Improving fertiliser management: redefining soil test-crop response relationships for canola, wheat and lupins in Western Australia cropping systems

WEN CHEN1,2, ROSS BRENNAN2, RICHARD BELL1, MIKE BOLLAND2, GEOFF ANDERSON2

1School of Environmental Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
2Department of Agriculture and Food WA, 3 Baron-Hay Court, South Perth WA 6151, Australia

Fertiliser input is one of the largest variable costs for grain production. This paper reports on a study (funded by the GRDC) to re-examine the soil test–crop response relationships from trial data to define critical soil test values (P, K and S) for major crops (wheat, canola and lupin) grown on the soils of Western Australia. Initially we created a database of fertiliser experiments conducted mostly by the DAFWA going back to the 1970’s. The data on wheat (418), lupin (420) and canola (266) single-year fertiliser experiments were compiled and analysed to derive critical soil test values. Canola grain production occurs on most soils in the region. Derived critical Colwell soil test values (mg/kg) for the top 10 cm of soil were 25 for P and 52 for K, which adequately indicated when canola crops were likely to respond to fertiliser P and K applications. The derived critical KCl\textsubscript{40} soil S test value was 10 mg/kg. However, the critical S value could only be used as a general guideline due to the poor correlation between top (0-10cm) soil test and crop grain yield response. It is suggested that for the soils where the soil S test value for the top 10 cm was below the critical value, soil test values for the 10-20 and 20-30 cm horizons were also required. If soil test S was above the critical value (10 mg/kg) in either of these 2 lower soil horizons, then canola grain yield response to applied fertiliser S was unlikely. Wheat critical Colwell soil P test value varied (15-39 mg/kg) with soil types due to the differences in soil P sorption. For wheat crops grown on soil types other than duplex soils, the derived critical value (mg/kg) for Colwell soil K test was 80. Critical values of soil Colwell P for lupins varied with soil types due to differences in soil P sorption. For soil types with PRI \textless=1, the critical value was 25 mg/kg. But for soil types with PRI \textgreater=2, the relationship between Colwell soil P test and relative yield was poor. The derived critical value of Colwell soil K test for lupins was 31 mg/kg. Further improvements in estimated critical values using different curving fitting approaches and critical ranges (rather than single value) were also reported.