectively. Charge neutralization was employed during the XPS 

measurements. Surfaces of the samples were cleaned by etching with Ar
+
 for about 2 minutes 

when the O 1s and C 1s intensities reached minimum. The total sample current and Ar
+
 gun 

emission current were 75nA and 15mA, respectively. The gun acceleration voltage was 4.5 

kV. The base pressure of the sample analysis chamber was at about 10
-10

 Torr and the 

working pressure with high purity Ar
+
 gas for etching was 3 × 10

-8
 torr. The CASA XPS 

(V.2.3.15) software was utilized for quantification analysis with Shirley background 

subtraction. The solar absorptance was calculated based on the AM1.5 solar spectrum 

standard [24] using the near normal hemispherical reflectance from 300 to 2700 nm recorded 

by a UV–Vis-NIR Jasco V-670 double beam spectrophotometer with an integrating sphere.  

A nanoindentation workstation (Ultra-Micro Indentation System 2000, CSIRO, Sydney, 

Australia) equipped with a Berkovich indenter [25, 26] was used to determine the mechanical 

properties of the films. To ensure that only the film properties were measured, 

nanoindentation was conducted under load control with a maximum load of 0.5 mN, under 

which the maximum penetration depth was found to be ~0.1 m (see Results and discussion 

section), well below 10% of the total film thickness of ~2 m. For each test, 10 incremental 

and 10 decremental steps were used, respectively. For each sample, 30 measurements were 

taken. The results were then averaged and the standard deviation was evaluated for each 

sample. Finite element modelling (FEM) was used to assess the mechanical response of the 

coating system to external loadings. Input parameters consisted of both structural and 

mechanical properties of the coating systems obtained from experiments. A two-dimensional 
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(2D) axisymmetric model was constructed with the loading direction along the axial z axis, 

using COMSOL software. The details of the model set-up are given in our previous work [27, 

28], and are briefly described below. The model assembly comprises a coating (1 µm thick) 

placed on top of aluminium substrate (49 µm thick), loaded under a spherical tipped indenter 

with a radius of 5 µm. The simulation block is a rectangle measuring 50  50 µm. The coating 

is assumed to be bonded perfectly to the substrate. Time-dependent deformation behaviours 

such as creep, as well as surface roughness and contamination, were not considered in our 

simulations. The contact between the indenter and the sample was assumed to be frictionless. 

The bottom of the simulation model (z = 50 µm) was fixed in the z direction, while the right 

edge of the block (x = 50 µm) was fixed in the x direction. The axisymmetric axis coincided 

with the left edge of the simulation block (x = 0), as such, 3D effects could eventually 

obtained. The tip of the indenter was located at z = 0 µm at the beginning of the simulation. 

The indentation loading process was simulated as downward movements in successive steps 

of 0.01 µm each, starting from 0 to 0.12 µm. 

 

3. Results and Discussion 

3.1. XRD analysis 

XRD patterns of coated samples synthesized on aluminium substrates and treated at 

different annealing temperatures are shown in Fig. 1. Analyses of peak intensities and d-

spacing for peaks in the regions of 35.3° (0 1 1), 36.9° (3 1 0) and 40.2° (3 0 1) assigned the 

phase to CoCu2O3 (ICDD 76-0442) and in agreement with the orthorhombic crystal system 

(Space Group = Pmmn [#59]). The peaks at approximately 31.3° and 38.5° can be attributed 

to mixed phases of CoCuO2 (ICDD 74-1855) and CuCoO2 (ICDD 21-0256). The crystallinity 

along the (301) direction of CoCu2O3 increases with higher annealing temperature.   

Analysis of domain size from the (310) and (301) peaks using the Debye-Scherrer formula 

(equation 1) is tabulated in Table 1. The results indicate that as the annealing temperature 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

8 
 

increases, the domain measured perpendicular to the (3 1 0) lattice plane increases 

significantly, while the domain measured perpendicular to the (3 0 1) plane decreases slightly. 

B

hkl
B

K
t





cos
       (1) 

where K is the crystallite-shape factor (K=0.94 [29-31]); B=FWHM. 

It has been established that, the strain within a material can be evaluated by measuring the 

d-spacing of the crystal planes using X-ray diffraction [32]: 

z = (dn-d0)/d0       (2) 

wherez is the strain component normal to the surface, d0 and dn are the strain free and 

measured d-spacing, respectively. Within a coating layer of ~1 m thickness, the residual 

stress z is normally zero [33]. As such, we have [34]: 

z = - (x+y) = - (/E)(x+y)    (3) 

where  is Poisson’s ratio, E is Young’s modulus, x and y are the in-plane principal stresses 

along the x and y directions, respectively. Combining Equation (2) and (3), and assuming that 

the coating layer is isotropic, i.e., x=y, we obtain: 

2x= - (E/) (dn-d0)/d0     (4) 

from which the in-plane residual stress within the CoCu2O3 phase can be estimated. The E 

values were obtained from first principles calculations (i.e., 85 GPa along (3 0 1) and 122 GPa 

along (3 1 0), respectively). Although these results may not directly represent the stress levels 

within the coatings, they, nonetheless, provide an evaluation of the trend in stress changes due 

to different annealing temperatures. It is also interesting to note that the average E value 

within the coatings obtained from our nanoindentation results (i.e., 100 GPa, see Section 3.4) 

is in general agreement with those derived from first principles calculations, indicating that 

the actual stress level within the coatings may be close to those obtained from the above 

calculations. By bearing this in mind, the residual stress was found to decrease with the 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

9 
 

annealing temperature; that is, from 500 to 650°C, the tensile residual stress reduced by ~48% 

(Table 2). 

3.2. XPS study 

Fig. 2 and Fig. 3 show the Cu 2p XPS spectra and the decoupling of Cu 2p3/2 peaks of 

copper cobalt oxide film coatings synthesized at different annealing temperatures, 

respectively. In every spectrum, the two main peaks of Cu 2p3/2 and Cu 2p1/2 and the satellites 

on the high energy side of these two main peaks can be found (Fig. 2). Qualitatively, in every 

spectrum, the binding energy difference between Cu 2p1/2 and Cu 2p3/2, which is around 19.8 

eV, indicates the presence of a low oxidation state of copper, while the satellite peak between 

Cu 2p3/2 and Cu 2p1/2 confirms the presence of Cu
2+

. It is widely established that this satellite 

arises due to the shake-up transition by a ligand metal 3d charge transfer that does not occur 

with Cu
+ 

species which have completely filled 3d shells. From Fig. 2, it can be seen that the 

Cu 2p3/2 satellite intensity to Cu 2p3/2 main peak intensity ratio (Isat/Imain) varies slightly from 

0.1 to 0.15 as the annealing temperature is increased from 500 to 650 °C, indicating that there 

is a decrease in the covalent character of the Cu-O bond in copper cobalt mixed oxide [18]. 

The decoupling of Cu 2p3/2 peak and its satellite in every coating is shown in Fig. 3.a-d. 

Overall, the curve-fittings result in four components in every spectrum and they are quantified 

in Table 3. It is commonly recognized that the photoelectron peak at around 932.3-932.4 eV 

of Cu 2p3/2 is usually from the tetrahedral Cu
+
. The components at around 933-934 eV with 

their satellites characteristic are due to the octahedral Cu
2+

. From Table 3, it can be seen that 

the tetrahedral Cu
+
 ions remain more prominent compared to the octahedral Cu

2+
 ions, even 

though the annealing temperature is increased. The increase of annealing temperature 

generally does not change the copper bonding structure in the surface. The absence of a 

component at the low energy side of the Cu 2p3/2 peak indicates that natural cooling overnight 

to room temperature inside the closed oven furnace might prevent the reduction of octahedral 
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Cu
2+

 in contrast to the relatively faster cooling outside the furnace as reported in our previous 

work [20].  

Fig. 4 shows the profile of Co 2p spectra for samples synthesized at different annealing 

temperatures. Similarly, in every spectrum, the two main peaks can be attributed to Co 2p3/2 

and Co 2p1/2 and the satellites are located in the high energy sides of these two main peaks. 

Qualitatively, the Co 2p3/2 and Co 2p1/2 peaks separated by a spin-orbit splitting of ~15.9 eV 

and the Co 2p1/2 to Co 2p3/2 intensities ratio of 0.5 correspond to the Co
2+ 

ions [35]. The 

presence of a characteristic satellite on the high energy side of Co 2p3/2 confirms the existence 

of these Co
2+

 ions. Relatively low intensity satellites located in between Co 2p3/2 and Co 2p1/2 

indicate that Co ions are present in a partial spinel-type lattice arrangement and these low 

intensities satellite could also indicate the presence of Co
3+ 

ions mixing with Co
2+

 ions [6]. 

The asymmetry in the Co 2p1/2 peak confirms the existence of Co
2+

 and Co
3+

 ions.  

The decoupling of the Co 2p3/2 peak and the satellite at the high energy side of this peak in 

every spectrum provides five curve-fitting components (Fig. 5. a-d). The peaks in the region 

lower than 779.8 eV are mostly due to Co
3+ 

in octahedral coordination while the peaks around 

780 eV are predominantly attributed to the mixed Co(II,III) bonding states. The peak with 

binding energy of Co 2p3/2 above 780.0 eV with a shake-up satellite is characteristic of Co
2+ 

in 

tetrahedral coordination. The binding energy and the percentage of each component are 

tabulated in Table 4. It can be seen that, in all samples, the tetrahedral Co
2+

 ions dominate. 

Nonetheless, even though they are prominent in a copper-cobalt mixed-oxides system, these 

Co
2+

 ions are partially substituted by Cu
2+

 ions[8, 35] forming copper–cobalt oxide structures 

[6]. The increases of annealing temperatures between 500 to 650°C generally do not influence 

the cobalt bonding structure in the surface.  

Fig. 6 shows the O 1s XPS spectra and curve-fittings of copper cobalt oxide film coatings 

synthesized at different annealing temperatures. In every spectrum, the O 1s exhibits a strong 

peak with a shoulder at its higher binding energy side. The decoupling of the O 1s 
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photoelectron spectrum results in four curve-fittings grouped into three components. The 

component at binding energy around 529.3-529.4 eV (denoted “i”) is attributed to lattice O
2-

 

in the structure, while the components at BE around 530.4-531.5 eV (denoted “ii” and “iii”) 

may be due to the surface oxygen from a wide variety of species such as chemisorbed oxygen 

O
-
, oxygen containing surface contamination, and/or OH-like species, as hydroxyl, carbonate 

groups, etc. [6, 8, 18, 37-40]. The component at BE around 531.8-532.5 eV (denoted “iv”) 

could be assigned to subsurface (bulk structure near surface) O
-
 species [41, 42]. The apparent 

shoulders at the high energy side of the O 1s main peaks are the characteristic feature of the 

copper-cobalt mixed oxides family which distinguishes them from O 1s on Co3O4 [8]. 

Overall, there is no change in the oxygen surface compositions when the surfaces are treated 

at different annealing temperatures from 500 to 650°C. 

3.3. Optical properties 

The optical properties of the copper cobalt thin film coatings are evaluated on the basis of 

absorptance (α) within the wavelength range of 0.3-2.7 µm. Absorptance is defined as a 

weighted fraction between absorbed radiation and incoming radiation. The absorptance of a 

thin film on a substrate can be determined in terms of reflectance as described by Duffie and 

Beckman [24]. Low spectral reflectance indicates high absorptance and vice versa. The 

reflectance spectra of all the thin film coatings on highly reflective aluminium substrates 

synthesized at different annealing temperatures, together with their corresponding solar 

absorptance values, are shown in Fig. 7a. The prepared coatings exhibit low to moderate 

reflectance with interference peaks (wavy curves) round about 1.0-1.2 µm and absorption 

edges around 1.5-1.7 µm. The spectra essentially form solar selective absorber curve profiles 

within UV-Vis-NIR wavelengths area. Similar phenomena of the presence of interference 

peaks and absorption edges have also been reported by others researchers [43, 44]. The 

increase in temperature generally tends to raise the interference peaks and the absorption edge 

positions that reduce the absorptance values. The sample annealed at 550°C is an exception as 
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the interference peak and the absorption edge approach each other leading to the smallest 

wavy curve amplitude and the highest absorptance value among the coatings (α = 84.4%). 

Significant increases of the interference peak and the absorption edge positions are indicated 

by the coatings synthesized at annealing temperatures of 600°C and 650°C that decrease the 

absorptance value up to about 8% compared to the maximum absorptance value (Fig. 7b). 

From Fig. 7a, it can be seen that the more significant changes of reflectance spectra occur 

near the infrared (NIR) wavelength region (> 0.8 µm). The reflectance property of copper–

cobalt oxide layer in the NIR wavelengths area is affected by at least three factors; (1) the 

thickness of film coating, (2) the intrinsic properties of coating material, and (3) the 

reflectivity property of the substrate. For coatings with similar thicknesses, the reflectance 

features showed in Fig. 7a are due to the combined factors of solar wavelengths 

absorptions/scattering by the coating material (intrinsic properties) and the back-reflections of 

the NIR radiations transmitted through the coating material by the highly reflective 

aluminium substrate. The increase of annealing temperature from 500 to 650°C enhances the 

crystallinity of the coating material that subsequently might increase the scattering by the 

larger crystallite, leading to the decrease of absorption by the coating.  

The choice of substrate also has a substantial influence on the reflectance property of the 

coatings. It is widely accepted that the longer the NIR wavelength, the more radiation will be 

transmitted through the semiconductor coating material due to the smaller energy owned by 

the radiations/photons, which makes them easier to pass the coating material without being 

absorbed. This transmitted-through radiation will be then reflected back by the reflective 

substrate (dark mirror absorber-reflector tandem concept). In view of this, it seems that our 

coatings behave akin to a semiconductor material. The increase of annealing temperature, i.e 

more than 550°C in the coating synthesis process, might increase the intrinsic “band gap 

energy” of the coating. As such, the smaller number of the incident NIR photons are absorbed 

through the transition across the band gap, while more photons are transmitted through the 
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coating. This transmitted radiation will then be reflected back by the reflective substrate 

which eventually increases the reflectance and decreases the absorptance. 

3.4. Nanoindentation tests 

Fig. 8 shows representative load-displacement curves obtained from nanoindentation 

experiments on the thin film coatings treated at different annealing temperatures. From these 

curves the values of elastic modulus (E), hardness (H) of   the   thin films and their wear 

resistance index (H/E) are derived and presented in Fig. 9. From Fig. 8, the level of resistance 

to deformation of copper cobalt oxide thin film coatings increases with rising annealing 

temperature; the coating annealed at temperature 650°C exhibits the highest resistance to 

deformation. The elastic moduli of all the coatings are lower than that of the aluminium 

substrate, consistent with our previous findings [19]. In addition, the obtained hardness values 

of the present study are generally consistent with those reported by other researchers [45, 46]. 

Compared to the Young’s modulus and hardness obtained on the similar samples [Cu]/[Co] = 

0.3M/0.3M without heat treatment [21], the results in this work were slightly higher after 

annealing. Further, following heat treatment, there is an increasing trend in both elastic 

modulus and hardness for the coatings, albeit this is not so pronounced for hardness. Hence, it 

can be construed that the heat treatment exerts a positive impact on the mechanical properties 

of the coating layer. The spread of the measurement results, and the associated errors in both 

the modulus and hardness, may be due to the surface roughness and the porosity of the 

coatings [19, 20]. 

Wear resistance is vital to the performance and reliability of the optical coatings during 

service, where mechanical contacts are always expected. Previous studies indicated that the 

hardness to modulus ratio, H/E, is an important parameter for predicting the wear resistance 

[47]. Even though there is a decreased tendency in H/E ratio of the coatings with increasing 

annealing temperature, all coatings prepared in this work are envisaged to have superior wear 

resistance when compared with the aluminium substrate (Fig. 9(c)). 
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3.5. Finite Element Modelling (FEM) 

FEM simulation was conducted using parameters listed in Table 5, in which the yield 

strength was estimated as H/3 [48]. The results for the coating annealed at 650°C are shown 

in Fig. 10, where the stress distribution under progressive loading is presented. Notably, the 

higher stress, as well as the associated plastic zone, was primarily concentrated within the 

coating layer, up to an indentation depth of 0.06 µm. For the loading conditions modelled, 

only about half of the maximum stress level could expand into the substrate. This is because 

all the coating layers have lower elastic modulus but higher hardness than those of the Anofol 

aluminium substrate (EAl = 131.41 GPa, HAl = 1.455 GPa), which were evaluated 

experimentally in our previous works [19 - 21]. Consequently, little plastic deformation 

would result within the Al substrate. Considering the fact that for all the samples, variations in 

both Young’s modulus and Poisson’s ratio only occur within a narrow range, contact-induced 

stress distributions in the other coatings are similar. Some variations, although not significant, 

were observed in the stress distributions (Fig. 10), compared to our previous work [21], due to the 

change in the mechanical properties of coatings after annealing at the temperature of 650 °C 

Therefore, two implications can be derived from the above analysis. a) Coating delamination 

would be suppressed, which typically occurs at the interface between the coating and 

plastically deformed substrate during unloading.  It has been well established that 

delamination is a direct consequence of plastic deformation within the substrate [49, 50]. b) 

Mechanical damage, once induced, would be confined within the coating under moderate 

loading conditions. In contrast, when the same loading is applied directly onto the Al 

substrate, a marked difference can be observed in Fig. 11, where the plastic zones of the 

loaded samples (coated and uncoated) are determined from FEM results using domain 

integration and plotted against the indentation depth. The size of the plastic zone resulting 

from the same loading has increased by 5-7 times, indicating a significant increase in the 

plastic deformation. It is worth noting that the plastic deformation is detrimental to the 
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integrity of the coating/substrate system. While the plastic zone within the coating layer 

represents a damage mechanism which is undesirable and cannot be overlooked, the marked 

reduction of its size, compared to that in the bare substrate, signifies a distinct improvement in 

load bearing capability. From these results, improvement in the load-bearing performance is 

expected when applying to the Al substrate with a coating layer having higher H/E, such as 

the coatings being developed and studied here. 

 

4. Conclusions 

The copper-cobalt oxides thin film coatings were deposited on aluminium substrates and 

then treated at different annealing temperatures within the range 500-650°C. The resultant 

coatings were characterized via XRD, XPS, UV-Vis-NIR and nanoidentation methods. An 

increase in the mean size of the crystalline domains of the coatings was found with the 

increase of annealing temperature. The chemistry binding structures on the surface 

characterized by XPS remained relatively unaltered with the change in the annealing 

temperature up to 650 C. The copper electronic structure consisted primarily of tetrahedral 

Cu
+
 in addition to octahedral Cu

2+
. The cobalt electronic structure comprised tetrahedral Co

2+
 

ions, octahedral Co
3+

 and mixed Co(II,III) oxidation states. The oxygen oxidation states 

consisted mainly of lattice O
2-

 with minor surface and subsurface oxygen. Optical properties 

characterized by UV-Vis-NIR revealed that the increase of the annealing temperature to 

550°C increased the absorptance which reached the maximum value of α = 84.4%, while 

further increases of temperature decreased the absorptance. This transition was caused by the 

integrated effects of the intrinsic properties of coating material and the substrate surface 

optical properties. Mechanical properties measured by nanoindentation tests revealed that 

both the elastic modulus and the hardness had an increasing trend but there was a slight 

decrease in H/E ratio as the annealing temperature was increased. However, by using H/E as 

an indicator, the wear resistance of all these coating materials was expected to be superior to 
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that of the aluminium substrate. FEM modelling indicated that, under mechanical loading 

conditions, stress and plastic deformation were primarily concentrated within the coating 

layers. This would reduce the likelihood of delamination of the coating layer upon unloading.  
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Table 1. Results of grain/domain size derived using Debye-Scherrer formula from the 

               (3 1 0) and (3 0 1) lattice planes. 

Annealing 

Temperatures (
o
C) 

Domain size (nm) 

(310) plane (301) plane 

500 26 221 

550 53 252 

600 61 196 

650 101 196 
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Table 2. Residual stress within the CoCu2O3 phase, estimated by using the (310) and 

(301) peak position data from the X-ray diffraction 

 

Annealing 

temperature (°C) 

2θ for (310) peak 2θ for (301) peak Tensile residual 

stress, σx (GPa) 

500 36.920 40.354 0.65 

550 36.990 40.324 0.65 

600 36.920 40.252 0.48 

650 36.860 40.191 0.34 

Reference 36.445 40.243 0.00 
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Table 3. The curve-fittings results of Cu 2p3/2 and its satellite of copper cobalt film coatings 

synthesized at different annealing temperatures. 

Annealing 

temperature 

 Binding energy and percentage 

Cu 2p3/2 

photoelectron line 

Satellite I Satellite II 

500 °C  932.3 eV  

(43.7 %) 

933.5 eV  

(38.0 %) 

940.5 eV  

(9.4 %) 

943.0 eV  

(8.9 %) 

550 °C  932.3 eV  

(42.9 %) 

933.5 eV  

(38.9 %) 

940.6 eV  

(10.3 %) 

943.1 eV  

(7.9 %) 

600 °C  932.3 eV  

(47.1 %) 

933.5 eV  

(36.2 %) 

940.6 eV  

(8.1 %) 

943.1 eV  

(8.6 %) 

650 °C  932.4 eV 

(47.5%) 

933.5 eV  

(37.4 %) 

940.6 eV  

(7.4 %) 

943.2 eV  

(7.7 %) 

Attributions: Tetrahedral Cu
+ Octahedral Cu

2+
 Cu

2+
 characteristic satellites  
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Table 4. The curve-fittings results of Co 2p3/2 and its satellite of copper cobalt film 

coatings synthesized at different annealing temperatures. 

Annealing 

temperature 

 Binding energy and percentage 

Co 2p3/2 photoelectron line satellites 

i ii iii iv v 

500°C  779.0 eV 

(13.3 %) 

780.0 eV  

(27.5 %) 

781.9 eV 

(31.7 %) 

785.7 eV  

(15.1 %) 

787.7 eV  

(12.4 %) 

550°C  778.9 eV  

(10.6 %) 

779.9 eV 

(24.6 %) 

781.7 eV 

(35.9 %) 

785.5 eV 

(13.3 %) 

787.6 eV  

(15.6 %) 

600°C  778.9 eV  

(9.24 %) 

779.8 eV 

(27.7 %) 

781.7 eV 

(34.5 %) 

785.6 eV  

(14.8 %) 

787.9 eV  

(13.7 %) 

650°C  778.9 eV 

(11.1 %) 

779.9 eV 

(26.1 %) 

781.6 eV 

(34.8 %) 

786.0 eV 

(22.7 %) 

789.3 eV 

(5.3 %) 

Attributions Octahedral 

Co(III) 

Co(II,III)  Tetrahedral 

Co(II) 

Co(II) characteristic 

satellites  
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Table 5. Mechanical parameters derived from the nanoindentation and used for FEM 

modelling 

 

Parameters  Temperatures (°C) 

  500 550 600 650 

E (GPa)  91.4 101.4 101.5 105.1 

H(GPa)  3.18 3.20 3.22 3.17 

H/E  0.035 0.032 0.032 0.030 

Yield strengthy) (GPa)  1.06 1.07 1.07 1.06 

Poisson’s ratio  0.3 0.3 0.3 0.3 
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List of Figure Captions 

Fig. 1. XRD patterns of the prepared copper–cobalt thin film coatings on aluminum substrate 

at different annealing temperatures. 

Fig.2. Cu 2p XPS spectra of copper cobalt thin film coatings synthesized at different 

annealing temperatures. 

Fig.3. Decoupling of Cu 2p3/2 peaks of copper cobalt thin film coatings synthesized at 

different annealing temperatures. 

Fig.4. Co 2p XPS spectra of copper cobalt thin film coatings synthesized at different 

annealing temperatures. 

Fig.5. Decoupling of Co 2p3/2 peaks of copper cobalt thin film coatings synthesized at 

different annealing temperatures. 

Fig.6. O 1s XPS spectra and curve-fittings of copper cobalt thin film coatings synthesized at 

different annealing temperatures. 

Fig.7. Reflectance spectra and solar absorptance of copper–cobalt oxide thin film coatings on 

aluminium substrates synthesized at different annealing temperatures (a), Absorptance versus 

annealing temperature (b). 

Fig.8. Typical load-displacement curves obtained from coatings treated at different annealing 

temperatures. 

Fig.9. Mechanical properties of the as-deposited coatings derived from the nanoindentation 

tests, (a) elastic modulus, (b) hardness, and (c) H/E. The wear resistance index of aluminium 

are also displayed for comparison purpose.
19

 

Fig.10. Stress distribution of coating treated at annealing temperature of 650°C, obtained 

from FEM simulations for different indentation depths: (a) 0.03 μm, (b) 0.04 μm, (c) 0.05 μm, 
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and (d) 0.06 μm. The dark lines close to the bottom of each model represent the interface 

between the coating and the substrate. 

Fig.11. Variations of the plastic zone size in coatings synthesized at annealing temperatures of 

500-650°C compared to the aluminium under increasing load, derived from domain 

integration of the FEM results. 
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Fig. 1.  
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 Fig. 2.  
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Fig. 3.  
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Fig. 4.  
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Fig. 5.  
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Fig. 6.  
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Fig. 7.(a)(b)  
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             Fig. 8.  
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             Fig. 9.  
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          Fig. 10  
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           Fig. 11.  
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Research Highlights 

> Copper-cobalt oxides are coated on aluminium substrates via sol-gel technique. > 

Tetrahedral Cu
+
, octahedral Cu

2+
, tetrahedral Co

2+
 ions and octahedral Co

3+
 are detected. > 

Increase of the annealing temperature to 550°C increases the absorptance. > The maximum 

value of α = 84.4% is obtained. > Stress and plastic deformation are concentrated within the 

coating layers.  
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