A combinatorial approach to a problem in distribution modulo 1

Amy Glen

School of Chemical & Mathematical Sciences
Murdoch University, Perth, Australia

amy.glen@gmail.com
http://wwwstaff.murdoch.edu.au/~aglen

Séminaire du Laboratoire de MIS
@ Université de Picardie Jules Verne
I will present a theorem that solves the following number-theoretical problem.

Problem:

To completely describe the minimal intervals containing all the fractional parts $\{\xi 2^n\}, \ n \geq 0$, for some positive real number ξ.
I will present a theorem that solves the following number-theoretical problem.

Problem:
To completely describe the minimal intervals containing all the fractional parts \(\{\xi 2^n\}, \ n \geq 0 \), for some positive real number \(\xi \).

Approach:
- Replace real numbers by their *binary expansions*.
I will present a theorem that solves the following number-theoretical problem.

Problem:
To completely describe the minimal intervals containing all the fractional parts \(\{\xi 2^n\}, \ n \geq 0 \), for some positive real number \(\xi \).

Approach:
- Replace real numbers by their binary expansions.
- Transform inequalities between real numbers into (lexicographic) inequalities between infinite sequences representing their binary expansions.
I will present a theorem that solves the following number-theoretical problem.

Problem:
To completely describe the minimal intervals containing all the fractional parts \(\{\xi 2^n\}, \ n \geq 0 \), for some positive real number \(\xi \).

Approach:
- Replace real numbers by their binary expansions.
- Transform inequalities between real numbers into (lexicographic) inequalities between infinite sequences representing their binary expansions.

Main Tool: Combinatorics on words
Words

By a *word*, I mean a *finite or infinite sequence* of symbols (*letters*) taken from a non-empty countable set A (*alphabet*).

Examples

- 001

- $(001)^\infty = 001001001001001001001001001001001001\ldots$

- $1100111100011011101111001101110010111111101\ldots$

- $100102110122220102110021111102212222201112012\ldots$

- $0123456789101112131415\ldots$

- $112121212\ldots$

- $212114116118\ldots$
Words

By a *word*, I mean a *finite or infinite sequence* of symbols (*letters*) taken from a non-empty countable set \mathcal{A} (*alphabet*).

Examples

- 001
- $(001)^\infty = 0.01001001001001001001001001001001\ldots$
- $110011110001101111011100110111001011111101\ldots$
- $100102110122220102110021111102212222201112012\ldots$
- $0123456789101112131415\ldots$
- $11212121212\ldots$
- $212114116118\ldots$
By a *word*, I mean a finite or infinite sequence of symbols (*letters*) taken from a non-empty countable set \mathcal{A} (*alphabet*).

Examples

- 001

- $(001)^\infty = 0.01001001001001001001001001001001\ldots = (2/7)_2$

- 110011110001101110111001101110010111111101\ldots

- 100102110122220102110021111102212222201112012\ldots

- 0123456789101112131415\ldots

- 11212121212\ldots

- 212114116118\ldots
Words

By a *word*, I mean a *finite or infinite sequence* of symbols (*letters*) taken from a non-empty countable set A (*alphabet*).

Examples

- 001
- $(001)\infty = 0.01001001001001001001001001001001001001\ldots = (2/7)_2$
- $1.100111100011011101111001101110010\ldots$
 - ↑
- 100102110122220102110021111102212222201112012\ldots
- 0123456789101112131415\ldots
- 11212121212\ldots
- 212114116118\ldots
By a *word*, I mean a **finite or infinite sequence** of symbols (*letters*) taken from a non-empty countable set A (*alphabet*).

Examples

- 001

- \((001)^\infty = 0.01001001001001001001001001\ldots = (2/7)_2\)

- \(1.10011110001101110111001101110010\ldots = ((1 + \sqrt{5})/2)_2\)

- \(100102110122220102110021111102212222201112012\ldots\)

- \(0123456789101112131415\ldots\)

- \(11212121212\ldots\)

- \(212114116118\ldots\)
Words

By a *word*, I mean a *finite or infinite sequence* of symbols (*letters*) taken from a non-empty countable set A (*alphabet*).

Examples

- 001
- $(001)\infty = 0.01001001001001001001001001001001001\ldots = (2/7)_2$
- $1.100111100011011101111001101110010\ldots = ((1 + \sqrt{5})/2)_2$
- $10.010211012222010211002111110221222201112012\ldots$
- $0123456789101112131415\ldots$
- $11212121212\ldots$
- $212114116118\ldots$
By a *word*, I mean a finite or infinite sequence of symbols (letters) taken from a non-empty countable set A (alphabet).

Examples

- 001

- $(001)^\infty = 0.01001001001001001001001001\ldots = (2/7)_2$

- $1.100111100011011101111001101110010\ldots = ((1 + \sqrt{5})/2)_2$

- $10.0102110122220102110021111102212222201112012\ldots = (\pi)_3$

- $0123456789101112131415\ldots$

- $11212121212\ldots$

- $212114116118\ldots$
Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken from a non-empty countable set A (alphabet).

Examples

- 001
- $(001)_{\infty} = 0.01001001001001001001001001001001\ldots = (2/7)_2$
- $1.10011110001101110111001101110010\ldots = ((1 + \sqrt{5})/2)_2$
- $10.0102110122220102110021111102212222201112012\ldots = (\pi)_3$
- $0.123456789101112131415\ldots$
- $11212121212\ldots$
- $212114116118\ldots$
By a word, I mean a finite or infinite sequence of symbols (letters) taken from a non-empty countable set A (alphabet).

Examples

- 001
- $(001)_{\infty} = 0.01001001001001001001001001001001001001001001001\ldots = (2/7)_2$
- $1.100111100011011101111001101110010\ldots = ((1 + \sqrt{5})/2)_2$
- $10.0102110122220102110021111102212222201112012\ldots = (\pi)_3$
- $0.123456789101112131415\ldots = \text{Champernowne's number } (C_{10})$
- $1121212212\ldots$
- $212114116118\ldots$
Words

By a \textit{word}, I mean a \textit{finite or infinite sequence} of symbols (\textit{letters}) taken from a non-empty countable set A (\textit{alphabet}).

\textbf{Examples}

- 001

- $(001)_{\infty} = 0.0100100100100100100100100100\ldots = (2/7)_2$

- $1.100111100011011101111001101110010\ldots = ((1 + \sqrt{5})/2)_2$

- $10.0102110122220102110021111102212222201112012\ldots = (\pi)_3$

- $0.123456789101112131415\ldots = \text{Champernowne's number (}C_{10}\text{)}$

- $[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, \ldots] = \sqrt{3}$

- $212114116118\ldots$
Words

By a \textit{word}, I mean a \textit{finite or infinite sequence} of symbols (\textit{letters}) taken from a non-empty countable set \(A\) (\textit{alphabet}).

\textbf{Examples}

- 001
- \((001)\infty = 0.01001001001001001001001001\ldots = (2/7)_2\)
- \(1.1001111000110111011110011011110010\ldots = ((1 + \sqrt{5})/2)_2\)
- \(10.0102110122220102110021111102212222201112012\ldots = (\pi)_3\)
- \(0.123456789101112131415\ldots = \text{Champernowne's number} (C_{10})\)
- \([1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, \ldots] = \sqrt{3}\)
- \([2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, \ldots]\)
Words

By a *word*, I mean a finite or infinite sequence of symbols (*letters*) taken from a non-empty countable set A (*alphabet*).

Examples

- 001
- $(001)\infty = 0.0100100100100100100100100100\ldots = (2/7)_2$
- $1.100111100011011101111001101110010\ldots = ((1 + \sqrt{5})/2)_2$
- $10.01021101222201021100211110221222201112012\ldots = (\pi)_3$
- $0.123456789101112131415\ldots = \text{Champernowne's number } (C_{10})$
- $[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, \ldots] = \sqrt{3}$
- $[2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, 1, \ldots, 1, 2n, 1, \ldots] = e$
In mathematics, words naturally arise when one wants to represent elements from some set in a systematic way.
In mathematics, words naturally arise when one wants to represent elements from some set in a systematic way.

For instance:

- Expansions of real numbers in integer bases (e.g., binary and decimal expansions) or continued fraction expansions allow us to associate with every real number a finite or infinite sequence of digits.
In mathematics, words naturally arise when one wants to represent elements from some set in a systematic way.

For instance:

- **Expansions of real numbers in integer bases** (e.g., binary and decimal expansions) or **continued fraction expansions** allow us to associate with every real number a finite or infinite sequence of digits.

- **Combinatorial group theory** involves the study of words that represent group elements.
Depending on the problem to be solved, it may be fruitful to study combinatorial and structural properties of the words representing the elements of a particular set or to impose certain combinatorial conditions on such words.
Words . . .

- Depending on the problem to be solved, it may be fruitful to study combinatorial and structural properties of the words representing the elements of a particular set or to impose certain combinatorial conditions on such words.

- Most commonly studied words are those which satisfy one or more strong regularity properties; for instance, words containing many repetitions or palindromes.
Words ...

- Depending on the problem to be solved, it may be fruitful to study combinatorial and structural properties of the words representing the elements of a particular set or to impose certain combinatorial conditions on such words.

- Most commonly studied words are those which satisfy one or more strong regularity properties; for instance, words containing many repetitions or palindromes.

A palindrome is a word that reads the same backwards as forwards.

Examples: eye, civic, radar, glenelg
Words . . .

- Depending on the problem to be solved, it may be fruitful to study combinatorial and structural properties of the words representing the elements of a particular set or to impose certain combinatorial conditions on such words.

- Most commonly studied words are those which satisfy one or more strong regularity properties; for instance, words containing many repetitions or palindromes.

 A *palindrome* is a word that reads the same backwards as forwards.

 Examples: eye, civic, radar, glenelg

- The extent to which a word exhibits strong regularity properties is generally inversely proportional to its “complexity”.
Depending on the problem to be solved, it may be fruitful to study combinatorial and structural properties of the words representing the elements of a particular set or to impose certain combinatorial conditions on such words.

Most commonly studied words are those which satisfy one or more strong regularity properties; for instance, words containing many repetitions or palindromes.

A **palindrome** is a word that reads the same backwards as forwards.

Examples: eye, civic, radar, glenelg

The extent to which a word exhibits strong regularity properties is generally inversely proportional to its “**complexity**”.

Basic measure: number of distinct blocks (factors) of each length occurring in the word.
Words: Factor Complexity

- Given a finite or infinite word w, let $\mathcal{F}_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.
Words: Factor Complexity

- Given a finite or infinite word w, let $F_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.

- The function $C_w(n) : \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$C_w(n) = \text{Card}(F_n(w))$$

is called the factor complexity function of w.
Words: Factor Complexity

- Given a finite or infinite word w, let $\mathcal{F}_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.

- The function $C_w(n) : \mathbb{N} \to \mathbb{N}$ defined by
 \[C_w(n) = \text{Card}(\mathcal{F}_n(w)) \]
 is called the factor complexity function of w.

Example

$x = (\sqrt{2})_2 = 1.0110101000001001111\ldots$
Words: Factor Complexity

- Given a finite or infinite word w, let $\mathcal{F}_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.

- The function $C_w(n) : \mathbb{N} \to \mathbb{N}$ defined by

$$C_w(n) = \text{Card}(\mathcal{F}_n(w))$$

is called the factor complexity function of w.

Example

$x = (\sqrt{2})_2 = 1.0110101000001001111\ldots$

$\mathcal{F}_1(x) = \{0, 1\},\ C_x(1) = 2$
Words: Factor Complexity

- Given a finite or infinite word w, let $\mathcal{F}_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.

- The function $C_w(n) : \mathbb{N} \to \mathbb{N}$ defined by

 $$C_w(n) = \text{Card}(\mathcal{F}_n(w))$$

 is called the factor complexity function of w.

Example

\[
x = (\sqrt{2})_2 = 1.0110101000001001111\ldots
\]

\[
\mathcal{F}_1(x) = \{0, 1\}, \quad C_x(1) = 2
\]

\[
\mathcal{F}_2(x) = \{00, 01, 10, 11\}, \quad C_x(2) = 4
\]
Words: Factor Complexity

- Given a finite or infinite word w, let $\mathcal{F}_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.

- The function $C_w(n) : \mathbb{N} \to \mathbb{N}$ defined by
 \[C_w(n) = \text{Card}(\mathcal{F}_n(w)) \]
 is called the factor complexity function of w.

Example

\[x = (\sqrt{2})_2 = 1.0110101000001001111 \ldots \]
\[\mathcal{F}_1(x) = \{0, 1\}, \ C_x(1) = 2 \]
\[\mathcal{F}_2(x) = \{00, 01, 10, 11\}, \ C_x(2) = 4 \]
\[\mathcal{F}_3(x) = \{000, 001, 010, 100, 101, 110, 111\}, \ C_x(3) = 8 \]
Words: Factor Complexity

- Given a finite or infinite word w, let $\mathcal{F}_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.

- The function $C_w(n) : \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$C_w(n) = \text{Card}(\mathcal{F}_n(w))$$

is called the factor complexity function of w.

Example

$x = (\sqrt{2})_2 = 1.01101010000001001111\ldots$

$\mathcal{F}_1(x) = \{0, 1\}, \ C_x(1) = 2$

$\mathcal{F}_2(x) = \{00, 01, 10, 11\}, \ C_x(2) = 4$

$\mathcal{F}_3(x) = \{000, 001, 010, 100, 101, 110, 111\}, \ C_x(3) = 8$

Conjecture: $C_x(n) = 2^n$ for all n as it is believed $\sqrt{2}$ is normal in base 2.
A real number x is said to be *normal* in base b if the base b digits of x are uniformly distributed, with all factors of the same length occurring with equal frequency.
A few words about normal numbers

- A real number x is said to be **normal** in base b if the base b digits of x are uniformly distributed, with all factors of the same length occurring with equal frequency.

- Borel (1909): Almost all real numbers are normal, in the sense that the set of non-normal numbers has Lebesgue measure zero.
A real number x is said to be normal in base b if the base b digits of x are uniformly distributed, with all factors of the same length occurring with equal frequency.

Borel (1909): Almost all real numbers are normal, in the sense that the set of non-normal numbers has Lebesgue measure zero.

But only very few numbers have been shown to be normal.
A real number x is said to be normal in base b if the base b digits of x are uniformly distributed, with all factors of the same length occurring with equal frequency.

Borel (1909): Almost all real numbers are normal, in the sense that the set of non-normal numbers has Lebesgue measure zero.

But only very few numbers have been shown to be normal.

Champernowne (1933) proved that $C_{10} = 0.12345678910111213\ldots$ is normal in base 10, but it may not be normal in other bases.
A real number x is said to be normal in base b if the base b digits of x are uniformly distributed, with all factors of the same length occurring with equal frequency.

Borel (1909): Almost all real numbers are normal, in the sense that the set of non-normal numbers has Lebesgue measure zero.

But only very few numbers have been shown to be normal.

Champernowne (1933) proved that $C_{10} = 0.12345678910111213\ldots$ is normal in base 10, but it may not be normal in other bases.

It is widely believed that $\sqrt{2}$, π, and e are normal in every base, but this conjecture is yet to be proved (or disproved).
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word \(w \) is eventually periodic if and only if \(C_w(n) \leq n \) for some \(n \in \mathbb{N}^+ \).

\(w \) is eventually periodic if and only if \(C_w(n) \leq n \) for some \(n \in \mathbb{N}^+ \).
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is **eventually periodic** if and only if $C_w(n) \leq n$ for some $n \in \mathbb{N}^+$. That is: w is aperiodic $\iff C_w(n) \geq n + 1$ for all $n \in \mathbb{N}$.

Amy Glen (Murdoch University)
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is **eventually periodic** if and only if $C_w(n) \leq n$ for some $n \in \mathbb{N}^+$. That is: w is aperiodic $\iff C_w(n) \geq n + 1$ for all $n \in \mathbb{N}$.

- An infinite word w is called **Sturmian** if and only if $C_w(n) = n + 1$ for each n.

Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is **eventually periodic** if and only if $C_w(n) \leq n$ for some $n \in \mathbb{N}^+$. That is: w is aperiodic $\iff C_w(n) \geq n + 1$ for all $n \in \mathbb{N}$.

- An infinite word w is called **Sturmian** if and only if $C_w(n) = n + 1$ for each n.
- Sturmian words are the aperiodic infinite words of minimal complexity.
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is **eventually periodic** if and only if $C_w(n) \leq n$ for some $n \in \mathbb{N}^+$.

That is: w is **aperiodic** $\iff C_w(n) \geq n + 1$ for all $n \in \mathbb{N}$.

- An infinite word w is called **Sturmian** if and only if $C_w(n) = n + 1$ for each n.

- Sturmian words are the **aperiodic infinite words of minimal complexity**.

- Their low complexity accounts for many interesting features, as it induces certain regularities in such words without, however, making them periodic.
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is **eventually periodic** if and only if $C_w(n) \leq n$ for some $n \in \mathbb{N}^+$. That is: w is aperiodic $\iff C_w(n) \geq n + 1$ for all $n \in \mathbb{N}$.

- An infinite word w is called **Sturmian** if and only if $C_w(n) = n + 1$ for each n.
- Sturmian words are the aperiodic infinite words of minimal complexity.
- Their low complexity accounts for many interesting features, as it induces certain regularities in such words without, however, making them periodic.
- **References in:** Combinatorics, Symbolic Dynamics, Number Theory, Discrete Geometry, Theoretical Physics, Theoretical Computer Science.
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word \(w \) is *eventually periodic* if and only if \(C_w(n) \leq n \) for some \(n \in \mathbb{N}^+ \).

That is: \(w \) is aperiodic \(\iff C_w(n) \geq n + 1 \) for all \(n \in \mathbb{N} \).

- An infinite word \(w \) is called *Sturmian* if and only if \(C_w(n) = n + 1 \) for each \(n \).
- Sturmian words are the aperiodic infinite words of minimal complexity.
- Their low complexity accounts for many interesting features, as it induces certain regularities in such words without, however, making them periodic.
- **References in:** Combinatorics, Symbolic Dynamics, Number Theory, Discrete Geometry, Theoretical Physics, Theoretical Computer Science.
- Numerous equivalent definitions & characterisations . . .
Let’s consider a nice geometric realisation, starting with a special class of finite words...
Constructing Sturmian words

- Let’s consider a nice geometric realisation, starting with a special class of finite words . . .

- Words over a 2-letter alphabet \(\{a, b\} \) that are factors of (infinite) Sturmian words are called **finite Sturmian words** – they are the cyclic shifts of **Christoffel words** which can be obtained via the following construction.
Constructing Sturmian words

- Let’s consider a nice geometric realisation, starting with a special class of finite words . . .

- Words over a 2-letter alphabet \{a, b\} that are factors of (infinite) Sturmian words are called *finite Sturmian words* – they are the cyclic shifts of *Christoffel words* which can be obtained via the following construction.

- Using a similar construction we obtain *infinite Sturmian words*.
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$

$L(3, 5) = a$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$

$L(3, 5) = aa$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$

$L(3, 5) = aab$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$

$L(3, 5) = aaba$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$

$L(3, 5) = aabaa$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$

$L(3, 5) = aabaab$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$

$L(3, 5) = aabaaba$
Christoffel words: Construction by example

Lower Christoffel word of slope $\frac{3}{5}$

$L(3, 5) = aabaabab$
Christoffel words: Construction by example

Lower & Upper Christoffel words of slope $\frac{3}{5}$

$L(3, 5) = aabaabab$ $U(3, 5) = babaabaa$
Sturmian words: Obtained *similarly* by replacing the line segment by a half-line:

\[y = \alpha x + \rho \text{ with irrational } \alpha \in (0, 1), \rho \in \mathbb{R}. \]
Sturmian words: Obtained *similarly* by replacing the line segment by a half-line:

\[y = \alpha x + \rho \text{ with irrational } \alpha \in (0, 1), \ \rho \in \mathbb{R}. \]

Example: \[y = \frac{\sqrt{5}-1}{2} x \rightarrow \text{Fibonacci word} \]
From Christoffel words to Sturmian words

Sturmian words: Obtained *similarly* by replacing the line segment by a half-line:

\[y = \alpha x + \rho \text{ with irrational } \alpha \in (0, 1), \rho \in \mathbb{R}. \]

Example: \(y = \frac{\sqrt{5}-1}{2} x \) \(\longrightarrow \) **Fibonacci word**

\[f = abaababaabaababaababaaba \cdots \text{ (note: disregard 1st } a \text{ in construction)} \]
Sturmian words: Obtained *similarly* by replacing the line segment by a half-line:

\[y = \alpha x + \rho \text{ with irrational } \alpha \in (0, 1), \rho \in \mathbb{R}. \]

Example: \(y = \frac{\sqrt{5}-1}{2}x \) \(\longrightarrow \) Fibonacci word

- \(f = abaababaabaababaaba \cdots \) (note: disregard 1st \(a \) in construction)
- **Standard Sturmian word** of slope \(\frac{\sqrt{5}-1}{2} \), golden ratio conjugate
Christoffel words: Historical notes

Before the 20th century:

- J. Bernoulli, 1771 (Astronomy)
- A. Markoff, 1882 (continued fractions)
- E. Christoffel, 1871, 1888 (Cayley graphs)
Christoffel words: Historical notes

Before the 20th century:

- J. Bernoulli, 1771 (Astronomy)
- A. Markoff, 1882 (continued fractions)
- E. Christoffel, 1871, 1888 (Cayley graphs)

After the 20th century:

- J. Berstel, 1990
- J.-P. Borel & F. Laubie, 1993
Christoffel words: Historical notes

Before the 20th century:

- J. Bernoulli, 1771 (Astronomy)
- A. Markoff, 1882 (continued fractions)
- E. Christoffel, 1871, 1888 (Cayley graphs)

After the 20th century:

- J. Berstel, 1990
- J.-P. Borel & F. Laubie, 1993

Nowadays, they are mostly study in the context of Sturmian words.
Examples

<table>
<thead>
<tr>
<th>Slope p/q</th>
<th>3/4</th>
<th>4/3</th>
<th>4/7</th>
<th>5/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(p, q)$</td>
<td>aababab</td>
<td>abababb</td>
<td>aabaabaabab</td>
<td>aababaababab</td>
</tr>
<tr>
<td>$U(p, q)$</td>
<td>bababaa</td>
<td>bbababa</td>
<td>babaabaabaa</td>
<td>bababaababaa</td>
</tr>
</tbody>
</table>
Christoffel words: Properties

Examples

<table>
<thead>
<tr>
<th>Slope p/q</th>
<th>$3/4$</th>
<th>$4/3$</th>
<th>$4/7$</th>
<th>$5/7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(p, q)$</td>
<td>aababab</td>
<td>abababb</td>
<td>aabaabaabab</td>
<td>aababaababab</td>
</tr>
<tr>
<td>$U(p, q)$</td>
<td>bababaa</td>
<td>bbababa</td>
<td>babaabaabaa</td>
<td>bababaababaa</td>
</tr>
</tbody>
</table>

Properties

- $L(p, q) = awb \iff U(p, q) = bwa$
Christoffel words: Properties

Examples

<table>
<thead>
<tr>
<th>Slope p/q</th>
<th>$3/4$</th>
<th>$4/3$</th>
<th>$4/7$</th>
<th>$5/7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(p, q)$</td>
<td>$aababab$</td>
<td>$abababb$</td>
<td>$aabaabaababab$</td>
<td>$aababaababababab$</td>
</tr>
<tr>
<td>$U(p, q)$</td>
<td>$bababa a$</td>
<td>$bbababa$</td>
<td>$babaabaabaa$</td>
<td>$bababaababa a a$</td>
</tr>
</tbody>
</table>

Properties

- $L(p, q) = awb \iff U(p, q) = bwa$
- $|L(p, q)|_a = q$, $|L(p, q)|_b = p \implies |L(p, q)| = p + q$
Christoffel words: Properties

Examples

<table>
<thead>
<tr>
<th>Slope p/q</th>
<th>$3/4$</th>
<th>$4/3$</th>
<th>$4/7$</th>
<th>$5/7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(p,q)$</td>
<td>$aababab$</td>
<td>$abababb$</td>
<td>$aabaabaabab$</td>
<td>$aabaabaababab$</td>
</tr>
<tr>
<td>$U(p,q)$</td>
<td>$bababa$a$</td>
<td>$bababa$a$</td>
<td>$babaabaabaa$</td>
<td>$babaabaababaa$</td>
</tr>
</tbody>
</table>

Properties

- $L(p,q) = awb \iff U(p,q) = bwa$
- $|L(p,q)|_a = q, |L(p,q)|_b = p \Rightarrow |L(p,q)| = p + q$
- $L(p,q)$ is the reversal of $U(p,q)$
Christoffel words: Properties

Examples

<table>
<thead>
<tr>
<th>Slope p/q</th>
<th>3/4</th>
<th>4/3</th>
<th>4/7</th>
<th>5/7</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L(p, q)$</td>
<td>aababab</td>
<td>abababb</td>
<td>aabaabaabaabab</td>
<td>aababaabababab</td>
</tr>
<tr>
<td>$U(p, q)$</td>
<td>bababaab</td>
<td>bbababab</td>
<td>babaabaabaa</td>
<td>bababaababaab</td>
</tr>
</tbody>
</table>

Properties

- $L(p, q) = awb \iff U(p, q) = bwa$
- $|L(p, q)|_a = q, |L(p, q)|_b = p \implies |L(p, q)| = p + q$
- $L(p, q)$ is the reversal of $U(p, q)$
- Christoffel words are of the form awb, bwa where w is a palindrome.
Theorem (folklore)

A finite word w is a Christoffel word if and only if $w = aub$ or $w = bua$ where $u = \text{Pal}(v)$ for some word v over $\{a, b\}$.
Theorem (folklore)

A finite word w is a Christoffel word if and only if $w = aub$ or $w = bua$ where $u = Pal(v)$ for some word v over $\{a, b\}$.

- Pal is the \textit{iterated palindromic closure} operator (Justin, 2005) defined as follows.
Theorem (folklore)
A finite word w is a Christoffel word if and only if $w = aub$ or $w = bua$ where $u = \text{Pal}(v)$ for some word v over \{a, b\}.

- Pal is the \textit{iterated palindromic closure} operator (Justin, 2005) defined as follows.
- Let v^+ denote the unique shortest palindrome beginning with v.
Theorem (folklore)

A finite word w is a Christoffel word if and only if $w = aub$ or $w = bua$ where $u = Pal(v)$ for some word v over $\{a, b\}$.

- Pal is the *iterated palindromic closure* operator (Justin, 2005) defined as follows.
- Let v^+ denote the unique shortest palindrome beginning with v.

We define $Pal(\varepsilon) = \varepsilon$ (empty word)
Christoffel words & palindromes

Theorem *(folklore)*

A finite word w is a Christoffel word if and only if $w = aub$ or $w = bua$ where $u = \text{Pal}(v)$ for some word v over $\{a, b\}$.

- Pal is the *iterated palindromic closure* operator (Justin, 2005) defined as follows.

- Let v^+ denote the unique shortest palindrome beginning with v.

 We define $\text{Pal}(\varepsilon) = \varepsilon$ (empty word), and for any word w and letter x,

 $$\text{Pal}(wx) = (\text{Pal}(w)x)^+.$$
Palindromic closure: Examples

- $(race)^+$ =
Palindromic closure: Examples

- \((race)^+ = race\)
Palindromic closure: Examples

\[(race)^+ = race\ car\]
Palindromic closure: Examples

- $(race)^+ = race\ car$
- $(tie)^+ =$
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\)
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\ it\)
Palindromic closure: Examples

- $(race)^+ = race\ car$
- $(tie)^+ = tie\ it$
- $(tops)^+ =$
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\ it\)
- \((tops)^+ = top\ s\)
Palindromic closure: Examples

- \((race)^+ = race car\)
- \((tie)^+ = tie it\)
- \((tops)^+ = top spot\)
Palindromic closure: Examples

- \((race)^+ = race\ car\)

- \((tie)^+ = tie\ it\)

- \((tops)^+ = top\ spot\)

- \(Pal(aba) = \)
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\ it\)
- \((tops)^+ = top\ spot\)
- \(Pal(aba) = \underline{a}\)
Palindromic closure: Examples

- \((\text{race})^+ = \text{race car}\)
- \((\text{tie})^+ = \text{tie it}\)
- \((\text{tops})^+ = \text{top spot}\)
- \(\text{Pal}(\text{aba}) =
\underline{ab}\)
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\ it\)
- \((tops)^+ = top\ spot\)
- \(Pal(aba) = \underline{a} \underline{b} \underline{a}\)
Palindromic closure: Examples

- $(race)^+ = race \text{ car}$
- $(tie)^+ = tie \text{ it}$
- $(tops)^+ = top \text{ spot}$
- $Pal(aba) = a b a a$
Palindromic closure: Examples

- $(race)^+ = race\ car$
- $(tie)^+ = tie\ it$
- $(tops)^+ = top\ spot$
- $Pal(aba) = \underline{a} \underline{b} a \underline{a} \underline{b} a$
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\ it\)
- \((tops)^+ = top\ spot\)
- \(\text{Pal}(aba) = \underline{a} b a \underline{a} b a\)
- \(\text{Pal}(abc) = \)
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\ it\)
- \((tops)^+ = top\ spot\)
- \(\text{Pal}(aba) = a\ b\ a\ a\ b\ a\)
- \(\text{Pal}(abc) = a\)
Palindromic closure: Examples

- $(race)^+ = race car$
- $(tie)^+ = tie it$
- $(tops)^+ = top spot$
- $Pal(aba) = \underline{ab}a\underline{ab}a$
- $Pal(abc) = \underline{ab}$
Palindromic closure: Examples

- $(race)^+ = race car$
- $(tie)^+ = tie it$
- $(tops)^+ = top spot$
- $\text{Pal}(aba) = \underline{a b} \underline{a} a \underline{a b a}$
- $\text{Pal}(abc) = \underline{a} b a$
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\ it\)
- \((tops)^+ = top\ spot\)
- \(Pal(aba) = \underline{a\ b\ a\ a\ b\ a}\)
- \(Pal(abc) = \underline{a\ b\ a\ c}\)
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\ it\)
- \((tops)^+ = top\ spot\)
- \(Pal(aba) = \underline{a} b a \underline{a} b a\)
- \(Pal(abc) = \underline{a} b a \underline{c} a b a\)
Palindromic closure: Examples

- \((race)^+ = race \text{ car}\)

- \((tie)^+ = tie \text{ it}\)

- \((tops)^+ = top \text{ spot}\)

- \(\text{Pal}(aba) = a \underline{b} a \underline{a} b a\)

- \(\text{Pal}(abc) = a \underline{b} a c \underline{a} b a\)

- \(\text{Pal}(race) = \underline{r}a \underline{c} \text{rar} \underline{e} \text{rar} \underline{e} \text{rar} \text{rar}\)
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\ it\)
- \((tops)^+ = top\ spot\)
- \(\text{Pal}(aba) = \underline{a}_b\underline{a}_a\underline{b}_a\)
- \(\text{Pal}(abc) = \underline{a}_b\underline{a}_c\underline{a}_b\underline{a}\)
- \(\text{Pal}(race) = \underline{r}_a\underline{r}_c\underline{r}_a\underline{r}_c\underline{r}_a\underline{r}_c\)
- \(L(3,5) = aabaabab = a\text{Pal}(aba)b\)
Palindromic closure: Examples

- \((race)^+ = race\ car\)
- \((tie)^+ = tie\ it\)
- \((tops)^+ = top\ spot\)

\[
\text{Pal}(aba) = \overbrace{a_b\ a\ a\ b\ a}\\
\text{Pal}(abc) = \overbrace{a_b\ a\ c\ a\ b\ a}\\
\text{Pal}(race) = \overbrace{r_a\ r_c\ r_a\ r_c\ r_a\ r_c}\\
\]

- \(L(3, 5) = aabaabab = a\text{Pal}(aba)b\)
- \(L(7, 4) = aabaabaabab = a\text{Pal}(abaa)b\)
Sturmian words: Palindromicity

Theorem (de Luca 1997)

An infinite word \(s \) over \(\{a, b\} \) is a standard Sturmian word if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots \) over \(\{a, b\} \) (not of the form \(ua^\infty \) or \(ub^\infty \)) such that

\[
s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n) = \text{Pal}(\Delta).
\]
Theorem (de Luca 1997)

An infinite word s over $\{a, b\}$ is a **standard Sturmian word** if and only if there exists an infinite word $\Delta = x_1x_2x_3 \cdots$ over $\{a, b\}$ (not of the form ua^∞ or ub^∞) such that

$$s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n) = \text{Pal}(\Delta).$$

- Δ: **directive word** of s
Sturmian words: Palindromicity

Theorem (de Luca 1997)

An infinite word s over $\{a, b\}$ is a **standard Sturmian word** if and only if there exists an infinite word $\Delta = x_1 x_2 x_3 \cdots$ over $\{a, b\}$ (not of the form ua^∞ or ub^∞) such that

$$s = \lim_{n \to \infty} Pal(x_1 x_2 \cdots x_n) = Pal(\Delta).$$

- Δ: **directive word** of s

- **Example**: Fibonacci word is directed by $\Delta = (ab)(ab)(ab)\cdots$
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5} - 1}{2} \rightarrow$ Fibonacci word
Recall: Fibonacci word

\[\Delta = (ab)(ab)(ab) \cdots \rightarrow f = \text{Pal}(\Delta) = a \]
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5} - 1}{2} \rightarrow$ Fibonacci word

$\Delta = (ab)(ab)(ab) \cdots \rightarrow f = \text{Pal}(\Delta) = ab$
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5} - 1}{2} \rightarrow$ Fibonacci word

$$\Delta = (ab)(ab)(ab) \cdots \rightarrow f = Pal(\Delta) = \text{aba}$$
Recall: Fibonacci word

\[\Delta = (ab)(ab)(ab) \cdots \quad \rightarrow \quad f = Pal(\Delta) = abaa \]

Line of slope \(\frac{\sqrt{5}-1}{2} \) \(\longrightarrow \) Fibonacci word
Recall: Fibonacci word

\[\Delta = (ab)(ab)(ab) \cdots \rightarrow f = Pal(\Delta) = \underline{aba}aba \]
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5} - 1}{2} \rightarrow$ Fibonacci word

$\Delta = (ab)(ab)(ab) \cdots \rightarrow f = Pal(\Delta) = \underline{aba}aba\underline{b}$
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5} - 1}{2} \rightarrow$ Fibonacci word

$\Delta = (ab)(ab)(ab) \cdots \rightarrow f = Pal(\Delta) = \underline{aba} \underline{aba} \underline{aba} \underline{ba} \cdots$
Recall: Fibonacci word

\[\Delta = (ab)(ab)(ab) \cdots \longrightarrow f = Pal(\Delta) = \underline{aba} \underline{bab} \underline{aba} \underline{aba} \cdots \]

Note: Palindromic prefixes have lengths \((F_{n+1} - 2)_{n \geq 1} = 0, 1, 3, 6, 11, 19, \ldots\)
where \((F_n)_{n \geq 0}\) is the sequence of Fibonacci numbers 1, 1, 2, 3, 5, 8, 13, 21, \ldots, defined by: \(F_0 = F_1 = 1, F_n = F_{n-1} + F_{n-2}\) for \(n \geq 2\).
A natural generalisation: Episturmian words

\{a, b\} \mapsto \mathcal{A} \ (\text{finite alphabet}) \text{ gives } \textit{standard episturmian words}.

\textbf{Theorem} \ (\text{Droubay-Justin-Pirillo 2001})

An infinite word \(s \) over \(\mathcal{A} \) is a \textit{standard episturmian word} if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots \) over \(\mathcal{A} \) such that

\[s = \lim_{n \to \infty} Pal(x_1x_2 \cdots x_n) = Pal(\Delta). \]
A natural generalisation: Episturmian words

\{a, b\} \rightarrow \mathcal{A} \text{ (finite alphabet) gives standard episturmian words.}

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s \) over \(\mathcal{A} \) is a standard episturmian word if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots \) over \(\mathcal{A} \) such that

\[
s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n) = \text{Pal}(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc) \cdots \) directs the *Tribonacci word*:
A natural generalisation: Episturmian words

\{a, b\} \rightarrow \mathcal{A} \text{ (finite alphabet) gives standard episturmian words.}

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s \) over \(\mathcal{A} \) is a **standard episturmian word** if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots \) over \(\mathcal{A} \) such that

\[
s = \lim_{n \rightarrow \infty} Pal(x_1x_2 \cdots x_n) = Pal(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc) \cdots \) directs the **Tribonacci word**:

\[
r = Pal(\Delta) = a
\]

Amy Glen (Murdoch University) Combinatorics & Distribution Mod 1 July 12, 2011 35 / 49
A natural generalisation: Episturmian words

\{a, b\} \rightarrow \mathcal{A} (finite alphabet) gives standard episturmian words.

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s\) over \(\mathcal{A}\) is a standard episturmian word if and only if there exists an infinite word \(\Delta = x_1x_2x_3\cdots\) over \(\mathcal{A}\) such that

\[
s = \lim_{n \to \infty} Pal(x_1x_2\cdots x_n) = Pal(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc)\cdots\) directs the Tribonacci word:

\[r = Pal(\Delta) = ab\]
A natural generalisation: Episturmian words

\{a, b\} \rightarrow A \text{ (finite alphabet) gives standard episturmian words.}

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s\) over \(A\) is a standard episturmian word if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots\) over \(A\) such that

\[
s = \lim_{n \to \infty} Pal(x_1x_2 \cdots x_n) = Pal(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc) \cdots\) directs the **Tribonacci word**:

\[
r = Pal(\Delta) = aba
\]
A natural generalisation: Episturmian words

\{a, b\} \rightarrow \mathcal{A} \text{ (finite alphabet) gives standard episturmian words.}

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s\) over \(\mathcal{A}\) is a standard episturmian word if and only if there exists an infinite word \(\Delta = x_1 x_2 x_3 \cdots\) over \(\mathcal{A}\) such that

\[
s = \lim_{n \to \infty} \text{Pal}(x_1 x_2 \cdots x_n) = \text{Pal}(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc) \cdots\) directs the Tribonacci word:

\[
\mathbf{r} = \text{Pal}(\Delta) = \underline{abac}
\]
A natural generalisation: Episturmian words

\{a, b\} \rightarrow A \ (\text{finite alphabet}) \text{ gives } \text{standard episturmian words}.

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s \) over \(A \) is a standard episturmian word if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots \) over \(A \) such that

\[
 s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n) = \text{Pal}(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc) \cdots \) directs the **Tribonacci word**:

\[
 r = \text{Pal}(\Delta) = \underline{aba}caba
\]
A natural generalisation: Episturmian words

\{a, b\} \rightarrow \mathcal{A} \ (finite \ alphabet) \ gives \ standard \ episturmian \ words.

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s\) over \(\mathcal{A}\) is a standard episturmian word if and only if there exists an infinite word \(\Delta = x_1x_2x_3\cdots\) over \(\mathcal{A}\) such that

\[
s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n) = \text{Pal}(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc)\cdots\) directs the Tribonacci word:

\[r = \text{Pal}(\Delta) = \underline{aba\underline{caba}}\]
A natural generalisation: Episturmian words

\{a, b\} \rightarrow \mathcal{A} \text{ (finite alphabet) gives } \textit{standard episturmian words}.

\textbf{Theorem} (Droubay-Justin-Pirillo 2001)

An infinite word \(s\) over \(\mathcal{A}\) is a \textit{standard episturmian word} if and only if there exists an infinite word \(\Delta = x_1x_2x_3\cdots\) over \(\mathcal{A}\) such that

\[
s = \lim_{n \to \infty} \text{Pal}(x_1x_2\cdots x_n) = \text{Pal}(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc)\cdots\) directs the \textit{Tribonacci word}:

\[
r = \text{Pal}(\Delta) = \underline{aba}caba\underline{aba}caba
\]
A natural generalisation: Episturmian words

\{a, b\} \rightarrow A \text{ (finite alphabet) gives standard episturmian words.}

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s\) over \(A\) is a **standard episturmian word** if and only if there exists an infinite word \(\Delta = x_1x_2x_3\cdots\) over \(A\) such that

\[s = \lim_{n \to \infty} \text{Pal}(x_1x_2\cdots x_n) = \text{Pal}(\Delta). \]

Example: \(\Delta = (abc)(abc)(abc)\cdots\) directs the **Tribonacci word:**

\[r = \text{Pal}(\Delta) = \underline{abacabaabacabab} \]
A natural generalisation: Episturmian words

\{a, b\} \rightarrow A \text{ (finite alphabet) gives } \textit{standard episturmian words}.

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word s over A is a \textit{standard episturmian word} if and only if there exists an infinite word $\Delta = x_1 x_2 x_3 \cdots$ over A such that

$$s = \lim_{n \to \infty} \text{Pal}(x_1 x_2 \cdots x_n) = \text{Pal}(\Delta).$$

Example: $\Delta = (abc)(abc)(abc) \cdots$ directs the \textit{Tribonacci word}:

$$r = \text{Pal}(\Delta) = \underline{abacaba} \underline{abacaba} \underline{abacaba} \underline{abacaba}$$
A natural generalisation: Episturmian words

\[\{a, b\} \to \mathcal{A} \text{ (finite alphabet) gives } \textit{standard episturmian words}. \]

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s \) over \(\mathcal{A} \) is a \textit{standard episturmian word} if and only if there exists an infinite word \(\Delta = x_1 x_2 x_3 \cdots \) over \(\mathcal{A} \) such that

\[
 s = \lim_{n \to \infty} \text{Pal}(x_1 x_2 \cdots x_n) = \text{Pal}(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc) \cdots \) directs the \textit{Tribonacci word}:

\[
 r = \text{Pal}(\Delta) = \underline{aba}caba\underline{aba}caba\underline{ba}cabaabacaba\underline{ba}caba
\]
A natural generalisation: Episturmian words

\{a, b\} \rightarrow \mathcal{A} \text{ (finite alphabet) gives } \textit{standard episturmian words}.

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s\) over \(\mathcal{A}\) is a \textit{standard episturmian word} if and only if there exists an infinite word \(\Delta = x_1x_2x_3 \cdots\) over \(\mathcal{A}\) such that

\[
s = \lim_{n \to \infty} \text{Pal}(x_1x_2 \cdots x_n) = \text{Pal}(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc) \cdots\) directs the \textit{Tribonacci word}:

\[
r = \text{Pal}(\Delta) = \underline{aba}cabaabacababa\underline{caba}babacabaabaabaca\cdots
\]
A natural generalisation: Episturmian words

\{a, b\} \rightarrow \mathcal{A} \text{ (finite alphabet) gives \textit{standard episturmian words}.}

Theorem (Droubay-Justin-Pirillo 2001)

An infinite word \(s\) over \(\mathcal{A}\) is a \textit{standard episturmian word} if and only if there exists an infinite word \(\Delta = x_1x_2x_3\cdots\) over \(\mathcal{A}\) such that

\[
s = \lim_{n \to \infty} \text{Pal}(x_1x_2\cdots x_n) = \text{Pal}(\Delta).
\]

Example: \(\Delta = (abc)(abc)(abc)\cdots\) directs the \textit{Tribonacci word}:

\[
r = \text{Pal}(\Delta) = \underline{aba}caba\underline{aba}caba\underline{aba}caba\underline{aba}caba\underline{aba}caba\underline{aba}caba\cdots
\]

Note: Palindromic prefixes have lengths \(((T_{n+2} + T_n + 1)/2 - 2)_{n \geq 1} = 0, 1, 3, 7, 14, 27, 36\ldots\) where \((T_n)_{n \geq 0}\) is the sequence of \textit{Tribonacci numbers} 1, 1, 2, 4, 7, 13, 24, 44, \ldots, defined by:

\[
T_0 = T_1 = 1, \ T_2 = 2, \ T_n = T_{n-1} + T_{n-2} + T_{n-3} \quad \text{for} \ n \geq 3.
\]
Remarks

- Sturmian words, Christoffel words, and the Pal operator all play important roles in the solution to the problem of interest.
Remarks

- Sturmian words, Christoffel words, and the Pal operator all play important roles in the solution to the problem of interest.

- Before stating our main theorem, I will now discuss some background & motivation for the problem . . .
Some background & motivation

- Mahler (1968): defined the set of \(\mathcal{Z} \)-numbers by

\[
\mathcal{Z} := \left\{ \xi \in \mathbb{R}^+ \left| \forall n \geq 0, \ 0 \leq \left\{ \xi \left(\frac{3}{2} \right)^n \right\} < \frac{1}{2} \right\}
\]

where \(\{z\} \) denotes the fractional part of \(z \).
Some background & motivation

- **Mahler (1968):** defined the set of \mathbb{Z}-numbers by

 $$
 \mathcal{Z} := \left\{ \xi \in \mathbb{R}^+ \mid \forall n \geq 0, \ 0 \leq \left\{ \xi \left(\frac{3}{2}\right)^n \right\} < \frac{1}{2} \right\}
 $$

 where $\{z\}$ denotes the fractional part of z.

- Mahler proved that \mathcal{Z} is at most countable.
Some background & motivation

- **Mahler (1968):** defined the set of \mathbb{Z}-numbers by

$$\mathcal{Z} := \left\{ \xi \in \mathbb{R}^+ \mid \forall n \geq 0, \ 0 \leq \left\{ \xi \left(\frac{3}{2} \right)^n \right\} < \frac{1}{2} \right\}$$

where $\{z\}$ denotes the fractional part of z.

- Mahler proved that \mathcal{Z} is at most countable.

- It is still an open problem to prove that \mathcal{Z} is in fact empty!
Some background & motivation

- Mahler (1968): defined the set of **Z-numbers** by

\[Z := \left\{ \xi \in \mathbb{R}^+ \mid \forall n \geq 0, \ 0 \leq \left\{ \xi \left(\frac{3}{2}\right)^n \right\} < \frac{1}{2} \right\} \]

where \(\{z\} \) denotes the fractional part of \(z \).

- Mahler proved that \(Z \) is at most countable.

- It is still an open problem to prove that \(Z \) is in fact **empty**!

- A more general question:

 Given a real number \(\alpha > 1 \) and an interval \((x, y) \subset (0, 1) \), does there exists \(\xi > 0 \) such that all fractional parts \(\{\xi \alpha^n\} \), \(n \geq 0 \), lie in the interval \([x, y) \) or \([x, y] \)?
Some background & motivation . . .

Flatto-Lagarias-Pollington (1995)

If p, q are coprime integers with $p > q \geq 2$, then any interval (x, y) containing all fractional parts $\{\xi(p/q)^n\}$, $n \geq 0$, for some $\xi \in \mathbb{R}^+$ must satisfy $y - x \geq 1/p$.
Some background & motivation . . .

If p, q are coprime integers with $p > q \geq 2$, then any interval (x, y) containing all fractional parts $\{\xi(p/q)^n\}, n \geq 0$, for some $\xi \in \mathbb{R}^+$ must satisfy $y - x \geq 1/p$.

Bugeaud-Dubickas (2005): described all irrational numbers $\xi > 0$ such that for a fixed integer $b \geq 2$ the fractional parts $\{\xi b^n\}, n \geq 0$, all belong to an interval of length $1/b$.
Some background & motivation . . .

Flatto-Lagarias-Pollington (1995)

If p, q are coprime integers with $p > q \geq 2$, then any interval (x, y) containing all fractional parts $\{\xi(p/q)^n\}$, $n \geq 0$, for some $\xi \in \mathbb{R}^+$ must satisfy $y - x \geq 1/p$.

Bugeaud-Dubickas (2005): described all irrational numbers $\xi > 0$ such that for a fixed integer $b \geq 2$ the fractional parts $\{\xi b^n\}$, $n \geq 0$, all belong to an interval of length $1/b$.

Bugeaud-Dubickas (2005)

Let $b \geq 2$ be an integer and $\xi > 0$ be an irrational number. Then:

- the frac. parts $\{\xi b^n\}$ cannot all lie in an interval of length $< 1/b$;
- there exists a closed interval of length $1/b$ containing the frac. parts $\{\xi b^n\}$ for all $n \geq 0$ iff the base b expansion of the fractional part of ξ is a Sturmian sequence on $\{k, k + 1\}$ for some $k \in \{0, 1, \ldots, b - 2\}$.
Fractional parts of powers & Sturmian words . . .

The core of Bugeaud & Dubickas’ result is the following fact that has been rediscovered several times in different contexts (since mid-late 80’s) . . .
Fractional parts of powers & Sturmian words . . .

The core of Bugeaud & Dubickas’ result is the following fact that has been rediscovered several times in different contexts (since mid-late 80’s) . . .

Notation

- Let T denote the *shift map* on sequences: $T((s_n)_{n \geq 0}) := (s_{n+1})_{n \geq 0}$.

 k-th shift: $T^k((s_n)_{n \geq 0}) := (s_{n+k})_{n \geq 0}$.

Fractional parts of powers & Sturmian words . . .

The core of Bugeaud & Dubickas’ result is the following fact that has been rediscovered several times in different contexts (since mid-late 80’s) . . .

Notation

- Let T denote the *shift map* on sequences: $T((s_n)_{n \geq 0}) := (s_{n+1})_{n \geq 0}$.
- k-th shift: $T^k((s_n)_{n \geq 0}) := (s_{n+k})_{n \geq 0}$.
- Let \preceq denote the *lexicographic order* on $\{0, 1\}^\mathbb{N}$ induced by $0 < 1$.
Fractional parts of powers & Sturmian words . . .

The core of Bugeaud & Dubickas’ result is the following fact that has been rediscovered several times in different contexts (since mid-late 80’s) . . .

Notation

- Let T denote the *shift map* on sequences: $T((s_n)_{n \geq 0}) := (s_{n+1})_{n \geq 0}$.
 - k-th shift: $T^k((s_n)_{n \geq 0}) := (s_{n+k})_{n \geq 0}$.
- Let \preceq denote the *lexicographic order* on $\{0, 1\}^\mathbb{N}$ induced by $0 < 1$.

Theorem

If s is a Sturmian word of (irrational) slope $\alpha > 0$ over the alphabet $\{0, 1\}$, then

$$0c_\alpha \preceq T^k(s) \preceq 1c_\alpha \quad \text{for all } k \geq 0,$$

where c_α is the (unique) standard Sturmian word of slope α.

Fractional parts of powers & Sturmian words ...

The core of Bugeaud & Dubickas’ result is the following fact that has been rediscovered several times in different contexts (since mid-late 80’s) ...

Notation

- Let T denote the shift map on sequences: $T((s_n)_{n\geq 0}) := (s_{n+1})_{n\geq 0}$.
- k-th shift: $T^k((s_n)_{n\geq 0}) := (s_{n+k})_{n\geq 0}$.
- Let \preceq denote the lexicographic order on $\{0, 1\}^\mathbb{N}$ induced by $0 < 1$.

Theorem

If s is a Sturmian word of (irrational) slope $\alpha > 0$ over the alphabet $\{0, 1\}$, then

$$0c_\alpha \preceq T^k(s) \preceq 1c_\alpha$$

for all $k \geq 0$,

where c_α is the (unique) standard Sturmian word of slope α.

That is: all shifts of a Sturmian sequence $s \in \{0, 1\}^\mathbb{N}$ of slope α are lexicographically $\geq 0c_\alpha$ and lexicographically $\leq 1c_\alpha$.
Example: Consider the Fibonacci word on \(\{0, 1\} \) (\(a \mapsto 0, b \mapsto 1 \)):

\[
f = 0100101001001010010\cdots,
\]

the standard Sturmian word \(c_\alpha \) of slope \(\alpha = (\sqrt{5} - 1)/2 \).
Example: Consider the Fibonacci word on \(\{0, 1\} \) \((a \mapsto 0, b \mapsto 1) \):

\[
f = 0100101001001010010 \cdots \text{,}
\]

the standard Sturmian word \(c_\alpha \) of slope \(\alpha = (\sqrt{5} - 1)/2 \).
Example: Consider the Fibonacci word on \(\{0, 1\} \) (\(a \mapsto 0, b \mapsto 1 \)):

\[
f = 0100101001001010010 \cdots ,
\]

the standard Sturmian word \(c_\alpha \) of slope \(\alpha = (\sqrt{5} - 1)/2 \).
Example: Consider the Fibonacci word on \(\{0, 1\} \) \((a \mapsto 0, b \mapsto 1) \):

\[
f = 0100101001001010010 \cdots,
\]

the standard Sturmian word \(c_\alpha \) of slope \(\alpha = (\sqrt{5} - 1)/2 \).

\[
\begin{align*}
\underline{001001010010010100} & \prec \underline{001010010010010} \prec \underline{101001010010010100} \cdots \\
0f & \prec 1f
\end{align*}
\]
Example: Consider the Fibonacci word on \(\{0, 1\}\) (\(a \mapsto 0, \ b \mapsto 1\)):

\[
f = 0100101001001010010 \cdots,
\]

the standard Sturmian word \(c_\alpha\) of slope \(\alpha = (\sqrt{5} - 1)/2\).

\[
\begin{array}{c}
001001010010010 \cdots < 01010010010 \cdots < 10100101001010 \cdots \\
0f \\
T^3(f) \\
1f
\end{array}
\]
Example: Consider the Fibonacci word on \(\{0, 1\} \) (\(a \mapsto 0, \ b \mapsto 1 \)):
\[
f = 0100101001001010010 \cdots,
\]
the standard Sturmian word \(c_\alpha \) of slope \(\alpha = (\sqrt{5} - 1)/2 \).

\[
\begin{aligned}
T^4(f) &= \\
001001010010010 \cdots &< 1010010010 \cdots &< 101001010010010 \cdots
\end{aligned}
\]

and so on \ldots
Example: Consider the Fibonacci word on \{0, 1\} \((a \mapsto 0, \ b \mapsto 1) \):

\[f = 0100101001001010010 \cdots , \]

the standard Sturmian word \(c_\alpha \) of slope \(\alpha = (\sqrt{5} - 1)/2 \).

\[
\begin{array}{c}
001001010010010 \cdots < T^4(f) \leq 1010010010 \cdots < 101001010010010 \cdots
\end{array}
\]

and so on \ldots

The main tool used by Bugeaud and Dubickas was combinatorics on words: replace real numbers by their base \(b \) expansions, and transform inequalities between real numbers into (lexicographic) inequalities between infinite sequences representing their base \(b \) expansions.
Given a sequence \(s \in \{0, 1\}^\mathbb{N} \), let \(r(s) \) denote the real number in \((0, 1)\) whose binary digits (after the binary point) are given by \(s \).
Given a sequence $s \in \{0, 1\}^\mathbb{N}$, let $r(s)$ denote the real number in $(0, 1)$ whose binary digits (after the binary point) are given by s.

Example:
Given a sequence \(s \in \{0, 1\}^\mathbb{N} \), let \(r(s) \) denote the real number in \((0, 1)\) whose binary digits (after the binary point) are given by \(s \).

Example:

\[
r((01)_{\infty}) = \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = \frac{1}{3}
\]
Given a sequence $s \in \{0, 1\}^\mathbb{N}$, let $r(s)$ denote the real number in $(0, 1)$ whose binary digits (after the binary point) are given by s.

Example:

$r((01)\infty) = \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = \frac{1}{3}$

$r(01000\cdots) = \frac{1}{4}$ and $r(0011111\cdots) = \frac{1}{4}$
Given a sequence \(s \in \{0, 1\}^\infty \), let \(r(s) \) denote the real number in \((0, 1)\) whose binary digits (after the binary point) are given by \(s \).

Example:

\[
\begin{align*}
 r((01)\infty) &= \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = \frac{1}{3} \\
 r(01000\cdots) &= \frac{1}{4} \quad \text{and} \quad r(0011111\cdots) = \frac{1}{4}
\end{align*}
\]

Let \(x, y \) be sequences on \(\{0, 1\} \). Then

\[x \preceq y \quad \iff \quad r(x) \leq r(y). \]
Given a sequence \(s \in \{0, 1\}^\mathbb{N} \), let \(r(s) \) denote the real number in \((0, 1)\) whose binary digits (after the binary point) are given by \(s \).

Example:

\[
r((01)^\infty) = \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = \frac{1}{3}
\]

\[
r(01000\cdots) = \frac{1}{4} \quad \text{and} \quad r(001111\cdots) = \frac{1}{4}
\]

Let \(x, y \) be sequences on \(\{0, 1\} \). Then

\[
x \preceq y \quad \iff \quad r(x) \leq r(y).
\]

Example: \(\underbrace{0100000\cdots}_{(1/4)_2} \preceq \underbrace{01010101\cdots}_{(1/3)_2} \)
Given a sequence $s \in \{0, 1\}^\mathbb{N}$, let $r(s)$ denote the real number in $(0, 1)$ whose binary digits (after the binary point) are given by s.

Example:

\[r((01)\infty) = \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = \frac{1}{3} \]
\[r(01000 \cdots) = \frac{1}{4} \quad \text{and} \quad r(0011111 \cdots) = \frac{1}{4} \]

Let x, y be sequences on $\{0, 1\}$. Then

\[x \preceq y \quad \iff \quad r(x) \leq r(y). \]

Example: $\begin{array}{l}
\binom{0100000 \cdots}{(1/4)_2} \preceq \binom{01010101 \cdots}{(1/3)_2}
\end{array}$

Also note that, for any sequence $s \in \{0, 1\}^\mathbb{N}$, $r(T^k(s)) = \{r(s)2^k\}$.
Given a sequence \(s \in \{0, 1\}^\mathbb{N} \), let \(r(s) \) denote the real number in \((0, 1)\) whose binary digits (after the binary point) are given by \(s \).

Example:

\[
\begin{align*}
 r((01)\infty) &= \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = \frac{1}{3} \\
 r(01000\cdots) &= \frac{1}{4} \quad \text{and} \quad r(0011111\cdots) = \frac{1}{4}
\end{align*}
\]

Let \(x, y \) be sequences on \(\{0, 1\} \). Then

\[x \preceq y \iff r(x) \leq r(y). \]

Example: \(\underbrace{0100000\cdots}_{(1/4)_2} \preceq \underbrace{01010101\cdots}_{(1/3)_2} \)

Also note that, for any sequence \(s \in \{0, 1\}^\mathbb{N} \), \(r(T^k(s)) = \{r(s)2^k\} \).

Example: Consider \(s = (01)\infty \). Then \(r(s) = \frac{1}{3} \).
Given a sequence \(s \in \{0, 1\}^\mathbb{N} \), let \(r(s) \) denote the real number in \((0, 1)\) whose binary digits (after the binary point) are given by \(s \).

Example:

\[
r((01)\infty) = \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = \frac{1}{3}
\]
\[
r(01000\cdots) = \frac{1}{4} \quad \text{and} \quad r(0011111\cdots) = \frac{1}{4}
\]

Let \(x, y \) be sequences on \(\{0, 1\} \). Then

\[
x \leq y \iff r(x) \leq r(y).
\]

Example:

\[
\underbrace{0100000\cdots}_{(1/4)_2} \prec \underbrace{01010101\cdots}_{(1/3)_2}
\]

Also note that, for any sequence \(s \in \{0, 1\}^\mathbb{N} \), \(r(T^k(s)) = \{r(s)2^k\} \).

Example: Consider \(s = (01)\infty \). Then \(r(s) = \frac{1}{3} \).

\[
\{\frac{1}{3} \cdot 2\} = \frac{2}{3} = 2 \times \left(\frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots \right) = r((10)\infty) = r(T(s))
\]
Given a sequence $s \in \{0, 1\}^\mathbb{N}$, let $r(s)$ denote the real number in $(0, 1)$ whose binary digits (after the binary point) are given by s.

Example:

\[r((01)\infty) = \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = \frac{1}{3} \]
\[r(01000\cdots) = \frac{1}{4} \quad \text{and} \quad r(0011111\cdots) = \frac{1}{4} \]

Let x, y be sequences on $\{0, 1\}$. Then

\[x \preceq y \iff r(x) \leq r(y). \]

Example: $\underbrace{0100000\cdots}_{(1/4)_2} \prec \underbrace{01010101\cdots}_{(1/3)_2}$

Also note that, for any sequence $s \in \{0, 1\}^\mathbb{N}$, $r(T^k(s)) = \{r(s)2^k\}$.

Example: Consider $s = (01)\infty$. Then $r(s) = \frac{1}{3}$.
\[\{\frac{1}{3} \cdot 2\} = \frac{2}{3} = 2 \times \left(\frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots\right) = r((10)\infty) = r(T(s)) \]
\[\{\frac{1}{3} \cdot 2^2\} = \frac{1}{3} = r((01)\infty) = r(T^2(s)) \]
• Given a sequence \(s \in \{0, 1\}^\mathbb{N} \), let \(r(s) \) denote the real number in \((0, 1)\) whose binary digits (after the binary point) are given by \(s \).

Example:

\[
r((01)\infty) = \frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots = \frac{1}{3}
\]

\[
r(01000\cdots) = \frac{1}{4} \quad \text{and} \quad r(0011111\cdots) = \frac{1}{4}
\]

• Let \(x, y \) be sequences on \(\{0, 1\} \). Then

\[
x \preceq y \iff r(x) \leq r(y).
\]

Example: \(\underbrace{0100000\cdots} \prec \underbrace{01010101\cdots} \)

\[
(1/4)_2 \prec (1/3)_2
\]

Also note that, for any sequence \(s \in \{0, 1\}^\mathbb{N} \), \(r(T^k(s)) = \{r(s)2^k\} \).

Example: Consider \(s = (01)\infty \). Then \(r(s) = \frac{1}{3} \).

\[
\{\frac{1}{3} \cdot 2\} = \frac{2}{3} = 2 \times \left(\frac{1}{2^2} + \frac{1}{2^4} + \frac{1}{2^6} + \cdots\right) = r((10)\infty) = r(T(s))
\]

\[
\{\frac{1}{3} \cdot 2^2\} = \frac{1}{3} = r((01)\infty) = r(T^2(s))
\]

\[
\{\frac{1}{3} \cdot 2^3\} = \frac{2}{3} = r((10)\infty) = r(T^3(s)) \quad \text{and so on} \ldots
\]
So, for any given sequences x, y, s over $\{0, 1\}$,

$$x \preceq T^k(s) \preceq y \iff r(x) \leq \{r(s)2^k\} \leq r(y).$$
So, for any given sequences x, y, s over $\{0, 1\}$,

$$x \preceq T^k(s) \preceq y \iff r(x) \leq \{r(s)2^k\} \leq r(y).$$

For example:

$$(01)^\infty \preceq T^k((10)^\infty) \preceq (10)^\infty \quad \text{for all } k \geq 0$$

$$\frac{1}{3} \leq \left\{ \frac{2}{3} \cdot 2^k \right\} \leq \frac{2}{3} \quad \text{for all } k \geq 0$$
So, for any given sequences x, y, s over $\{0, 1\}$,

$$x \preceq T^k(s) \preceq y \iff r(x) \leq \{r(s)2^k\} \leq r(y).$$

For example:

$$(01)\infty \preceq T^k((10)\infty) \preceq (10)\infty \quad \text{for all } k \geq 0$$

$$\frac{1}{3} \leq \left\{\frac{2}{3} \cdot 2^k\right\} \leq \frac{2}{3} \quad \text{for all } k \geq 0$$

Note: $R = 2/3$ is the smallest positive real number such that $[\frac{1}{3}, R]$ contains all the fractional parts $\{\xi2^k\}$, $k \geq 0$, for some $\xi \in \mathbb{R}^+$.
So, for any given sequences \(x, y, s \) over \(\{0, 1\} \),

\[
x \preceq T^k(s) \preceq y \iff r(x) \leq \{r(s)2^k\} \leq r(y).
\]

For example:

\[
(01) \infty \preceq T^k((10) \infty) \preceq (10) \infty \quad \text{for all } k \geq 0
\]

\[
\frac{1}{3} \leq \{\frac{2}{3} \cdot 2^k\} \leq \frac{2}{3} \quad \text{for all } k \geq 0
\]

Note: \(R = 2/3 \) is the smallest positive real number such that \(\left[\frac{1}{3}, R \right] \) contains all the fractional parts \(\{\xi 2^k\}, k \geq 0 \), for some \(\xi \in \mathbb{R}^+ \).

Recall: For any Sturmian word \(s \in \{0, 1\}^\mathbb{N} \) of slope \(\alpha \),

\[
0c_\alpha \preceq T^k(s) \preceq 1c_\alpha \quad \text{for all } k \geq 0,
\]

i.e.,

\[
r(0c_\alpha) \leq \{r(s)2^k\} \leq r(0c_\alpha) + \frac{1}{2} \quad \text{for all } k \geq 0.
\]
So, for any given sequences x, y, s over $\{0,1\}$,

$$x \leq T^k(s) \leq y \iff r(x) \leq \{r(s)2^k\} \leq r(y).$$

For example:

$$(01)^\infty \preceq T^k((10)^\infty) \preceq (10)^\infty \text{ for all } k \geq 0$$

$$\frac{1}{3} \leq \frac{2}{3} \cdot 2^k \leq \frac{2}{3} \text{ for all } k \geq 0$$

Note: $R = 2/3$ is the smallest positive real number such that $[\frac{1}{3}, R]$ contains all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some $\xi \in \mathbb{R}^+$.

Recall: For any Sturmian word $s \in \{0,1\}^\mathbb{N}$ of slope α,

$$0c_\alpha \leq T^k(s) \leq 1c_\alpha \text{ for all } k \geq 0,$$

i.e.,

$$r(0c_\alpha) \leq \{r(s)2^k\} \leq r(0c_\alpha) + \frac{1}{2} \text{ for all } k \geq 0.$$

Note: $R = r(0c_\alpha) + \frac{1}{2}$ is the smallest positive real number such that $[r(0c_\alpha), R]$ contains all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some $\xi \in \mathbb{R}^+$ (namely $\xi = r(s)$ where $s \in \{0,1\}^\mathbb{N}$ is a Sturmian word of slope α).
Note: For $x \in \left[\frac{1}{2}, 1\right]$, there does not exist a real number $\xi > 0$ such that $x \leq \{\xi 2^k\} < 1$ for all $k \geq 0$ (Bugeaud-Dubickas with $b = 2$).
Note: For $x \in \left[\frac{1}{2}, 1\right]$, there does not exist a real number $\xi > 0$ such that $x \leq \{\xi 2^k\} < 1$ for all $k \geq 0$ (Bugeaud-Dubickas with $b = 2$).

Definition

Given a real number $x \in (0, 1/2)$, let $R(x)$ denote the smallest positive real number such that $[x, R(x)]$ contains all fractional parts $\{\xi 2^k\}, k \geq 0$, for some $\xi \in \mathbb{R}^+$.
Note: For \(x \in \left[\frac{1}{2}, 1 \right] \), there does not exist a real number \(\xi > 0 \) such that \(x \leq \{ \xi^2^k \} < 1 \) for all \(k \geq 0 \) (Bugeaud-Dubickas with \(b = 2 \)).

Definition

Given a real number \(x \in (0, 1/2) \), let \(R(x) \) denote the smallest positive real number such that \([x, R(x)]\) contains all fractional parts \(\{\xi^2^k\}, k \geq 0\), for some \(\xi \in \mathbb{R}^+ \).

Note: \(x \leq R(x) < 1 \)
Note: For $x \in [\frac{1}{2}, 1]$, there does not exist a real number $\xi > 0$ such that $x \leq \{\xi 2^k\} < 1$ for all $k \geq 0$ (Bugeaud-Dubickas with $b = 2$).

Definition

Given a real number $x \in (0, 1/2)$, let $R(x)$ denote the smallest positive real number such that $[x, R(x)]$ contains all fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some $\xi \in \mathbb{R}^+$.

Note: $x \leq R(x) < 1$

Finally, we can state our theorem that gives a complete description of the minimal intervals containing all fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real positive real number $\xi \ldots$
Note: For $x \in \left[\frac{1}{2}, 1\right]$, there does not exist a real number $\xi > 0$ such that $x \leq \{\xi 2^k\} < 1$ for all $k \geq 0$ (Bugeaud-Dubickas with $b = 2$).

Definition

Given a real number $x \in (0, 1/2)$, let $R(x)$ denote the smallest positive real number such that $[x, R(x)]$ contains all fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some $\xi \in \mathbb{R}^+$.

Note: $x \leq R(x) < 1$

Finally, we can state our theorem that gives a complete description of the minimal intervals containing all fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real positive real number ξ . . .

For each $x \in (0, \frac{1}{2})$, the theorem gives the minimal interval beginning with x (namely $[x, R(x)]$) that contains all fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some $\xi \in \mathbb{R}^+$.
Theorem (Allouche & Glen)

Let x be a real number in $(0, \frac{1}{2})$.

(i) If $(2x)_2$ is a standard Sturmian sequence, then

$$R(x) = x + \frac{1}{2}.$$
Theorem (Allouche & Glen)

Let \(x \) be a real number in \((0, \frac{1}{2})\).

(i) If \((2x)_2\) is a standard Sturmian sequence, then

\[
R(x) = x + \frac{1}{2}.
\]

Furthermore, \(R(x) \) is the unique real number in \((0, 1)\) that has a Sturmian binary expansion and satisfies \(x \leq \{ R(x)2^k \} \leq R(x) \) for all \(k \geq 0 \).
Theorem (Allouche & Glen)

Let x be a real number in $(0, \frac{1}{2})$.

(i) If $(2x)_2$ is a standard Sturmian sequence, then

$$R(x) = x + \frac{1}{2}.$$

Furthermore, $R(x)$ is the unique real number in $(0, 1)$ that has a Sturmian binary expansion and satisfies $x \leq \{R(x)2^k\} \leq R(x)$ for all $k \geq 0$.

(ii) If $(2x)_2 = (Pal(v)01)\infty$ or $(2x)_2 = (Pal(v)10)\infty$ for some word v over $\{0, 1\}$, then

$$R(x) = r((1Pal(v)0)\infty).$$
Theorem (Allouche & Glen)

Let x be a real number in $(0, \frac{1}{2})$.

(i) If $(2x)_2$ is a standard Sturmian sequence, then

$$R(x) = x + \frac{1}{2}.$$

Furthermore, $R(x)$ is the unique real number in $(0, 1)$ that has a Sturmian binary expansion and satisfies $x \leq \{R(x)2^k\} \leq R(x)$ for all $k \geq 0$.

(ii) If $(2x)_2 = (\text{Pal}(v)01)\infty$ or $(2x)_2 = (\text{Pal}(v)10)\infty$ for some word v over \{0, 1\}, then

$$R(x) = r((1\text{Pal}(v)0)^\infty).$$

(iii) In all other cases, $R(x) = r((1\text{Pal}(v)0)^\infty)$ where v is the unique word over \{0, 1\} such that

$$r((\text{Pal}(v)01)^\infty) < 2x < r((\text{Pal}(v)10)^\infty).$$
Examples

Take $x = 1/4$.

- The **minimal interval** beginning with $x = \frac{1}{4}$ containing all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real number $\xi > 0$ is $[1/4, R(1/4)]$.
Examples

Take $x = 1/4$.

- The minimal interval beginning with $x = \frac{1}{4}$ containing all the fractional parts \(\{\xi 2^k\} \), $k \geq 0$, for some real number $\xi > 0$ is $[1/4, R(1/4)]$. What is $R(1/4)$?
Examples

Take $x = 1/4$.

- The **minimal interval** beginning with $x = \frac{1}{4}$ containing all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real number $\xi > 0$ is $[1/4, R(1/4)]$. **What is $R(1/4)$?**
- Observe that $(2x)_2 = (1/2)_2 = 1000 \cdots$ (or 0111 \cdots).
Examples

Take $x = 1/4$.

- The **minimal interval** beginning with $x = 1/4$ containing all the fractional parts $\{\xi 2^k\}, \ k \geq 0$, for some real number $\xi > 0$ is $[1/4, R(1/4)]$. **What is** $R(1/4)$?

- Observe that $(2x)_2 = (1/2)_2 = 1000 \cdots$ (or $0111 \cdots$).

- So $(2x)_2$ is not a standard Sturmian sequence and it is not of the form $(Pal(v)01)\infty$ or $(Pal(v)10)\infty$ for some word v over $\{0, 1\}$.

Examples

Take $x = 1/4$.

- The minimal interval beginning with $x = 1/4$ containing all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real number $\xi > 0$ is $[1/4, R(1/4)]$. What is $R(1/4)$?
- Observe that $(2x)_2 = (1/2)_2 = 1000 \cdots$ (or $0111 \cdots$).
- So $(2x)_2$ is not a standard Sturmian sequence and it is not of the form $(Pal(v)01)^\infty$ or $(Pal(v)10)^\infty$ for some word v over $\{0, 1\}$.
- Thus, x falls into Case (iii) of the Theorem.
Examples

Take $x = 1/4$.

- The minimal interval beginning with $x = \frac{1}{4}$ containing all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real number $\xi > 0$ is $[1/4, R(1/4)]$. What is $R(1/4)$?
- Observe that $(2x)_2 = (1/2)_2 = 1000 \cdots$ (or 0111\cdots).
- So $(2x)_2$ is not a standard Sturmian sequence and it is not of the form $(Pal(v)01)\infty$ or $(Pal(v)10)\infty$ for some word v over $\{0, 1\}$.
- Thus, x falls into Case (iii) of the Theorem.
- We have
 $$(01)\infty \prec (2x)_2 (= 1000 \cdots) \prec (10)\infty$$
 where $(01)\infty = (Pal(\varepsilon)01)\infty$ and $(10)\infty = (Pal(\varepsilon)10)\infty$.
Examples

Take $x = 1/4$.

- The **minimal interval** beginning with $x = \frac{1}{4}$ containing all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real number $\xi > 0$ is $[1/4, R(1/4)]$. What is $R(1/4)$?
- Observe that $(2x)_2 = (1/2)_2 = 1000 \cdots$ (or 0111 \cdots).
- So $(2x)_2$ is not a standard Sturmian sequence and it is not of the form $(\text{Pal}(v)01)\infty$ or $(\text{Pal}(v)10)\infty$ for some word v over $\{0, 1\}$.
- Thus, x falls into Case (iii) of the Theorem.

- We have
 \[(01)\infty \prec (2x)_2 (= 1000 \cdots) \prec (10)\infty\]
 where $(01)\infty = (\text{Pal}(\varepsilon)01)\infty$ and $(10)\infty = (\text{Pal}(\varepsilon)10)\infty$.
- Hence, by Case (iii) of the Theorem,
 \[R(1/4) = r((10)\infty) = 2/3.\]
Examples

Take $x = 1/4$.

- The minimal interval beginning with $x = \frac{1}{4}$ containing all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real number $\xi > 0$ is $[1/4, R(1/4)]$. What is $R(1/4)$?
- Observe that $(2x)_2 = (1/2)_2 = 1000 \cdots$ (or 0111 \cdots).
- So $(2x)_2$ is not a standard Sturmian sequence and it is not of the form $(Pal(v)01)^\infty$ or $(Pal(v)10)^\infty$ for some word v over $\{0, 1\}$.
- Thus, x falls into Case (iii) of the Theorem.
- We have
 \[(01)^\infty \prec (2x)_2 = 1000 \cdots \prec (10)^\infty\]
 where $(01)^\infty = (Pal(\varepsilon)01)^\infty$ and $(10)^\infty = (Pal(\varepsilon)10)^\infty$.
- Hence, by Case (iii) of the Theorem,
 \[R(1/4) = r((10)^\infty) = 2/3.\]
- Moreover, $\frac{1}{4} \leq \{\frac{2}{3} \cdot 2^k\} \leq \frac{2}{3}$ for all $k \geq 0$.
Examples . . .

Let $x = 1/(\pi + \sqrt{2}e)$.

- The **minimal interval** beginning with $x = 1/(\pi + \sqrt{2}e)$ containing all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real number $\xi > 0$ is $[x, R(x)]$.
Examples . . .

Let \(x = 1/(\pi + \sqrt{2}e) \).

- The minimal interval beginning with \(x = 1/(\pi + \sqrt{2}e) \) containing all the fractional parts \(\{\xi 2^k\} \), \(k \geq 0 \), for some real number \(\xi > 0 \) is \([x, R(x)]\). What is \(R(x) \)?
Examples . . .

Let $x = 1/(\pi + \sqrt{2e})$.

- The minimal interval beginning with $x = 1/(\pi + \sqrt{2e})$ containing all the fractional parts $\{\xi 2^k\}, \ k \geq 0$, for some real number $\xi > 0$ is $[x, R(x)]$. What is $R(x)$?
- Observe that

$$ (x)_2 = \underbrace{010010}_{Pal(010)} 0101001010010001101101001100010001100 \cdots $$
Examples . . .

Let \(x = 1/(\pi + \sqrt{2e}) \).

- The **minimal interval** beginning with \(x = 1/(\pi + \sqrt{2e}) \) containing all the fractional parts \(\{\xi 2^k\} \), \(k \geq 0 \), for some real number \(\xi > 0 \) is \([x, R(x)]\). **What is** \(R(x) \)?

- Observe that

\[
(x)_2 = 0 \underbrace{010010}_{Pal(010)} 010100101010010001101101010011000100001100 \cdots
\]

- So \((2x)_2\) is not a standard Sturmian sequence and it is not of the form \((Pal(v)01)^\infty\) or \((Pal(v)10)^\infty\) for some word \(v \) over \(\{0, 1\} \).
Examples . . .

Let \(x = 1/(\pi + \sqrt{2}e) \).

- The minimal interval beginning with \(x = 1/(\pi + \sqrt{2}e) \) containing all the fractional parts \(\{\xi 2^k\} \), \(k \geq 0 \), for some real number \(\xi > 0 \) is \([x, R(x)]\). What is \(R(x) \)?

- Observe that

\[
(x)_2 = 0\overbrace{010010}^{Pal(010)}0101001010100100011011010011000100001100 \cdots
\]

- So \((2x)_2\) is not a standard Sturmian sequence and it is not of the form \((Pal(v)01)^\infty\) or \((Pal(v)10)^\infty\) for some word \(v\) over \(\{0, 1\}\).

- Thus, \(x\) falls into Case (iii) of the Theorem.
Examples . . .

Let $x = 1/(\pi + \sqrt{2}e)$.

- The **minimal interval** beginning with $x = 1/(\pi + \sqrt{2}e)$ containing all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real number $\xi > 0$ is $[x, R(x)]$. What is $R(x)$?

- Observe that

$$(x)_2 = 0\overbrace{010010}^{Pal(010)}010100101010001101101001100010001100\cdots$$

So $(2x)_2$ is not a standard Sturmian sequence and it is not of the form $(Pal(v)01)^\infty$ or $(Pal(v)10)^\infty$ for some word v over $\{0, 1\}$.

- Thus, x falls into Case (iii) of the Theorem.

- We have $01001001\prec (2x)_2 \prec 01001010\prec (01001010)^\infty$ where $010010 = Pal(010)$.

Examples . . .

Let $x = 1/(\pi + \sqrt{2}e)$.

- The **minimal interval** beginning with $x = 1/(\pi + \sqrt{2}e)$ containing all the fractional parts $\{\xi 2^k\}$, $k \geq 0$, for some real number $\xi > 0$ is $[x, R(x)]$. **What is $R(x)$?**

- Observe that

$$
(x)_2 = 0 \overbrace{010010}^{\text{Pal}(010)} 010100101010010001101101010011000100001100 \cdots
$$

So $(2x)_2$ is not a standard Sturmian sequence and it is not of the form $(\text{Pal}(v)01)^\infty$ or $(\text{Pal}(v)10)^\infty$ for some word v over $\{0, 1\}$.

- Thus, x falls into Case (iii) of the Theorem.

- We have $\overbrace{01001001}^{\infty} \prec (2x)_2 \prec \overbrace{01001010}^{\infty}$ where $010010 = \text{Pal}(010)$.

- Hence, by Case (iii) of the Theorem,

$$
R(x) = r((1\text{Pal}(010)0)^\infty) = 164/255.
$$
Remarks

- It is known (Ferenczi-Mauduit, 1997) that any real number having a Sturmian binary expansion is transcendental.
Remarks

- It is known (Ferenczi-Mauduit, 1997) that any real number having a Sturmian binary expansion is transcendental.

As a consequence of our theorem, we deduce:

If x is an algebraic real number in $(0, \frac{1}{2})$, then $R(x)$ is rational.
 Remarks

• It is known (Ferenczi-Mauduit, 1997) that any real number having a Sturmian binary expansion is transcendental.

As a consequence of our theorem, we deduce:

If x *is an algebraic real number in* $(0, \frac{1}{2})$, *then* $R(x)$ *is rational.*

• One may ask what happens with base b expansions, where $b \geq 3$, or what can be said about the intervals containing all $\{\xi b^n\}$ for some ξ.
Remarks

- It is known (Ferenczi-Mauduit, 1997) that any real number having a Sturmian binary expansion is transcendental.

As a consequence of our theorem, we deduce:

If x is an algebraic real number in $(0, \frac{1}{2})$, then $R(x)$ is rational.

- One may ask what happens with base b expansions, where $b \geq 3$, or what can be said about the intervals containing all $\{\xi b^n\}$ for some ξ.

The result of Bugeaud and Dubickas (2005) implies that Sturmian sequences on an alphabet $\{k, k + 1\}$ for some $k \in \{0, 1, \ldots, b - 2\}$ will again play a fundamental role.
Merci pour votre attention!
References
