Characterizations of finite and infinite episturmian words via lexicographic orderings

Amy Glen*, Jacques Justin, Giuseppe Pirillo

*Laboratoire de Combinatoire et d’Informatique Mathématique (LaCIM)
Université du Québec à Montréal

amy.glen@gmail.com
http://www.lacim.uqam.ca/~glen

The Fields Institute – Monday 12 February, 2007
Outline

1. Introduction

2. Preliminaries
 - Terminology & Notation
 - Sturmian & Episturmian Words
 - Episkew Words

3. Previous Work
 - Extremal Words
 - Extremal Properties
 - Fine Words

4. Characterizations via Lexicographic Orderings
 - Finite Episturmian Words
 - Infinite Episturmian Words

A. Glen*, J. Justin, G. Pirillo
Characterizations of episturmian words
Episturmian words

- An interesting natural generalization of the well-known \textit{Sturmian words}.
- Share many properties with Sturmian words.
- Include the well-known \textit{Arnoux-Rauzy sequences}.
We characterize by *lexicographic order* all:

- *finite* Sturmian and episturmian words;
- episturmian words in a *wide sense* (recurrent, episkew);
- *balanced* infinite words over a 2-letter alphabet.
Outline

1. Introduction
2. Preliminaries
 - Terminology & Notation
 - Sturmian & Episturmian Words
 - Episkew Words
3. Previous Work
 - Extremal Words
 - Extremal Properties
 - Fine Words
4. Characterizations via Lexicographic Orderings
 - Finite Episturmian Words
 - Infinite Episturmian Words

A. Glen*, J. Justin, G. Pirillo
Characterizations of episturmian words
Let \mathcal{A} be a finite alphabet and let $u = x_1x_2 \cdots x_m$, each $x_i \in \mathcal{A}$.

- **Length:** $|u| = m$
- $|u|_{a}$: number of occurrences of the letter a in u
- **Reversal:** $\tilde{u} = x_mx_{m-1} \cdots x_1$
- u is a palindrome if $u = \tilde{u}$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ε: the empty word ($|\varepsilon| = 0$)
- $\mathcal{A}^+ = \mathcal{A}^* \setminus \{\varepsilon\}$: set of all non-empty finite words over \mathcal{A}
Let A be a *finite alphabet* and let $u = x_1x_2 \cdots x_m$, each $x_i \in A$.

- **Length**: $|u| = m$
- $|u|_a$: number of occurrences of the letter a in u
- **Reversal**: $\tilde{u} = x_mx_{m-1} \cdots x_1$
- u is a *palindrome* if $u = \tilde{u}$
- A^*: set of all finite words over A
- ε: the *empty word* ($|\varepsilon| = 0$)
- $A^+ = A^* \setminus \{\varepsilon\}$: set of all *non-empty* finite words over A
Let \mathcal{A} be a finite alphabet and let $u = x_1x_2 \cdots x_m$, each $x_i \in \mathcal{A}$.

- **Length**: $|u| = m$
- $|u|_a$: number of occurrences of the letter a in u
- **Reversal**: $\tilde{u} = x_mx_{m-1}\cdots x_1$
- u is a palindrome if $u = \tilde{u}$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ε: the empty word ($|\varepsilon| = 0$)
- $\mathcal{A}^+ = \mathcal{A}^* \setminus \{\varepsilon\}$: set of all non-empty finite words over \mathcal{A}
Let \mathcal{A} be a finite alphabet and let $u = x_1 x_2 \cdots x_m$, each $x_i \in \mathcal{A}$.

- **Length**: $|u| = m$
- $|u|_a$: number of occurrences of the letter a in u
- **Reversal**: $\tilde{u} = x_m x_{m-1} \cdots x_1$
- u is a palindrome if $u = \tilde{u}$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ε: the empty word ($|\varepsilon| = 0$)
- $\mathcal{A}^+ = \mathcal{A}^* \setminus \{\varepsilon\}$: set of all non-empty finite words over \mathcal{A}
Let \mathcal{A} be a finite alphabet and let $u = x_1x_2 \cdots x_m$, each $x_i \in \mathcal{A}$.

- **Length**: $|u| = m$
- $|u|_a$: number of occurrences of the letter a in u
- **Reversal**: $\tilde{u} = x_mx_{m-1} \cdots x_1$
- u is a *palindrome* if $u = \tilde{u}$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ε: the *empty word* ($|\varepsilon| = 0$)
- $\mathcal{A}^+ = \mathcal{A}^* \setminus \{\varepsilon\}$: set of all *non-empty* finite words over \mathcal{A}
Let \mathcal{A} be a *finite alphabet* and let $u = x_1x_2 \cdots x_m$, each $x_i \in \mathcal{A}$.

- **Length**: $|u| = m$
- $|u|_a$: number of occurrences of the letter a in u
- **Reversal**: $\tilde{u} = x_mx_{m-1} \cdots x_1$
- u is a *palindrome* if $u = \tilde{u}$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ε: the *empty word* ($|\varepsilon| = 0$)
- $\mathcal{A}^+ = \mathcal{A}^* \setminus \{\varepsilon\}$: set of all *non-empty* finite words over \mathcal{A}
Let A be a finite alphabet and let $u = x_1x_2 \cdots x_m$, each $x_i \in A$.

- **Length**: $|u| = m$
- $|u|_a$: number of occurrences of the letter a in u
- **Reversal**: $\tilde{u} = x_mx_{m-1} \cdots x_1$
- u is a palindrome if $u = \tilde{u}$
- A^*: set of all finite words over A
- ε: the empty word ($|\varepsilon| = 0$)
- $A^+ = A^* \setminus \{\varepsilon\}$: set of all non-empty finite words over A
Let \mathcal{A} be a finite alphabet and let $u = x_1 x_2 \cdots x_m$, each $x_i \in \mathcal{A}$.

- **Length**: $|u| = m$
- $|u|_a$: number of occurrences of the letter a in u
- **Reversal**: $\tilde{u} = x_m x_{m-1} \cdots x_1$
- u is a *palindrome* if $u = \tilde{u}$
- \mathcal{A}^*: set of all finite words over \mathcal{A}
- ε: the *empty word* ($|\varepsilon| = 0$)
- $\mathcal{A}^+ = \mathcal{A}^* \setminus \{\varepsilon\}$: set of all *non-empty* finite words over \mathcal{A}
Words (cont.)

Let $x = x_0x_1x_2 \cdots$ be an *infinite word* over \mathcal{A}.

- **Factor of x**: a finite string of consecutive letters in x
- **Prefix of x**: factor occurring at the beginning of x
- **$F(x)$**: set of all factors of x
- **Ult(x)**: set of letters occurring infinitely often in x
- **Alph(x)** := $F(x) \cap \mathcal{A}$, the *alphabet* of x
- $w \in F(x)$ is *recurrent* in x if w occurs infinitely often in x
- x is *recurrent* if all of its factors are recurrent in it
Let $x = x_0x_1x_2 \cdots$ be an *infinite word* over A.

- **Factor of x**: a finite string of consecutive letters in x
- **Prefix of x**: factor occurring at the beginning of x
- **$F(x)$**: set of all factors of x
- **Ult(x)**: set of letters occurring infinitely often in x
- **Alph(x) := $F(x) \cap A$**, the *alphabet* of x
- $w \in F(x)$ is *recurrent* in x if w occurs infinitely often in x
- x is *recurrent* if all of its factors are recurrent in it
Introduction
Preliminaries
Previous Work
Characterizations via Lexicographic Orderings

Terminology & Notation
Sturmian & Episturmian Words
Episkew Words

Words (cont.)

Let $x = x_0x_1x_2 \cdots$ be an *infinite word* over A.

- **Factor of x**: a finite string of consecutive letters in x
- **Prefix of x**: factor occurring at the beginning of x
- $F(x)$: set of all factors of x
- $Ult(x)$: set of letters occurring infinitely often in x
- $Alph(x) := F(x) \cap A$, the *alphabet* of x
- $w \in F(x)$ is *recurrent* in x if w occurs infinitely often in x
- x is *recurrent* if all of its factors are recurrent in it
Words (cont.)

Let $x = x_0 x_1 x_2 \cdots$ be an infinite word over A.

- **Factor of** x: a finite string of consecutive letters in x
- **Prefix of** x: factor occurring at the beginning of x
- $F(x)$: set of all factors of x
- $\text{Ult}(x)$: set of letters occurring infinitely often in x
- $\text{Alph}(x) := F(x) \cap A$, the alphabet of x
- $w \in F(x)$ is recurrent in x if w occurs infinitely often in x
- x is recurrent if all of its factors are recurrent in it
Let $x = x_0 x_1 x_2 \cdots$ be an **infinite word** over A.

- **Factor of x**: a finite string of consecutive letters in x
- **Prefix of x**: factor occurring at the beginning of x
- $F(x)$: **set of all factors** of x
- $\text{Ult}(x)$: set of letters occurring infinitely often in x
- $\text{Alph}(x) := F(x) \cap A$, the **alphabet** of x
- $w \in F(x)$ is **recurrent** in x if w occurs infinitely often in x
- x is **recurrent** if all of its factors are recurrent in it
Let $x = x_0x_1x_2 \cdots$ be an infinite word over A.

- **Factor of x**: a finite string of consecutive letters in x
- **Prefix of x**: factor occurring at the beginning of x
- $F(x)$: set of all factors of x
- Ult(x): set of letters occurring infinitely often in x
- Alph$(x) := F(x) \cap A$, the alphabet of x
- $w \in F(x)$ is recurrent in x if w occurs infinitely often in x
- x is recurrent if all of its factors are recurrent in it
Let $x = x_0 x_1 x_2 \cdots$ be an infinite word over \mathcal{A}.

- **Factor of x**: a finite string of consecutive letters in x
- **Prefix of x**: factor occurring at the beginning of x
- **$F(x)$**: set of all factors of x
- **Ult(x)**: set of letters occurring infinitely often in x
- **Alph(x) := $F(x) \cap \mathcal{A}$**, the alphabet of x
- $w \in F(x)$ is recurrent in x if w occurs infinitely often in x
- x is recurrent if all of its factors are recurrent in it
Let $\mathbf{x} = x_0x_1x_2 \cdots$ be an *infinite word* over \mathcal{A}.

- **Factor of \mathbf{x}**: a finite string of consecutive letters in \mathbf{x}
- **Prefix of \mathbf{x}**: factor occurring at the beginning of \mathbf{x}
- **$F(\mathbf{x})$**: set of all factors of \mathbf{x}
- **Ult(\mathbf{x})**: set of letters occurring infinitely often in \mathbf{x}
- **Alph(\mathbf{x}) := $F(\mathbf{x}) \cap \mathcal{A}$**, the *alphabet* of \mathbf{x}
- $w \in F(\mathbf{x})$ is **recurrent** in \mathbf{x} if w occurs infinitely often in \mathbf{x}
- \mathbf{x} is **recurrent** if all of its factors are recurrent in it
Suppose A is totally ordered by the relation $<$. Then we can totally order A^+ by the *lexicographic order* $<$. That is:

Definition

Given two words $u, v \in A^+$, we have $u < v \iff$ either u is a proper prefix of v or $u = xau'$ and $v = xbv'$, for some $x, u', v' \in A^*$ and letters a, b with $a < b$.

- This is the usual alphabetic ordering in a dictionary.
- We say that u is *lexicographically less* than v.
- This notion naturally extends to infinite words.
Suppose \mathcal{A} is totally ordered by the relation $<$. Then we can totally order \mathcal{A}^+ by the **lexicographic order** $<$. That is:

Definition

Given two words $u, v \in \mathcal{A}^+$, we have $u < v \iff$ either u is a proper prefix of v or $u = xau'$ and $v = xbv'$, for some $x, u', v' \in \mathcal{A}^*$ and letters a, b with $a < b$.

- This is the usual alphabetic ordering in a dictionary.
- We say that u is **lexicographically less** than v.
- This notion naturally extends to infinite words.
Suppose \mathcal{A} is totally ordered by the relation $<$. Then we can totally order \mathcal{A}^+ by the *lexicographic order* $<$. That is:

Definition

Given two words $u, v \in \mathcal{A}^+$, we have $u < v \iff$ either u is a proper prefix of v or $u = xau'$ and $v = xbv'$, for some $x, u', v' \in \mathcal{A}^*$ and letters a, b with $a < b$.

- This is the usual alphabetic ordering in a dictionary.
- We say that u is *lexicographically less* than v.
- This notion naturally extends to infinite words.
1. Introduction

2. Preliminaries
 - Terminology & Notation
 - Sturmian & Episturmian Words
 - Episkew Words

3. Previous Work
 - Extremal Words
 - Extremal Properties
 - Fine Words

4. Characterizations via Lexicographic Orderings
 - Finite Episturmian Words
 - Infinite Episturmian Words

A. Glen*, J. Justin, G. Pirillo
Characterizations of episturmian words
Sturmian words

Definition

An infinite word s over $\{a, b\}$ is **Sturmian** if there exist real numbers $\alpha, \rho \in [0, 1]$ such that s is equal to one of the following two infinite words:

$$s_{\alpha, \rho}, \ s'_{\alpha, \rho} : \mathbb{N} \to \{a, b\}$$

defined by

$$s_{\alpha, \rho}(n) = \begin{cases}
 a & \text{if } \lfloor (n+1)\alpha + \rho \rfloor - \lfloor n\alpha + \rho \rfloor = 0, \\
 b & \text{otherwise};
\end{cases} \quad (n \geq 0)$$

$$s'_{\alpha, \rho}(n) = \begin{cases}
 a & \text{if } \lceil (n+1)\alpha + \rho \rceil - \lceil n\alpha + \rho \rceil = 0, \\
 b & \text{otherwise}.
\end{cases}$$
A **Sturmian word** is:

- *aperiodic* if α is irrational;
- *periodic* if α is rational;
- *standard* if $\rho = \alpha$.

Here, **Sturmian** refers to both aperiodic and periodic Sturmian words.
A Sturmian word is:
- *aperiodic* if α is irrational;
- *periodic* if α is rational;
- *standard* if $\rho = \alpha$.

Here, *Sturmian* refers to both aperiodic and periodic Sturmian words.
A finite or infinite word \(w \) on \(\{a, b\} \) is \textit{balanced} if:

\[
u, v \in F(w), \ |u| = |v| \implies ||u||_b - |v|_b| \leq 1.
\]

Morse & Hedlund (1940):

All balanced infinite words over a 2-letter alphabet are called \textit{Sturmian trajectories}.

They belong to three classes:

- aperiodic Sturmian;
- periodic Sturmian;
- ultimately periodic non-recurrent infinite words, called \textit{skew words}.
Sturmian words (cont.)

Definition (Balance)

A finite or infinite word w on $\{a, b\}$ is *balanced* if:

$$u, \ v \in F(w), \ |u| = |v| \ \Rightarrow \ ||u|_b - |v|_b| \leq 1.$$

Morse & Hedlund (1940):

All balanced infinite words over a 2-letter alphabet are called *Sturmian trajectories*.

They belong to three classes:

- aperiodic Sturmian;
- periodic Sturmian;
- ultimately periodic non-recurrent infinite words, called *skew words*.
Episturmian words

Definition

An infinite word t is *episturmian* if:

- $F(t)$ is *closed under reversal*, and
- t has at most one *right special factor* of each length.

t is *standard* if all of its left special factors are prefixes of it.

Episturmian words are recurrent.
Definition

An infinite word t is \textit{episturmian} if:

- $F(t)$ is \textit{closed under reversal}, and
- t has at most one \textit{right special factor} of each length.

t is \textit{standard} if all of its left special factors are prefixes of it.

- Episturmian words are recurrent.
Let t be a standard episturmian word over A and let

$$u_1 = \varepsilon, \ u_2, \ u_3, \ u_4, \ldots$$

be the infinite sequence of its palindromic prefixes.

\exists an infinite word $\Delta(t) = x_1x_2x_3\ldots (x_i \in A)$ such that

$$u_{n+1} = (u_nx_n)^{(+)}, \quad n \in \mathbb{N}^+$$

where $w^{(+)}$ is the shortest palindrome having w as a prefix.

$\Delta(t)$ is called the \textit{directive word} of $t = \lim_{n \to \infty} u_n$.
Let t be a standard episturmian word over A and let

$$u_1 = \varepsilon, \ u_2, \ u_3, \ u_4, \ldots$$

be the infinite sequence of its palindromic prefixes.

\exists an infinite word $\Delta(t) = x_1 x_2 x_3 \cdots \ (x_i \in A)$ such that

$$u_{n+1} = (u_n x_n)^{(+)}, \ n \in \mathbb{N}^+$$

where $w^{(+)}$ is the shortest palindrome having w as a prefix.

$\Delta(t)$ is called the directional word of $t = \lim_{n \to \infty} u_n$.
Let \(t \) be a standard episturmian word over \(A \) and let

\[
 u_1 = \varepsilon, \ u_2, \ u_3, \ u_4, \ldots
\]

be the infinite sequence of its palindromic prefixes.

∃ an infinite word \(\Delta(t) = x_1 x_2 x_3 \cdots (x_i \in A) \) such that

\[
 u_{n+1} = (u_n x_n)^{(+)}, \quad n \in \mathbb{N}^+
\]

where \(w^{(+) \ldots} \) is the shortest palindrome having \(w \) as a prefix.

\(\Delta(t) \) is called the \textit{directive word} of \(t = \lim_{n \to \infty} u_n \).
A standard episturmian word t over A, or any equivalent (episturmian) word, is said to be B-strict (or k-strict if $|B| = k$) if

$$\text{Alph}(\Delta(t)) = \text{Ult}(\Delta(t)) = B \subseteq A$$

- The k-strict episturmian words have complexity $(k - 1)n + 1$ for each $n \in \mathbb{N}$.
- Such words are exactly the k-letter Arnoux-Rauzy sequences.
- Example: k-bonacci word, $k \geq 2$.

A. Glen*, J. Justin, G. Pirillo
Characterizations of episturmian words
Strict episturmian words

Definition

A standard episturmian word t over \mathcal{A}, or any equivalent (episturmian) word, is said to be \mathcal{B}-strict (or k-strict if $|\mathcal{B}| = k$) if

$$\text{Alph}(\Delta(t)) = \text{Ult}(\Delta(t)) = \mathcal{B} \subseteq \mathcal{A}$$

- The k-strict episturmian words have **complexity** $(k - 1)n + 1$ for each $n \in \mathbb{N}$.
- Such words are exactly the k-letter **Arnoux-Rauzy sequences**.
- **Example:** k-bonacci word, $k \geq 2$.

A. Glen*, J. Justin, G. Pirillo

Characterizations of episturmian words
Strict episturmian words

Definition

A standard episturmian word t over A, or any equivalent (episturmian) word, is said to be B-strict (or k-strict if $|B| = k$) if

$$\text{Alph}(\Delta(t)) = \text{Ult}(\Delta(t)) = B \subseteq A$$

- The k-strict episturmian words have complexity $(k - 1)n + 1$ for each $n \in \mathbb{N}$.
- Such words are exactly the k-letter Arnoux-Rauzy sequences.
- Example: k-bonacci word, $k \geq 2$.
Strict episturmian words

Definition

A standard episturmian word \(t \) over \(A \), or any equivalent (episturmian) word, is said to be \(B\)-strict (or \(k\)-strict if \(|B| = k\)) if

\[
\text{Alph}(\Delta(t)) = \text{Ult}(\Delta(t)) = B \subseteq A
\]

- The \(k \)-strict episturmian words have complexity \((k - 1)n + 1\) for each \(n \in \mathbb{N} \).
- Such words are exactly the \(k \)-letter Arnoux-Rauzy sequences.
- Example: \(k\)-bonacci word, \(k \geq 2 \).
Outline

1. Introduction

2. Preliminaries
 - Terminology & Notation
 - Sturmian & Episturmian Words
 - Episkew Words

3. Previous Work
 - Extremal Words
 - Extremal Properties
 - Fine Words

4. Characterizations via Lexicographic Orderings
 - Finite Episturmian Words
 - Infinite Episturmian Words

A. Glen*, J. Justin, G. Pirillo

Characterizations of episturmian words
A finite word w is said to be \textit{finite Sturmian} or \textit{finite episturmian} if w is a factor of some infinite Sturmian or episturmian word.

It suffices to consider strict standard episturmian words. Finite episturmian words are exactly the \textit{finite Arnoux-Rauzy words} (Mignosi and Zamboni, 2002).

An infinite word t on a finite alphabet is said to be \textit{episkew} if t is non-recurrent and all of its factors are (finite) episturmian.

There are a number of equivalent definitions of episkew words.
Terminology

Definition

A finite word w is said to be *finite Sturmian* or *finite episturmian* if w is a factor of some infinite Sturmian or episturmian word.

- It suffices to consider strict standard episturmian words.
- Finite episturmian words are exactly the *finite Arnoux-Rauzy words* (Mignosi and Zamboni, 2002).

Definition (Episkew)

An infinite word t on a finite alphabet is said to be *episkew* if t is non-recurrent and all of its factors are (finite) episturmian.

- There are a number of equivalent definitions of episkew words.
A finite word w is said to be \textit{finite Sturmian} or \textit{finite episturmian} if w is a factor of some infinite Sturmian or episturmian word.

- It suffices to consider strict standard episturmian words.
- Finite episturmian words are exactly the \textit{finite Arnoux-Rauzy words} (Mignosi and Zamboni, 2002).

An infinite word t on a finite alphabet is said to be \textit{episkew} if t is non-recurrent and all of its factors are (finite) episturmian.

- There are a number of equivalent definitions of episkew words.
A finite word w is said to be *finite Sturmian* or *finite episturmian* if w is a factor of some infinite Sturmian or episturmian word.

- It suffices to consider strict standard episturmian words.
- Finite episturmian words are exactly the *finite Arnoux-Rauzy words* (Mignosi and Zamboni, 2002).

An infinite word t on a finite alphabet is said to be *episkew* if t is non-recurrent and all of its factors are (finite) episturmian.

- There are a number of equivalent definitions of episkew words.
Outline

1. Introduction

2. Preliminaries
 - Terminology & Notation
 - Sturmian & Episturmian Words
 - Episkew Words

3. Previous Work
 - Extremal Words
 - Extremal Properties
 - Fine Words

4. Characterizations via Lexicographic Orderings
 - Finite Episturmian Words
 - Infinite Episturmian Words
Let t be an infinite word.

Definition

Define $\text{min}(t)$ to be the infinite word such that any prefix of $\text{min}(t)$ is the *lexicographically* smallest amongst the factors of t of the same length. Similarly define $\text{max}(t)$.

Our main results extend the following recent work . . .
Let t be an infinite word.

Definition

Define $\text{min}(t)$ to be the infinite word such that any prefix of $\text{min}(t)$ is the *lexicographically* smallest amongst the factors of t of the same length. Similarly define $\text{max}(t)$.

Our main results extend the following recent work . . .
Outline

1. Introduction

2. Preliminaries
 - Terminology & Notation
 - Sturmian & Episturmian Words
 - Episkew Words

3. Previous Work
 - Extremal Words
 - Extremal Properties
 - Fine Words

4. Characterizations via Lexicographic Orderings
 - Finite Episturmian Words
 - Infinite Episturmian Words
Proposition (Pirillo, 2005)

Let \(s \) be an infinite word over a finite alphabet \(A \). The following properties are equivalent:

(i) \(s \) is standard episturmian,

(ii) for any \(a \in A \) and order \(< \) such that \(a = \min(A) \), we have \(as \leq \min(s) \).

Similarly, for an infinite word \(s \) on \(\{a, b\} \) (\(a < b \)), the inequality:

\[
as \leq \min(s) \leq \max(s) \leq bs
\]

characterizes standard Sturmian words (aperiodic and periodic).
Proposition (Pirillo, 2005)

Let s be an infinite word over a finite alphabet A. The following properties are equivalent:

(i) s is standard episturmian,

(ii) for any $a \in A$ and order $<$ such that $a = \min(A)$, we have $as \leq \min(s)$.

Similarly, for an infinite word s on $\{a, b\}$ ($a < b$), the inequality:

$$as \leq \min(s) \leq \max(s) \leq bs$$

characterizes standard Sturmian words (aperiodic and periodic).
Proposition (Justin & Pirillo, 2002)

Let s be an infinite word over a finite alphabet A. The following properties are equivalent:

(i) s is a standard Arnoux-Rauzy sequence,

(ii) for any $a \in A$ and order $<$ such that $a = \min(A)$, we have $as = \min(s)$.

That is: s is a strict standard episturmian word \iff (ii) holds.

2-letters: s is an aperiodic standard Sturmian word \iff $(\min(s), \max(s)) = (as, bs)$ for $a < b$.
Proposition (Justin & Pirillo, 2002)

Let s be an infinite word over a finite alphabet A. The following properties are equivalent:

(i) s is a standard Arnoux-Rauzy sequence,

(ii) for any $a \in A$ and order $<$ such that $a = \min(A)$, we have $as = \min(s)$.

That is: s is a strict standard episturmian word \iff (ii) holds.

2-letters: s is an aperiodic standard Sturmian word $\iff (\min(s), \max(s)) = (as, bs)$ for $a < b$.
Proposition (Justin & Pirillo, 2002)

Let s be an infinite word over a finite alphabet A. The following properties are equivalent:

(i) s is a standard Arnoux-Rauzy sequence,
(ii) for any $a \in A$ and order $<$ such that $a = \min(A)$, we have $as = \min(s)$.

That is: s is a strict standard episturmian word \iff (ii) holds.

2-letters: s is an aperiodic standard Sturmian word $\iff (\min(s), \max(s)) = (as, bs)$ for $a < b$.
Introduction

Preliminaries
- Terminology & Notation
- Sturmian & Episturmian Words
- Episkew Words

Previous Work
- Extremal Words
- Extremal Properties
- Fine Words

Characterizations via Lexicographic Orderings
- Finite Episturmian Words
- Infinite Episturmian Words

A. Glen*, J. Justin, G. Pirillo

Characterizations of episturmian words
Fine words

Definition (Pirillo, 2005)
An infinite word t over a 2-letter alphabet $\{a, b\}$ ($a < b$) is fine if $(\min(t), \max(t)) = (as, bs)$ for some infinite word s.

- Fine words on $\{a, b\}$ are exactly the aperiodic Sturmian and skew infinite words.
- Recently generalized to an arbitrary finite alphabet. . .
Definition (Pirillo, 2005)

An infinite word t over a 2-letter alphabet $\{a, b\}$ ($a < b$) is fine if $(\min(t), \max(t)) = (as, bs)$ for some infinite word s.

- Fine words on $\{a, b\}$ are exactly the aperiodic Sturmian and skew infinite words.

- Recently generalized to an arbitrary finite alphabet . . .
Fine words

Definition (Pirillo, 2005)

An infinite word t over a 2-letter alphabet $\{a, b\}$ ($a < b$) is fine if $(\min(t), \max(t)) = (as, bs)$ for some infinite word s.

- Fine words on $\{a, b\}$ are exactly the aperiodic Sturmian and skew infinite words.
- Recently generalized to an arbitrary finite alphabet . . .
Characterizations via Lexicographic Orderings

Generalized fine words

Definition

An *acceptable pair* is a pair $(a, <)$ where a is a letter and $<$ is a lexicographic order on A^+ such that $a = \min(A)$.

Definition (Glen, 2006)

An infinite word t on A is said to be *fine* if there exists an infinite word s such that $\min(t) = as$ for any acceptable pair $(a, <)$.

Proposition (Glen, 2006)

An infinite word t is fine if and only if t is either a strict episturmian word, or a strict episkew word.
Generalized fine words

Definition

An acceptable pair is a pair \((a, <)\) where \(a\) is a letter and \(<\) is a lexicographic order on \(A^+\) such that \(a = \min(A)\).

Definition (Glen, 2006)

An infinite word \(t\) on \(A\) is said to be fine if there exists an infinite word \(s\) such that \(\min(t) = as\) for any acceptable pair \((a, <)\).

Proposition (Glen, 2006)

An infinite word \(t\) is fine if and only if \(t\) is either a strict episturmian word, or a strict episkew word.
Generalized fine words

Definition
An *acceptable pair* is a pair \((a, <)\) where \(a\) is a letter and \(<\) is a lexicographic order on \(A^+\) such that \(a = \min(A)\).

Definition (Glen, 2006)
An infinite word \(t\) on \(A\) is said to be *fine* if there exists an infinite word \(s\) such that \(\min(t) = as\) for any acceptable pair \((a, <)\).

Proposition (Glen, 2006)
An infinite word \(t\) is fine if and only if \(t\) is either a *strict episturmian word*, or a *strict episkew word*.
Let w be a finite or infinite word on A.

- $\text{min}(w|k)$ denotes the lexicographically smallest factor of w of length k for the given order (where $|w| \geq k$ for w finite).

Definition

- For a finite word $w \in A^+$ and a given order, $\text{min}(w)$ will denote $\text{min}(w|k)$ where k is maximal such that all $\text{min}(w|j)$, $j = 1, 2, \ldots, k$, are prefixes of $\text{min}(w|k)$.
- In the case $A = \{a, b\}$, $\text{max}(w)$ is defined similarly.
Terminology

Notation
- Let w be a finite or infinite word on \mathcal{A}.
- $\min(w|k)$ denotes the lexicographically smallest factor of w of length k for the given order (where $|w| \geq k$ for w finite).

Definition
- For a finite word $w \in \mathcal{A}^+$ and a given order, $\min(w)$ will denote $\min(w|k)$ where k is maximal such that all $\min(w|j), j = 1, 2, \ldots, k$, are prefixes of $\min(w|k)$.
- In the case $\mathcal{A} = \{a, b\}$, $\max(w)$ is defined similarly.
Suppose \(w = \text{baabacababac} \).

For the orders \(b < a < c \) and \(b < c < a \) on the 3-letter alphabet \(\{a, b, c\} \):

\[
\begin{align*}
\min(w|1) & = b \\
\min(w|2) & = ba \\
\min(w|3) & = bab \\
\min(w|4) & = baba \\
\min(w|5) & = babac = \min(w)
\end{align*}
\]

Note: \(\min(w) \) is a suffix of \(w \), which is true in general.
Characterizations

Notation
\[\nu_p : \text{prefix of length } p \text{ of a given finite or infinite word } \nu. \]

Theorem
A finite word \(w \) on \(A \) is episturmian if and only if there exists a finite word \(u \) such that, for any acceptable pair \((a, <) \), we have

\[au_{|m|-1} \leq m \] \hspace{1cm} (1)

where \(m = \min(w) \) for the considered order.
A finite word w on A is episturmian if and only if there exists a finite word u such that, for any acceptable pair $(a, <)$, we have

$$au_{|m|-1} \leq m$$

(1)

where $m = \min(w)$ for the considered order.
Recall $w = baabacababac$.

For the different orders on $\{a, b, c\}$:

- $a < b < c$ or $a < c < b$: $\min(w) = aabacababac$;
- $b < a < c$ or $b < c < a$: $\min(w) = babac$;
- $c < a < b$ or $c < b < a$: $\min(w) = cababac$.

$u = abacaaaaaa$ satisfies (1) $\Rightarrow w$ is finite episturmian.
A new characterization of finite Sturmian words (i.e., finite balanced words):

Corollary

A finite word w *on* $A = \{a, b\}$, $a < b$, *is not Sturmian (i.e., not balanced)* if and only if there exists a finite word u such that aua is a prefix of $\min(w)$ and bub is a prefix of $\max(w)$.
Introduction
Preliminaries
Previous Work
Characterizations via Lexicographic Orderings

Finite Episturmian Words
Infinite Episturmian Words

Examples

Example (1)
For $w = ababaabaabab$:

- $\min(w) = aabaabab$, $\max(w) = babaabaabab$.
- $abaaba$ is the longest common prefix of $a^{-1} \min(w)$ and $b^{-1} \max(w)$.
- $abaaba$ is followed by b in $\min(w)$ and a in $\max(w)$.
- Thus w is Sturmian.

Example (2)
For $w = aabababaabaab$:

- $\min(w) = aabaab$, $\max(w) = bababaabaab$.
- $\min(w) = auab$ and $\max(w) = bubaabaab$ where $u = aba$.
- Thus w is not Sturmian.
Examples

Example (1)

For \(w = ababaabaabab \):

- \(\min(w) = aabaabab \), \(\max(w) = babaabaabab \).
- \(abaaba \) is the longest common prefix of \(a^{-1} \min(w) \) and \(b^{-1} \max(w) \).
- \(abaaba \) is followed by \(b \) in \(\min(w) \) and \(a \) in \(\max(w) \).
- Thus \(w \) is Sturmian.

Example (2)

For \(w = aabababaabaab \):

- \(\min(w) = aabaab \), \(\max(w) = bababaabaab \).
- \(\min(w) = auab \) and \(\max(w) = bubaabaab \) where \(u = aba \).
- Thus \(w \) is not Sturmian.
Outline

1 Introduction

2 Preliminaries
 - Terminology & Notation
 - Sturmian & Episturmian Words
 - Episkew Words

3 Previous Work
 - Extremal Words
 - Extremal Properties
 - Fine Words

4 Characterizations via Lexicographic Orderings
 - Finite Episturmian Words
 - Infinite Episturmian Words
A characterization of **episturmian words in a wide sense** (recurrent, episkew):

Corollary

An infinite word t on A is episturmian in the wide sense if and only if there exists an infinite word u such that $au \leq \min(t)$ for any acceptable pair $(a, <)$.

A characterization of **balanced infinite words on a 2-letter alphabet** (i.e., Sturmian and skew words):

Corollary

An infinite word t on $\{a, b\}$, $a < b$, is balanced (i.e., Sturmian or skew) if and only if there exists an infinite word u such that

$$au \leq \min(t) \leq \max(t) \leq bu.$$
A characterization of *episturmian words in a wide sense* (recurrent, episkew):

Corollary

An infinite word \(t \) on \(A \) is episturmian in the wide sense if and only if there exists an infinite word \(u \) such that \(au \leq \min(t) \) for any acceptable pair \((a, <) \).

A characterization of *balanced infinite words on a 2-letter alphabet* (i.e., Sturmian and skew words):

Corollary

An infinite word \(t \) on \(\{a, b\} \), \(a < b \), is balanced (i.e., Sturmian or skew) if and only if there exists an infinite word \(u \) such that

\[
a u \leq \min(t) \leq \max(t) \leq b u.
\]
A characterization of episturmian words in a *wide sense* (recurrent, episkew):

Corollary

An infinite word t on A is episturmian in the wide sense if and only if there exists an infinite word u such that $au \leq \min(t)$ for any acceptable pair $(a, <)$.

A characterization of balanced infinite words on a 2-letter alphabet (i.e., Sturmian and skew words):

Corollary

An infinite word t on $\{a, b\}$, $a < b$, is balanced (i.e., Sturmian or skew) if and only if there exists an infinite word u such that

$$au \leq \min(t) \leq \max(t) \leq bu.$$