Outline

1. Background
 - Repetitions & patterns in words
 - Crucial words & abelian powers

2. Minimal crucial words avoiding abelian cubes
 - Upper bound for length
 - Lower bound for length

3. Minimal crucial words avoiding abelian k-th powers
 - Upper bound for length

4. Further research
1 Background
 - Repetitions & patterns in words
 - Crucial words & abelian powers

2 Minimal crucial words avoiding abelian cubes
 - Upper bound for length
 - Lower bound for length

3 Minimal crucial words avoiding abelian k-th powers
 - Upper bound for length

4 Further research
A \textit{word} \(w \) is a finite or infinite sequence of symbols (\textit{letters}) taken from a non-empty finite set \(A \) (\textit{alphabet}).

Example with \(A = \{a, b, c\} \):

\[
w = abca, \quad w^\infty = (abca)^\infty = abcaabcaabcaabca \cdots .
\]
A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set A (alphabet).

Example with $A = \{a, b, c\}$:

$$w = abca, \quad w^\infty = (abca)^\infty = abcaabcaabcaabca \cdots.$$

The length of a word w, denoted by $|w|$, is the number of letters w contains.

Example: $|abca| = 4$.

Amy Glen (Reykjavík University)
Crucial words for abelian repetitions
June 2009 4 / 26
Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).

 Example with $\mathcal{A} = \{a, b, c\}$:

 \[
 w = abca, \quad w^\infty = (abca)^\infty = \text{abcaabcaabcaabca} \cdots.
 \]

- The length of a word w, denoted by $|w|$, is the number of letters w contains.

 Example: $|abca| = 4$.

- A factor of a word w is a block of consecutive letters in w.

 Example: $w = abca$ has 9 distinct factors

 \[
 \{a, b, c, ab, bc, ca, abc, bca, abca\}.
 \]
Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set A (alphabet).

 Example with $A = \{a, b, c\}$:

 $$w = abca, \quad w^\infty = (abca)^\infty = abcaabcaabcaabca\ldots.$$

- The **length** of a word w, denoted by $|w|$, is the number of letters w contains.

 Example: $|abca| = 4$.

- A **factor** of a word w is a block of consecutive letters in w.

 Example: $w = abca$ has 9 distinct factors

 $$\{a, b, c, ab, bc, ca, abc, bca, abca\}.$$

- **Fact:** Over a 2-letter alphabet $\{a, b\}$, any word w with $|w| > 3$ must have a factor of the form $XX = X^2$, called a square.
Repetitions in words

- A **word** \(w \) is a finite or infinite sequence of symbols (**letters**) taken from a non-empty finite set \(A \) (**alphabet**).

 Example with \(A = \{a, b, c\} \):
 \[
 w = abca, \quad w^\infty = (abca)^\infty = abcaabcaabcaabca \ldots .
 \]

- The **length** of a word \(w \), denoted by \(|w| \), is the number of letters \(w \) contains.

 Example: \(|abca| = 4 \).

- A **factor** of a word \(w \) is a block of consecutive letters in \(w \).

 Example: \(w = abca \) has 9 distinct factors

 \[
 \{a, b, c, ab, bc, ca, abc, bca, abca\}.
 \]

- **Fact**: Over a 2-letter alphabet \(\{a, b\} \), any word \(w \) with \(|w| > 3 \) must have a factor of the form \(XX = X^2 \), called a **square**.

 Check: \(a \)
Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set A (alphabet).

 Example with $A = \{a, b, c\}$:

 $w = abca, \quad w^\infty = (abca)^\infty = abcaabcaabcaabca \ldots$.

- The length of a word w, denoted by $|w|$, is the number of letters w contains.

 Example: $|abca| = 4$.

- A factor of a word w is a block of consecutive letters in w.

 Example: $w = abca$ has 9 distinct factors

 $\{a, b, c, ab, bc, ca, abc, bca, abca\}$.

- Fact: Over a 2-letter alphabet $\{a, b\}$, any word w with $|w| > 3$ must have a factor of the form $XX = X^2$, called a square.

 Check: $a \rightarrow ab$
Repetitions in words

- A *word* \(w \) is a finite or infinite sequence of symbols (*letters*) taken from a non-empty finite set \(A \) (*alphabet*).

 Example with \(A = \{a, b, c\} \):

 \[
 w = abca, \quad w^\infty = (abca)^\infty = abcaabcaabcaabca \cdots .
 \]

- The *length* of a word \(w \), denoted by \(|w|\), is the number of letters \(w \) contains.

 Example: \(|abca| = 4\).

- A *factor* of a word \(w \) is a block of consecutive letters in \(w \).

 Example: \(w = abca \) has 9 distinct factors

 \[
 \{a, b, c, ab, bc, ca, abc, bca, abca\}.
 \]

- **Fact**: Over a 2-letter alphabet \(\{a, b\} \), any word \(w \) with \(|w| > 3\) must have a factor of the form \(XX = X^2 \), called a *square*.

 Check: \(a \rightarrow ab \rightarrow aba \)
Repetitions in words

- A word w is a finite or infinite sequence of symbols (letters) taken from a non-empty finite set A (alphabet).

Example with $A = \{a, b, c\}$:

$$w = abca, \quad w^\infty = (abca)^\infty = abcaabcaabcaabca\cdots.$$

- The length of a word w, denoted by $|w|$, is the number of letters w contains.

Example: $|abca| = 4$.

- A factor of a word w is a block of consecutive letters in w.

Example: $w = abca$ has 9 distinct factors

$$\{a, b, c, ab, bc, ca, abc, bca, abca\}.$$

- Fact: Over a 2-letter alphabet $\{a, b\}$, any word w with $|w| > 3$ must have a factor of the form $XX = X^2$, called a square.

Check: $a \rightarrow ab \rightarrow aba \rightarrow abab$.

Amy Glen (Reykjavík University)
Crucial words for abelian repetitions
June 2009
Axel Thue (1863–1922): First to construct (in 1906) an infinite word over a 3-letter alphabet \{a, b, c\} containing no repetitions, i.e., avoiding the pattern XX.
Axel Thue (1863–1922): First to construct (in 1906) an infinite word over a 3-letter alphabet \{a, b, c\} containing no repetitions, i.e., avoiding the pattern XX.

Obtained by iterating the following substitution rule (or morphism) on the letter a:

\[
a \mapsto b, \quad b \mapsto ca, \quad c \mapsto cba.
\]
Repetitions in words . . .

- **Axel Thue (1863–1922):** First to construct (in 1906) an infinite word over a 3-letter alphabet \(\{a, b, c\} \) containing no repetitions, i.e., avoiding the pattern \(XX \).

- Obtained by iterating the following *substitution rule* (or *morphism*) on the letter \(a \):

 \[
 a \mapsto b, \quad b \mapsto ca, \quad c \mapsto cba.
 \]

- That is:

 \[
 a \rightarrow b
 \]
Axel Thue (1863–1922): First to construct (in 1906) an infinite word over a 3-letter alphabet \{a, b, c\} containing no repetitions, i.e., avoiding the pattern \textbf{XX}.

Obtained by iterating the following \textit{substitution rule} (or \textit{morphism}) on the letter \textit{a}:

\[
a \mapsto b, \quad b \mapsto ca, \quad c \mapsto cba.
\]

That is:

\[
a \rightarrow b \rightarrow ca
\]
Repetitions in words . . .

- **Axel Thue (1863–1922):** First to construct (in 1906) an infinite word over a 3-letter alphabet \{a, b, c\} containing no repetitions, i.e., avoiding the pattern \textit{XX}.

- Obtained by iterating the following substitution rule (or morphism) on the letter \textit{a}:

 \[a \mapsto b, \quad b \mapsto ca, \quad c \mapsto cba. \]

- That is:

 \[a \rightarrow b \rightarrow ca \rightarrow cbab \]
Axel Thue (1863–1922): First to construct (in 1906) an infinite word over a 3-letter alphabet \{a, b, c\} containing no repetitions, i.e., avoiding the pattern XX.

Obtained by iterating the following substitution rule (or morphism) on the letter a:

\[a \mapsto b, \quad b \mapsto ca, \quad c \mapsto cba. \]

That is:

\[a \to b \to ca \to cbab \to cbacabca \]
Axel Thue (1863–1922): First to construct (in 1906) an infinite word over a 3-letter alphabet \{a, b, c\} containing \textit{no repetitions}, i.e., avoiding the pattern XX.

Obtained by iterating the following \textit{substitution rule} (or \textit{morphism}) on the letter \(a\):

\[
\begin{align*}
a & \mapsto b, \\
b & \mapsto ca, \\
c & \mapsto cba.
\end{align*}
\]

That is:

\[
a \rightarrow b \rightarrow ca \rightarrow cbab \rightarrow cbacabca \rightarrow cbacabcbabcacbab \rightarrow \ldots
\]
Repetitions in words . . .

- **Axel Thue (1863–1922):** First to construct (in 1906) an infinite word over a 3-letter alphabet \{a, b, c\} containing no repetitions, i.e., avoiding the pattern \(XX\).

- Obtained by iterating the following *substitution rule* (or *morphism*) on the letter \(a\):
 \[
 a \mapsto b, \quad b \mapsto ca, \quad c \mapsto cba.
 \]

- That is:
 \[
 a \to b \to ca \to cbab \to cbacabca \to cbacabcbabcacbab \to \ldots
 \]

 gives (in the limit) the infinite word

 \[
 cbacabcbabcabcabcabca \ldots
 \]
Repetitions in words . . .

- **Thue (1912):** also constructed an infinite word over \(\{a, b\} \) avoiding factors of the form

\[
XXX = X^3 \text{ (called } \textit{cubes}) \quad \text{and} \quad XYXYX \text{ (called } \textit{overlaps}).
\]
Repetitions in words . . .

- Thue (1912): also constructed an infinite word over \{a, b\} avoiding factors of the form

 $$XXX = X^3 \text{ (called \textit{cubes}) \quad and \quad XYXYX \text{ (called \textit{overlaps}).}$$

- Obtained by iterating the following substitution \(\mu\) on the letter \(a\):

 $$\mu : a \mapsto ab, \; b \mapsto ba.$$
Thue (1912): also constructed an infinite word over \{a, b\} avoiding factors of the form

\[XXX = X^3 \text{ (called \textit{cubes}) and } XYXYX \text{ (called \textit{overlaps}).} \]

Obtained by iterating the following substitution \(\mu \) on the letter \(a \):

\[\mu : a \mapsto ab, \ b \mapsto ba. \]

That is:

\[\lim_{n \to \infty} \mu^n(a) = abbabaabbaabbbabaababbaaabbaabbaaabbaaab \cdots \]
Repetitions in words . . .

- Thue (1912): also constructed an infinite word over \{a, b\} avoiding factors of the form
 \[XXX = X^3\] (called *cubes*) and \[XYXYZ\] (called *overlaps*).

- Obtained by iterating the following substitution \(\mu\) on the letter \(a\):
 \[
 \mu : a \mapsto ab, \quad b \mapsto ba.
 \]

- That is:
 \[
 \lim_{n \to \infty} \mu^n(a) = abbabaabbaabbbabaabbaabbaabbabaab \cdots
 \]

- Now called the *Thue-Morse word* as it was rediscovered by Morse in 1921 (in the context of symbolic dynamics).
Pattern avoidance

- Patterns such as X, XYX, $XYZXYX$ (called *sesquipowers*) cannot be avoided by infinite words (i.e., they are *unavoidable*).
Pattern avoidance

- Patterns such as X, XYX, $XYXZXYX$ (called *sesquipowers*) cannot be avoided by infinite words (i.e., they are *unavoidable*).
- Avoidable and unavoidable regularities are topics of great interest.

 Connections to *semigroup theory*, *formal language theory*, *symbolic dynamics*, ...
Pattern avoidance

- Patterns such as X, XY, $XYZXYX$ (called *sesquipowers*) cannot be avoided by infinite words (i.e., they are *unavoidable*).

- Avoidable and unavoidable regularities are topics of great interest. Connections to *semigroup theory, formal language theory, symbolic dynamics*, ...

- Erdős (1961): introduced a commutative version of Thue’s problem.

 Does there exist an infinite word over a fixed finite alphabet containing no abelian squares, i.e., avoiding factors of the form XX' where X' is a permutation of X?
Pattern avoidance

- Patterns such as X, XYX, $XYXZXYX$ (called *sesquipowers*) cannot be avoided by infinite words (i.e., they are *unavoidable*).

- Avoidable and unavoidable regularities are topics of great interest. Connections to *semigroup theory*, *formal language theory*, *symbolic dynamics*,

- Erdős (1961): introduced a commutative version of Thue’s problem.

 Does there exist an infinite word over a fixed finite alphabet containing no abelian squares, i.e., avoiding factors of the form XX' where X' is a permutation of X?

- Answer: *YES.*
Pattern avoidance

- Patterns such as X, XYX, $XYXZXYX$ (called *sesquipowers*) cannot be avoided by infinite words (i.e., they are *unavoidable*).

- Avoidable and unavoidable regularities are topics of great interest. Connections to *semigroup theory*, *formal language theory*, *symbolic dynamics*, . . .

- Erdős (1961): introduced a commutative version of Thue’s problem.

 Does there exist an infinite word over a fixed finite alphabet containing no abelian squares, i.e., avoiding factors of the form XX' where X' is a permutation of X?

- **Answer:** YES. Existence was established for alphabets of size:

 - 25 and improved to 7 (A. Evdokimov, 1968 & 1971);
 - 5 (P.A.B. Pleasants, 1970);
 - 4 (Keränen, 1992), the *optimal result* (such a word does not exist over a 3-letter alphabet).
Abelian powers

Let $\mathcal{A}_n = \{1, 2, \ldots, n\}$ and let $k \geq 2$ be an integer.
Abelian powers

Let $A_n = \{1, 2, \ldots, n\}$ and let $k \geq 2$ be an integer.

- A word W over A_n contains a k-th power if W has a factor of the form $X^k = XX \ldots X$ (k times) for some non-empty word X.
Abelian powers

Let \(A_n = \{1, 2, \ldots, n\} \) and let \(k \geq 2 \) be an integer.

- A word \(W \) over \(A_n \) contains a \textit{k-th power} if \(W \) has a factor of the form
 \[X^k = XX \ldots X \text{ (} k \text{ times)} \]
 for some non-empty word \(X \).

- Example:
 \[
 V = 13243232323243 \text{ contains the 4-th power } (32)^4 = 32323232.
 \]
Abelian powers

Let $A_n = \{1, 2, \ldots, n\}$ and let $k \geq 2$ be an integer.

- A word W over A_n contains a \textit{k-th power} if W has a factor of the form $X^k = XX \ldots X$ (k times) for some non-empty word X.

- Example:

 $V = 13243232323243$ contains the 4-th power $(32)^4 = 32323232$.

- A word W contains an \textit{abelian k-th power} if W has a factor of the form $X_1X_2 \ldots X_k$ where X_i is a permutation of X_1 for $2 \leq i \leq k$.
Abelian powers

Let \(A_n = \{1, 2, \ldots, n\} \) and let \(k \geq 2 \) be an integer.

- A word \(W \) over \(A_n \) contains a \textit{k-th power} if \(W \) has a factor of the form
 \[X^k = XX \ldots X \text{ (k times)} \]
 for some non-empty word \(X \).

- **Example:**
 \[V = 13243232323243 \]
 contains the 4-th power \((32)^4 = 32323232\).

- A word \(W \) contains an \textit{abelian k-th power} if \(W \) has a factor of the form
 \[X_1X_2 \ldots X_k \]
 where \(X_i \) is a permutation of \(X_1 \) for \(2 \leq i \leq k \).

- The cases \(k = 2 \) and \(k = 3 \) give us (abelian) \textit{squares} and \textit{cubes}.
Abelian powers

Let $A_n = \{1, 2, \ldots, n\}$ and let $k \geq 2$ be an integer.

- A word W over A_n contains a k-th power if W has a factor of the form $X^k = XX \ldots X$ (k times) for some non-empty word X.

 Example:

 \[V = 13243232323243 \text{ contains the } 4\text{-th power } (32)^4 = 32323232. \]

- A word W contains an abelian k-th power if W has a factor of the form $X_1X_2\ldots X_k$ where X_i is a permutation of X_1 for $2 \leq i \leq k$.

 The cases $k = 2$ and $k = 3$ give us (abelian) squares and cubes.

 Examples:

 - V contains the abelian square $43232\, 32324$.
 - $123\, 312\, 213$ is an abelian cube.
Abelian powers . . .

- A word is \textit{(abelian) k-power-free} if it \textit{avoids} (abelian) k-th powers.

 \textbf{Example:} 1234324 is abelian cube-free, but \textbf{not} abelian square-free since it contains the abelian square $234\ 324$.

Abelian powers . . .

- A word is (abelian) k-power-free if it avoids (abelian) k-th powers.

 Example: 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234 324.

Note: “Does there exist an infinite abelian k-power-free word on n letters?” is equivalent to asking

“Does there exist an infinite semigroup S having n generators and satisfying the property that any abelian k-th power in S vanishes to the identity element?”
Abelian powers . . .

A word is (abelian) *k*-power-free if it avoids (abelian) *k*-th powers.

Example: 1234324 is abelian cube-free, but not abelian square-free since it contains the abelian square 234 324.

Note: “Does there exist an infinite abelian *k*-power-free word on *n* letters?” is equivalent to asking

“Does there exist an infinite semigroup *S* having *n* generators and satisfying the property that any abelian *k*-th power in *S* vanishes to the identity element?”

For instance, the answer is known to be YES for:

- \(k = 2 \) and \(n = 4 \) (Keränen, 1992)
- \(k = 3 \) and \(n = 3 \) (Dekking, 1979)
- \(k = 4 \) and \(n = 2 \) (Dekking, 1979)
- \(k = 5 \) and \(n = 2 \) (Justin, 1972)
In algebraic contexts, it is also natural to consider words avoiding other patterns too . . .
Pattern avoidance & semigroup theory

In algebraic contexts, it is also natural to consider words avoiding other patterns too . . .

For instance:

In the study of semigroup varieties, the following Burnside type question is natural:

"Given an arbitrary pattern p in one or more variables, does there exist a finitely generated infinite semigroup satisfying the law $p = e$, where e is the identity element?"
Pattern avoidance & semigroup theory

In algebraic contexts, it is also natural to consider words avoiding other patterns too . . .

For instance:

In the study of semigroup varieties, the following Burnside type question is natural:

“Given an arbitrary pattern p in one or more variables, does there exist a finitely generated infinite semigroup satisfying the law $p = e$, where e is the identity element?”

[See Currie-Linek (2001) for more details and references.]

We are interested in a particular problem in relation to words avoiding abelian powers . . .
A word W over A_n is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but Wx does not avoid the prohibitions for any letter x occurring in W.
Crucial words with respect to abelian powers

- A word W over \mathcal{A}_n is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but Wx does not avoid the prohibitions for any letter x occurring in W.

A minimal crucial word is a crucial word of the shortest length.
Crucial words with respect to abelian powers

A word W over A_n is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but Wx does not avoid the prohibitions for any letter x occurring in W.

A minimal crucial word is a crucial word of the shortest length.

Example: $W = 21211$ is crucial with respect to abelian cubes since:
A word W over A_n is \textit{crucial} with respect to a given set of \textit{prohibited words} (or simply \textit{prohibitions}) if W avoids the prohibitions, but Wx does not avoid the prohibitions for any letter x occurring in W.

A \textit{minimal crucial word} is a crucial word of the shortest length.

Example: $W = 21211$ is crucial with respect to abelian cubes since:

- W is abelian cube-free;
Crucial words with respect to abelian powers

- A word W over A_n is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but Wx does not avoid the prohibitions for any letter x occurring in W.

 A minimal crucial word is a crucial word of the shortest length.

Example: $W = 21211$ is crucial with respect to abelian cubes since:

- W is abelian cube-free;
- $W1$ and $W2$ end with the abelian cubes 111 and 212112, respectively.
A word W over A_n is crucial with respect to a given set of prohibited words (or simply prohibitions) if W avoids the prohibitions, but Wx does not avoid the prohibitions for any letter x occurring in W.

A minimal crucial word is a crucial word of the shortest length.

Example: $W = 21211$ is crucial with respect to abelian cubes since:

- W is abelian cube-free;
- $W1$ and $W2$ end with the abelian cubes 111 and 212112, respectively.

In fact, W is a minimal crucial word over $\{1, 2\}$ with respect to abelian cubes.
Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.
Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.

- The **Zimin word** Z_n over A_n is defined recursively as follows:

\[
Z_1 = 1 \quad \text{and} \quad Z_n = Z_{n-1} n Z_{n-1} \quad \text{for } n \geq 2.
\]
Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.

- The *Zimin word* Z_n over A_n is defined recursively as follows:

$$ Z_1 = 1 \quad \text{and} \quad Z_n = Z_{n-1}nZ_{n-1} \quad \text{for } n \geq 2. $$

 The first four Zimin words are:

$Z_1 = 1$
Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.

- The *Zimin word* Z_n over A_n is defined recursively as follows:

 $$Z_1 = 1 \text{ and } Z_n = Z_{n-1} n Z_{n-1} \text{ for } n \geq 2.$$

 The first four Zimin words are:

 $Z_1 = 1$
 $Z_2 = 121$
Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.
- The Zimin word Z_n over \mathcal{A}_n is defined recursively as follows:

$$Z_1 = 1 \quad \text{and} \quad Z_n = Z_{n-1}nZ_{n-1} \quad \text{for } n \geq 2.$$

The first four Zimin words are:

$Z_1 = 1$
$Z_2 = 121$
$Z_3 = 1213121$
Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.

- The **Zimin word** Z_n over \mathcal{A}_n is defined recursively as follows:

$$Z_1 = 1 \quad \text{and} \quad Z_n = Z_{n-1} n Z_{n-1} \quad \text{for } n \geq 2.$$

The first four Zimin words are:

- $Z_1 = 1$
- $Z_2 = 121$
- $Z_3 = 1213121$
- $Z_4 = 121312141213121$
Zimin words

- Problems of the type proposed by Erdős in 1961 were also considered by Zimin (1984) in the non-abelian sense.

- The *Zimin word* Z_n over A_n is defined recursively as follows:

 \[Z_1 = 1 \quad \text{and} \quad Z_n = Z_{n-1}nZ_{n-1} \quad \text{for } n \geq 2. \]

 The first four Zimin words are:

 $Z_1 = 1$
 $Z_2 = 121$
 $Z_3 = 1213121$
 $Z_4 = 121312141213121$

- The *k-generalised Zimin word* $Z_{n,k} = X_n$ is defined as

 \[X_1 = 1^{k-1} = 11\ldots1, \quad X_n = (X_{n-1}n)^{k-1}X_{n-1} = X_{n-1}nX_{n-1}n\ldots nX_{n-1} \]

 where the number of 1’s, as well as the number of n’s, is $k – 1$.
Zimin words . . .

- The first three 3-generalised Zimin words are:
Zimin words . . .

The first three 3-generalised Zimin words are:

\[Z_{1,3} = 11 \]
Zimin words . . .

- The first three 3-generalised Zimin words are:

 \[
 Z_{1,3} = 11 \\
 Z_{2,3} = 11211211
 \]
The first three 3-generalised Zimin words are:

\[Z_{1,3} = 11 \]
\[Z_{2,3} = 11211211 \]
\[Z_{3,3} = 11211211311211211311211211 \]
Zimin words . . .

- The first three 3-generalised Zimin words are:
 \[Z_{1,3} = 11 \]
 \[Z_{2,3} = 11211211 \]
 \[Z_{3,3} = 11211211311211211311211211 \]

Note:
- \(Z_n = Z_{n,2} \).
The first three 3-generalised Zimin words are:

\[Z_{1,3} = 11 \]
\[Z_{2,3} = 11211211 \]
\[Z_{3,3} = 11211211311211211311211211 \]

Note:

- \(Z_n = Z_{n,2} \).
- \(Z_{n,k} \) is crucial with respect to abelian \(k \)-th powers.
The first three 3-generalised Zimin words are:

\[Z_{1,3} = 11 \]
\[Z_{2,3} = 11211211 \]
\[Z_{3,3} = 112112111311211211311211211 \]

Note:

- \(Z_n = Z_{n,2} \).
- \(Z_{n,k} \) is crucial with respect to abelian \(k \)-th powers.
- \(Z_{n,k} \) has length \(k^n - 1 \).
Zimin words . . .

- The first three 3-generalised Zimin words are:

 \[
 Z_{1,3} = 11 \\
 Z_{2,3} = 11211211 \\
 Z_{3,3} = 11211211311211211311211211
 \]

Note:

- \(Z_n = Z_{n,2} \).
- \(Z_{n,k} \) is crucial with respect to abelian \(k \)-th powers.
- \(Z_{n,k} \) has length \(k^n - 1 \).
- \(Z_{n,k} \) gives the length of a minimal crucial word avoiding \(k \)-th powers.
The first three 3-generalised Zimin words are:

\[Z_{1,3} = 11 \]
\[Z_{2,3} = 11211211 \]
\[Z_{3,3} = 11211211311211211311211211 \]

Note:

- \(Z_n = Z_{n,2} \).
- \(Z_{n,k} \) is crucial with respect to abelian \(k \)-th powers.
- \(Z_{n,k} \) has length \(k^n - 1 \).
- \(Z_{n,k} \) gives the length of a minimal crucial word avoiding \(k \)-th powers.

Much less is known in the case of abelian \(k \)-th powers...
Minimal crucial words avoiding abelian powers

Minimal crucial words avoiding abelian powers

- Evdokimov-Kitaev (2004): proved that a minimal crucial abelian square-free word over an n-letter alphabet has length $4n - 7$ for $n \geq 3$.

Evdokimov-Kitaev (2004): proved that a minimal crucial abelian square-free word over an n-letter alphabet has length $4n - 7$ for $n \geq 3$.

Now we extend the study of crucial abelian k-power-free words to the case of $k > 2$.

- We provide a complete solution to the problem of determining the length of a minimal crucial abelian cube-free word (the case $k = 3$).
- And we conjecture a solution in the general case.
Minimal crucial words avoiding abelian powers

- Evdokimov-Kitaev (2004): proved that a minimal crucial abelian square-free word over an n-letter alphabet has length $4n - 7$ for $n \geq 3$.

- Now we extend the study of crucial abelian k-power-free words to the case of $k > 2$.
 - We provide a complete solution to the problem of determining the length of a minimal crucial abelian cube-free word (the case $k = 3$).
 - And we conjecture a solution in the general case.

- Let $\ell_k(n)$ denote the length of a minimal crucial word over A_n avoiding abelian k-th powers.
Outline

1 Background
 - Repetitions & patterns in words
 - Crucial words & abelian powers

2 Minimal crucial words avoiding abelian cubes
 - Upper bound for length
 - Lower bound for length

3 Minimal crucial words avoiding abelian k-th powers
 - Upper bound for length

4 Further research
Upper bound for $\ell_3(n)$

Note: $Z_{n,3}$ crucial with respect to abelian cubes $\implies \ell_3(n) \leq 3^n - 1.$
Upper bound for $\ell_3(n)$

Note: $Z_{n,3}$ crucial with respect to abelian cubes $\implies \ell_3(n) \leq 3^n - 1.$

- Let X be a crucial word over A_n with respect to abelian k-th powers.
Upper bound for $\ell_3(n)$

Note: $Z_{n,3}$ crucial with respect to abelian cubes $\implies \ell_3(n) \leq 3^n - 1$.

- Let X be a crucial word over A_n with respect to abelian k-th powers.
- If X is minimal, we may assume w.l.o.g. that X^n is an abelian k-th power, and we write:

$$X = \Omega_{n,1} \Omega_{n,2} \cdots \Omega_{n,k}$$

where $\Omega_{n,k} = \Omega'_{n,k} n$

and the k blocks $\Omega_{n,j}$ are permutations of one another.
Upper bound for $\ell_3(n)$

Note: $Z_{n,3}$ crucial with respect to abelian cubes $\implies \ell_3(n) \leq 3^n - 1.$

- Let X be a crucial word over A_n with respect to abelian k-th powers.
- If X is minimal, we may assume w.l.o.g. that X^n is an abelian k-th power, and we write:
 \[X = \Omega_{n,1} \Omega_{n,2} \cdots \Omega'_{n,k} \text{ where } \Omega_{n,k} = \Omega'_{n,k} n \]
 and the k blocks $\Omega_{n,j}$ are permutations of one another.

A construction of crucial abelian cube-free words over A_n for $n \geq 4$:
Upper bound for $\ell_3(n)$

Note: $Z_{n,3}$ crucial with respect to abelian cubes $\implies \ell_3(n) \leq 3^n - 1.$

- Let X be a crucial word over A_n with respect to abelian k-th powers.
- If X is minimal, we may assume w.l.o.g. that Xn is an abelian k-th power, and we write:

$$X = \Omega_{n,1}\Omega_{n,2} \cdots \Omega'_{n,k}$$

where $\Omega_{n,k} = \Omega'_{n,k}n$

and the k blocks $\Omega_{n,j}$ are permutations of one another.

A construction of crucial abelian cube-free words over A_n for $n \geq 4$:

Basis: Minimal crucial abelian square-free words $W_n = W_{n,2}$ given by Evdokimov \& Kitaev (2004). For $n = 4, 5, 6$:

$W_{4,2} = 34231 \ 3231,$
$W_{5,2} = 4534231 \ 432341,$
$W_{6,2} = 564534231 \ 54323451,$

where spaces separate the blocks.
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1} \Omega'_{n,2}$ for $n \geq 4$:

- 1st block $\Omega_{n,1}$: adjoin the factors $i(i+1)$ for $i = n-1, n-2, \ldots, 2$, followed by the letter 1.
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: adjoin the factors $i(i+1)$ for $i = n - 1, n - 2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

1. **1st block $\Omega_{n,1}$**: adjoin the factors $i(i + 1)$ for $i = n - 1, n - 2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

2. **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n - 1)(n - 2) \ldots 432$, then $34 \ldots (n - 2)(n - 1)$, and finally the letter 1.
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

1. **1st block $\Omega_{n,1}$**: adjoin the factors $i(i+1)$ for $i = n-1, n-2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

2. **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n-1)(n-2)\ldots432$, then $34\ldots(n-2)(n-1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega'_{4,2} = 3231$.
Minimal crucial abelian square-free words

General construction of \(W_{n,2} = \Omega_{n,1} \Omega'_{n,2} \) for \(n \geq 4 \):

- **1st block** \(\Omega_{n,1} \): adjoin the factors \(i(i+1) \) for \(i = n - 1, n - 2, \ldots, 2 \), followed by the letter 1.

 Example: For \(n = 4 \), we have \(\Omega_{4,1} = 34231 \).

- **2nd block** \(\Omega'_{n,2} \): adjoin the factors \((n-1)(n-2) \ldots 432 \), then \(34 \ldots (n-2)(n-1) \), and finally the letter 1.

 Example: For \(n = 4 \), we have \(\Omega_{4,2} = 3231 \).

For \(n = 4, 5, 6, 7 \), we have:

\(W_{4,2} = \)
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: adjoin the factors $i(i + 1)$ for $i = n - 1, n - 2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n - 1)(n - 2)\ldots432$, then $34\ldots(n - 2)(n - 1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

$W_{4,2} = 34$
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: adjoin the factors $i(i+1)$ for $i = n-1, n-2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n-1)(n-2)\ldots432$, then $34\ldots(n-2)(n-1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

$W_{4,2} = 3423$
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: adjoin the factors $i(i + 1)$ for $i = n - 1, n - 2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n - 1)(n - 2)\ldots432$, then $34\ldots(n - 2)(n - 1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

$W_{4,2} = 34231$
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: adjoin the factors $i(i + 1)$ for $i = n - 1, n - 2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n - 1)(n - 2)\ldots432$, then $34\ldots(n - 2)(n - 1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

$W_{4,2} = 34231 32$
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: adjoin the factors $i(i+1)$ for $i = n-1, n-2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n-1)(n-2)\ldots432$, then $34\ldots(n-2)(n-1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

$W_{4,2} = 34231 \ 323$
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: adjoin the factors $i(i+1)$ for $i = n-1, n-2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n-1)(n-2)\ldots432$, then $34\ldots(n-2)(n-1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

$W_{4,2} = 34231\ 3231$
Minimal crucial abelian square-free words

General construction of \(W_{n,2} = \Omega_{n,1} \Omega'_{n,2} \) for \(n \geq 4 \):

- **1st block \(\Omega_{n,1} \):** adjoin the factors \(i(i + 1) \) for \(i = n - 1, n - 2, \ldots, 2 \), followed by the letter 1.

 Example: For \(n = 4 \), we have \(\Omega_{4,1} = 34231 \).

- **2nd block \(\Omega'_{n,2} \):** adjoin the factors \((n - 1)(n - 2) \ldots 432 \), then \(34 \ldots (n - 2)(n - 1) \), and finally the letter 1.

 Example: For \(n = 4 \), we have \(\Omega_{4,2} = 3231 \).

For \(n = 4, 5, 6, 7 \), we have:

\[
W_{4,2} = 34231 \ 3231 \\
W_{5,2} =
\]
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: adjoin the factors $i(i+1)$ for $i = n-1, n-2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n-1)(n-2) \ldots 432$, then $34 \ldots (n-2)(n-1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

$W_{4,2} = 34231$ 3231

$W_{5,2} = 45$
Minimal crucial abelian square-free words

General construction of \(W_{n,2} = \Omega_{n,1} \Omega'_{n,2} \) for \(n \geq 4 \):

- **1st block** \(\Omega_{n,1} \): adjoin the factors \(i(i+1) \) for \(i = n-1, n-2, \ldots, 2 \), followed by the letter 1.

 Example: For \(n = 4 \), we have \(\Omega_{4,1} = 34231 \).

- **2nd block** \(\Omega'_{n,2} \): adjoin the factors \((n-1)(n-2)\ldots432\), then \(34\ldots(n-2)(n-1) \), and finally the letter 1.

 Example: For \(n = 4 \), we have \(\Omega_{4,2} = 3231 \).

For \(n = 4, 5, 6, 7 \), we have:

\[
W_{4,2} = 34231 \ 3231
\]
\[
W_{5,2} = 4534
\]
Minimal crucial abelian square-free words

General construction of \(W_{n,2} = \Omega_{n,1} \Omega'_{n,2} \) for \(n \geq 4 \):

- 1st block \(\Omega_{n,1} \): adjoin the factors \(i(i + 1) \) for \(i = n - 1, n - 2, \ldots, 2 \), followed by the letter 1.

 Example: For \(n = 4 \), we have \(\Omega_{4,1} = 34231 \).

- 2nd block \(\Omega'_{n,2} \): adjoin the factors \((n - 1)(n - 2)\ldots432 \), then \(34\ldots(n - 2)(n - 1) \), and finally the letter 1.

 Example: For \(n = 4 \), we have \(\Omega_{4,2} = 3231 \).

For \(n = 4, 5, 6, 7 \), we have:

\[W_{4,2} = 34231 \ 3231 \]

\[W_{5,2} = 453423 \]
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$:** adjoin the factors $i(i + 1)$ for $i = n - 1, n - 2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$:** adjoin the factors $(n - 1)(n - 2)\ldots432$, then $34\ldots(n - 2)(n - 1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

$W_{4,2} = 34231\ 3231$

$W_{5,2} = 4534231$
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: Adjoin the factors $i(i+1)$ for $i = n-1, n-2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$**: Adjoin the factors $(n-1)(n-2)\ldots432$, then $34\ldots(n-2)(n-1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega'_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

- $W_{4,2} = 34231\ 3231$
- $W_{5,2} = 4534231\ 432$
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: adjoin the factors $i(i + 1)$ for $i = n - 1, n - 2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n - 1)(n - 2)\ldots 432$, then $34\ldots(n - 2)(n - 1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

$W_{4,2} = 34231 \ 3231$

$W_{5,2} = 4534231 \ 43234$
Minimal crucial abelian square-free words

General construction of $W_{n,2} = \Omega_{n,1}\Omega'_{n,2}$ for $n \geq 4$:

- **1st block $\Omega_{n,1}$**: adjoin the factors $i(i+1)$ for $i = n-1, n-2, \ldots, 2$, followed by the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,1} = 34231$.

- **2nd block $\Omega'_{n,2}$**: adjoin the factors $(n-1)(n-2)\ldots432$, then $34\ldots(n-2)(n-1)$, and finally the letter 1.

 Example: For $n = 4$, we have $\Omega_{4,2} = 3231$.

For $n = 4, 5, 6, 7$, we have:

$W_{4,2} = 34231\ 3231$

$W_{5,2} = 4534231\ 432341$
Minimal crucial abelian square-free words

General construction of \(W_{n,2} = \Omega_{n,1} \Omega'_{n,2} \) for \(n \geq 4 \):

- **1st block \(\Omega_{n,1} \):** adjoin the factors \(i(i + 1) \) for \(i = n - 1, n - 2, \ldots, 2 \), followed by the letter 1.

 Example: For \(n = 4 \), we have \(\Omega_{4,1} = 34231 \).

- **2nd block \(\Omega'_{n,2} \):** adjoin the factors \((n - 1)(n - 2) \ldots 432 \), then \(34 \ldots (n - 2)(n - 1) \), and finally the letter 1.

 Example: For \(n = 4 \), we have \(\Omega_{4,2} = 3231 \).

For \(n = 4, 5, 6, 7 \), we have:

\[
\begin{align*}
W_{4,2} &= 34231 \ 3231 \\
W_{5,2} &= 4534231 \ 432341 \\
W_{6,2} &= 564534231 \ 54323451 \\
W_{7,2} &= 67564534231 \ 6543234561
\end{align*}
\]
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$:
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$...

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow$
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow \underline{34231} \ 34231 \ 3231$

Duplicate 1st block
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231\ 3231 \rightarrow 34231\ 34231\underline{134}\ 3231$

Append 134 to 2nd block
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$:

$W_{4,2} = 34231\ 3231 \rightarrow 344231\ 34231134\ 3231$

Duplicate rightmost x for each $x \neq 2$ in 1st & 3rd blocks
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) . . .

Construction of \(W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \):

\(W_{4,2} = 34231 \; 3231 \quad \rightarrow \quad 34423\color{red}{31} \; 34231134 \; 3231 \)

Duplicate rightmost \(x \) for each \(x \neq 2 \) in 1st & 3rd blocks
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231\ 3231 \rightarrow \ 3442331\underline{1}\ 34231134\ 3231$

Duplicate rightmost x for each $x \neq 2$ in 1st & 3rd blocks
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) . . .

Construction of \(W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \):

\[
W_{4,2} = 34231 \ 3231 \longrightarrow \ 34423111 \ 34231134 \ 32331
\]

Duplicate rightmost \(x \) for each \(x \neq 2 \) in 1st & 3rd blocks
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2} \ldots$

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow \ 34423311 \ 34231134 \ 323311$

Duplicate rightmost x for each $x \neq 2$ in 1st & 3rd blocks
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow \ 34423311 \ 34231134 \ 3233411$

Insert 4 before leftmost 1 in 3rd block
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$:

$W_{4,2} = 34231 3231 \longrightarrow 34423311 34231134 3233411 = W_{4,3}$
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$.

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

\[
W_{4,2} = 34231 \ 3231 \quad \rightarrow \quad 34423311 \ 34231134 \ 3233411 = W_{4,3}
\]

\[
W_{5,2} = 4534231 \ 432341 \quad \rightarrow
\]
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow 34423311 \ 34231134 \ 3233411 = W_{4,3}$

$W_{5,2} = 4534231 \ 432341$

$\rightarrow 4534231 \ 4534231 \ 432341$

Duplicate 1st block
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) . . .

Construction of \(W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \):

\[
W_{4,2} = 34231 \ 3231 \rightarrow 34423311 \ 34231134 \ 3233411 = W_{4,3}
\]

\[
W_{5,2} = 4534231 \ 432341
\]

\[
\rightarrow 4534231 \ 4534231 \ 1345 \ 432341
\]

Append 1345 to 2nd block
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) . . .

Construction of \(W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \):

\[
W_{4,2} = 34231\ 3231 \rightarrow 34423311\ 34231134\ 3233411 = W_{4,3}
\]

\[
W_{5,2} = 4534231\ 432341 \\
\rightarrow 45\underline{5}\ 34231\ 45342311345\ 432341
\]

Duplicate rightmost \(x \) for each \(x \neq 2 \) in 1st & 3rd blocks
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) . . .

Construction of \(W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \):

\[
W_{4,2} = 342313231 \longrightarrow 3442331134231341134 = W_{4,3}
\]

\[
W_{5,2} = 4534231432341 \longrightarrow 45534423145342311345432341
\]

Duplicate rightmost \(x \) for each \(x \neq 2 \) in 1st & 3rd blocks
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2} \ldots$

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow 34423311 \ 34231134 \ 3233411 = W_{4,3}$

$W_{5,2} = 4534231 \ 432341$

$\rightarrow 455344231 \ 45342311345 \ 432341$

Duplicate rightmost x for each $x \neq 2$ in 1st & 3rd blocks
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) . . .

Construction of \(W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \):

\[
W_{4,2} = 34231 \ 3231 \quad \rightarrow \quad 34423311 \ 34231134 \ 3233411 = W_{4,3}
\]

\[
W_{5,2} = 4534231 \ 432341
\]

\[
\rightarrow 4553442331 \ 1 \ 45342311345 \ 432341
\]

Duplicate rightmost \(x \) for each \(x \neq 2 \) in 1st & 3rd blocks
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow \ 34423311 \ 34231134 \ 3233411 = W_{4,3}$

$W_{5,2} = 4534231 \ 432341$

$\rightarrow 45534423311 \ 45342311345 \ 4323341$

Duplicate rightmost x for each $x \neq 2$ in 1st & 3rd blocks
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega_{n,3}'$:

$W_{4,2} = 34231\ 3231 \rightarrow 34423311\ 34231134\ 3233411 = W_{4,3}$

$W_{5,2} = 4534231\ 432341$

$\rightarrow 45534423311\ 45342311345\ 4323341$

Duplicate rightmost x for each $x \neq 2$ in 1st & 3rd blocks
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) . . .

Construction of \(W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \):

\[
W_{4,2} = 34231 \ 3231 \quad \rightarrow \quad 34423311 \ 34231134 \ 3233411 = W_{4,3}
\]

\[
W_{5,2} = 4534231 \ 432341
\]

\[
\rightarrow \quad 45534423311 \ 45342311345 \ 43233441 \underline{1}
\]

Duplicate rightmost \(x \) for each \(x \neq 2 \) in 1st & 3rd blocks
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \ldots \)

Construction of \(W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \):

\[
W_{4,2} = 34231 \ 3231 \quad \rightarrow \quad 34423311 \ 34231134 \ 3233411 = W_{4,3}
\]

\[
W_{5,2} = 4534231 \ 432341
\]

\[
\rightarrow \ 45534423311 \ 45342311345 \ 4323344511
\]

Insert 5 before leftmost 1 in 3rd block
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \longrightarrow 34423311 \ 34231134 \ 3233411 = W_{4,3}$

$W_{5,2} = 4534231 \ 432341$

$\longrightarrow 45534423311 \ 45342311345 \ 4323344511 = W_{5,3}$
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) . . .

Construction of \(W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3} \):

\[
W_{4,2} = 34231\ 3231 \quad \rightarrow \quad 34423311\ 34231134\ 3233411 = W_{4,3}
\]

\[
W_{5,2} = 4534231\ 432341
\]

\(\rightarrow \quad 45534423311\ 45342311345\ 4323344511 = W_{5,3} \)

\[
W_{6,2} = 564534231\ 54323451
\]

\(\rightarrow \)
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231\,3231 \rightarrow 34423311\,34231134\,3233411 = W_{4,3}$

$W_{5,2} = 4534231\,432341 \rightarrow 45534423311\,45342311345\,4323344511 = W_{5,3}$

$W_{6,2} = 564534231\,54323451 \rightarrow 564534231\,564534231\,54323451$

Duplicate 1st block
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231\, 3231 \quad \rightarrow \quad 34423311\, 34231134\, 3233411 = W_{4,3}$

$W_{5,2} = 4534231\, 432341$

$\quad \rightarrow \quad 45534423311\, 45342311345\, 4323344511 = W_{5,3}$

$W_{6,2} = 564534231\, 54323451$

$\quad \rightarrow \quad 564534231\, 564534231\, 13456\, 54323451$

Append 13456 to 2nd block
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow 34423311 \ 34231134 \ 3233411 = W_{4,3}$

$W_{5,2} = 4534231 \ 432341$

$\rightarrow 45534423311 \ 45342311345 \ 4323344511 = W_{5,3}$

$W_{6,2} = 564534231 \ 54323451$

$\rightarrow 566455344423311 \ 56453423113456 \ 543233445511$

Duplicate rightmost x for each $x \neq 2$ in 1st & 3rd blocks
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow 34423311 \ 34231134 \ 3233411 = W_{4,3}$

$W_{5,2} = 4534231 \ 432341$

$\rightarrow 45534423311 \ 45342311345 \ 4323344511 = W_{5,3}$

$W_{6,2} = 564534231 \ 54323451$

$\rightarrow 56645534423311 \ 56453423113456 \ 5432334455611$

Insert 6 before leftmost 1 in 3rd block
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231\ 3231 \rightarrow 34423311\ 34231134\ 3233411 = W_{4,3}$

$W_{5,2} = 4534231\ 432341$

$\rightarrow 45534423311\ 45342311345\ 4323344511 = W_{5,3}$

$W_{6,2} = 564534231\ 54323451$

$\rightarrow 56645534423311\ 56453423113456\ 5432334455611 = W_{6,3}$
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) . . .

Construction of \(W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \):

\[
W_{4,2} = 34231 \ 3231 \quad \rightarrow \quad 34423311 \ 34231134 \ 3233411 = W_{4,3}
\]

\[
W_{5,2} = 4534231 \ 432341
\]

\[
\rightarrow \quad 45534423311 \ 45342311345 \ 4323344511 = W_{5,3}
\]

\[
W_{6,2} = 564534231 \ 54323451
\]

\[
\rightarrow \quad 56645534423311 \ 56453423113456 \ 5432334455611 = W_{6,3}
\]

\[
W_{7,2} = 67564534231 \ 6543234561
\]

\[
\rightarrow
\]
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231\ 3231 \rightarrow 34423311\ 34231134\ 3233411 = W_{4,3}$

$W_{5,2} = 4534231\ 432341$

$\rightarrow 45534423311\ 45342311345\ 4323344511 = W_{5,3}$

$W_{6,2} = 564534231\ 54323451$

$\rightarrow 56645534423311\ 56453423113456\ 5432334455611 = W_{6,3}$

$W_{7,2} = 67564534231\ 6543234561$

$\rightarrow 67564534231\ 67564534231\ 6543234561$
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow 34423311 \ 34231134 \ 3233411 = W_{4,3}$

$W_{5,2} = 4534231 \ 432341$

$\rightarrow 45534423311 \ 45342311345 \ 4323344511 = W_{5,3}$

$W_{6,2} = 564534231 \ 54323451$

$\rightarrow 56645534423311 \ 56453423113456 \ 5432334455611 = W_{6,3}$

$W_{7,2} = 67564534231 \ 6543234561$

$\rightarrow 67564534231 \ 67564534231 \textbf{134567} \ 6543234561$
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) ...

Construction of \(W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3} \):

\[
\begin{align*}
W_{4,2} &= 34231\ 3231 \quad \rightarrow \quad 34423311\ 34231134\ 3233411 = W_{4,3} \\
W_{5,2} &= 4534231\ 432341 \\
&\quad \rightarrow \quad 45534423311\ 45342311345\ 4323344511 = W_{5,3} \\
W_{6,2} &= 564534231\ 54323451 \\
&\quad \rightarrow \quad 56645534423311\ 56453423113456\ 5432334455611 = W_{6,3} \\
W_{7,2} &= 67564534231\ 6543234561 \\
&\quad \rightarrow \quad 67756645534442331\ 67564534231134567\ 65432334455611
\end{align*}
\]
An optimal construction

For \(n \geq 4 \), we obtain crucial abelian cube-free words \(W_{n,3} \) from \(W_{n,2} \) . . .

Construction of \(W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \):

\[
\begin{align*}
W_{4,2} &= 34231\ 3231 \\
&\quad\rightarrow 34423311\ 34231134\ 3233411 = W_{4,3} \\
W_{5,2} &= 4534231\ 432341 \\
&\quad\rightarrow 45534423311\ 45342311345\ 4323344511 = W_{5,3} \\
W_{6,2} &= 564534231\ 54323451 \\
&\quad\rightarrow 56645534423311\ 56453423113456\ 5432334455611 = W_{6,3} \\
W_{7,2} &= 67564534231\ 6543234561 \\
&\quad\rightarrow 67756645534423311\ 67564534231134567\ 6543233445566711
\end{align*}
\]
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2} \ldots$

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow 34423311 \ 34231134 \ 3233411 = W_{4,3}$

$W_{5,2} = 4534231 \ 432341$
$\rightarrow 45534423311 \ 45342311345 \ 4323344511 = W_{5,3}$

$W_{6,2} = 564534231 \ 54323451$
$\rightarrow 56645534423311 \ 56453423113456 \ 5432334455611 = W_{6,3}$

$W_{7,2} = 67564534231 \ 6543234561$
$\rightarrow 67756645534423311 \ 67564534231134567 \ 6543233445566711$
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega_{n,3}'$:

$W_{4,2} = 34231\ 3231 \rightarrow 34423311\ 34231134\ 32334111 = W_{4,3}$

$W_{5,2} = 4534231\ 432341$

$\rightarrow 45534423311\ 45342311345\ 43233445111 = W_{5,3}$

$W_{6,2} = 564534231\ 54323451$

$\rightarrow 56645534423311\ 56453423113456\ 54323344556111 = W_{6,3}$

$W_{7,2} = 67564534231\ 6543234561$

$\rightarrow 67756645534423311\ 67564534231134567\ 6543233445566711$

Note:

$W_{n,3} = (n - 1)n\Omega_{n-1,1} (n - 1)n\Omega_{n-1,2} n(n - 1)\Omega_{n-1,3}'[11]^{-1}(n - 1)n11$.

Amy Glen (Reykjavík University)
Crucial words for abelian repetitions
June 2009
An optimal construction

For $n \geq 4$, we obtain crucial abelian cube-free words $W_{n,3}$ from $W_{n,2}$. . .

Construction of $W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$:

$W_{4,2} = 34231 \ 3231 \rightarrow 34423311 \ 34231134 \ 3233411 = W_{4,3}$

$W_{5,2} = 4534231 \ 432341$

$\rightarrow 45534423311 \ 45342311345 \ 4323344511 = W_{5,3}$

$W_{6,2} = 564534231 \ 54323451$

$\rightarrow 56645534423311 \ 56453423113456 \ 5432334455611 = W_{6,3}$

$W_{7,2} = 67564534231 \ 6543234561$

$\rightarrow 67756645534423311 \ 67564534231134567 \ 6543233445566711$

Note:

$W_{n,3} = (n - 1)n\Omega_{n-1,1} \ (n - 1)n\Omega_{n-1,2}n \ (n - 1)\Omega'_{n-1,3}[11]^{-1} (n - 1)n11$.
An optimal construction . . .

By construction:

$$W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3}$$

where $$\Omega_{n,3} = \Omega'_{n,3}n$$ and each $$\Omega_{n,i}$$ contains two 1’s, one 2, two $$n$$’s, and three $$x$$’s for $$x = 3, \ldots, n - 1$$.
By construction:

\[W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \]

where \(\Omega_{n,3} = \Omega'_{n,3} n \) and each \(\Omega_{n,i} \) contains two 1’s, one 2, two \(n \)'s, and three \(x \)'s for \(x = 3, \ldots, n - 1 \).

Hence, \(|W_{n,3}| = 3(3(n - 3) + 2 \cdot 2 + 1) - 1 = 9n - 13 \).
An optimal construction . . .

- By construction:
 \[W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \]
 where \(\Omega_{n,3} = \Omega'_{n,3} n \) and each \(\Omega_{n,i} \) contains two 1's, one 2, two \(n \)'s, and three \(x \)'s for \(x = 3, \ldots, n - 1 \).

- Hence, \(|W_{n,3}| = 3(3(n - 3) + 2 \cdot 2 + 1) - 1 = 9n - 13 \).

- Moreover, \(W_{n,3} \) is crucial with respect to abelian cubes.
An optimal construction . . .

- By construction:
 \[W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \]
 where \(\Omega_{n,3} = \Omega'_{n,3} n \) and each \(\Omega_{n,i} \) contains two 1's, one 2, two \(n \)'s, and three \(x \)'s for \(x = 3, \ldots, n - 1 \).

- Hence, \(|W_{n,3}| = 3(3(n - 3) + 2 \cdot 2 + 1) - 1 = 9n - 13\).

- Moreover, \(W_{n,3} \) is crucial with respect to abelian cubes.

- Thus, a minimal crucial word avoiding abelian cubes has length at most \(9n - 13 \) for \(n \geq 4 \).
An optimal construction . . .

- By construction:
 \[W_{n,3} = \Omega_{n,1}\Omega_{n,2}\Omega'_{n,3} \]
 where \(\Omega_{n,3} = \Omega'_{n,3} n \) and each \(\Omega_{n,i} \) contains two 1’s, one 2, two \(n \)'s, and three \(x \)'s for \(x = 3, \ldots, n - 1 \).

- Hence, \(|W_{n,3}| = 3(3(n - 3) + 2 \cdot 2 + 1) - 1 = 9n - 13 \).

- Moreover, \(W_{n,3} \) is crucial with respect to abelian cubes.

- Thus, a minimal crucial word avoiding abelian cubes has length at most \(9n - 13 \) for \(n \geq 4 \).

Theorem (G.-Halldórsson-Kitaev, 2008)

For \(n \geq 4 \), we have \(\ell_3(n) \leq 9n - 13 \).
An optimal construction . . .

- By construction:
 \[W_{n,3} = \Omega_{n,1} \Omega_{n,2} \Omega'_{n,3} \]
 where \(\Omega_{n,3} = \Omega'_{n,3} n \) and each \(\Omega_{n,i} \) contains two 1's, one 2, two \(n \)'s, and three \(x \)'s for \(x = 3, \ldots, n - 1 \).

- Hence, \(|W_{n,3}| = 3(3(n - 3) + 2 \cdot 2 + 1) - 1 = 9n - 13 \).

- Moreover, \(W_{n,3} \) is crucial with respect to abelian cubes.

- Thus, a minimal crucial word avoiding abelian cubes has length at most \(9n - 13 \) for \(n \geq 4 \).

Theorem (G.-Halldórsson-Kitaev, 2008)

For \(n \geq 4 \), we have \(\ell_3(n) \leq 9n - 13 \).

This upper bound is optimal . . .
Lower bound for $\ell_3(n)$

By considering the number of possible occurrences of each letter in a crucial word, we use combinatorial arguments to establish the following:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 5$, we have $\ell_3(n) \geq 9n - 13$.
Lower bound for $\ell_3(n)$

By considering the number of possible occurrences of each letter in a crucial word, we use combinatorial arguments to establish the following:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 5$, we have $\ell_3(n) \geq 9n - 13$.

Corollary (G.-Halldórsson-Kitaev, 2008)

For $n \geq 5$, we have $\ell_3(n) = 9n - 13$.
By considering the number of possible occurrences of each letter in a crucial word, we use combinatorial arguments to establish the following:

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 5$, we have $\ell_3(n) \geq 9n - 13$.

Corollary (G.-Halldórsson-Kitaev, 2008)

For $n \geq 5$, we have $\ell_3(n) = 9n - 13$.

Note: $\ell_3(n) = 2, 5, 11, 20$ for $n = 1, 2, 3, 4$, respectively.
Lower bound for $\ell_3(n)$

By considering the number of possible occurrences of each letter in a crucial word, we use combinatorial arguments to establish the following:

Theorem (G.-Halldórsson-Kitaev, 2008)
For $n \geq 5$, we have $\ell_3(n) \geq 9n - 13$.

Corollary (G.-Halldórsson-Kitaev, 2008)
For $n \geq 5$, we have $\ell_3(n) = 9n - 13$.

Note: $\ell_3(n) = 2, 5, 11, 20$ for $n = 1, 2, 3, 4$, respectively.

For example: 11, 21211, 11231321211, 42131214231211321211.
Outline

1 Background
 • Repetitions & patterns in words
 • Crucial words & abelian powers

2 Minimal crucial words avoiding abelian cubes
 • Upper bound for length
 • Lower bound for length

3 Minimal crucial words avoiding abelian k-th powers
 • Upper bound for length

4 Further research
Upper bound for $\ell_k(n)$

Note: $Z_{n,k}$ crucial with respect to abelian k-th powers $\implies \ell_k(n) \leq k^n - 1.$
Upper bound for $\ell_k(n)$

Note: $Z_{n,k}$ crucial with respect to abelian k-th powers $\implies \ell_k(n) \leq k^n - 1$.

For $n \geq 4$ and $k \geq 2$, we construct a crucial abelian k-power-free word $W_{n,k}$ of length $k^2(n - 1) - k - 1$ using the same method as before.
Upper bound for $\ell_k(n)$

Note: $Z_{n,k}$ crucial with respect to abelian k-th powers $\Rightarrow \ell_k(n) \leq k^n - 1$.

For $n \geq 4$ and $k \geq 2$, we construct a crucial abelian k-power-free word $W_{n,k}$ of length $k^2(n - 1) - k - 1$ using the same method as before.

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 4$ and $k \geq 2$, we have $\ell_k(n) \leq k^2(n - 1) - k - 1$.
Upper bound for $\ell_k(n)$

Note: $Z_{n,k}$ crucial with respect to abelian k-th powers $\implies \ell_k(n) \leq k^n - 1$.

For $n \geq 4$ and $k \geq 2$, we construct a crucial abelian k-power-free word $W_{n,k}$ of length $k^2(n - 1) - k - 1$ using the same method as before.

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 4$ and $k \geq 2$, we have $\ell_k(n) \leq k^2(n - 1) - k - 1$.

Note: $|W_{n,2}| = 4n - 7$ and $|W_{n,3}| = 9n - 13 \implies W_{n,2}$ and $W_{n,3}$ are minimal crucial words over A_n avoiding abelian squares and abelian cubes, respectively.
Upper bound for $\ell_k(n)$

Note: $Z_{n,k}$ crucial with respect to abelian k-th powers $\implies \ell_k(n) \leq k^n - 1$.

For $n \geq 4$ and $k \geq 2$, we construct a crucial abelian k-power-free word $W_{n,k}$ of length $k^2(n - 1) - k - 1$ using the same method as before.

Theorem (G.-Halldórsson-Kitaev, 2008)

For $n \geq 4$ and $k \geq 2$, we have $\ell_k(n) \leq k^2(n - 1) - k - 1$.

Note: $|W_{n,2}| = 4n - 7$ and $|W_{n,3}| = 9n - 13 \implies W_{n,2} \text{ and } W_{n,3}$ are minimal crucial words over A_n avoiding abelian squares and abelian cubes, respectively.

Conjecture (G.-Halldórsson-Kitaev, 2008)

For $k \geq 4$ and sufficiently large n, the length of a minimal crucial word over A_n avoiding abelian k-th powers is given by $k^2(n - 1) - k - 1$.
Outline

1 Background
 - Repetitions & patterns in words
 - Crucial words & abelian powers

2 Minimal crucial words avoiding abelian cubes
 - Upper bound for length
 - Lower bound for length

3 Minimal crucial words avoiding abelian k-th powers
 - Upper bound for length

4 Further research
Problem 1 – Prove or disprove the conjecture: \(\ell_k(n) = k^2(n - 1) - k - 1. \)
Problem 1 – Prove or disprove the conjecture: $\ell_k(n) = k^2(n - 1) - k - 1$.

Problem 2 – Maximal words of minimal length.

- A word W over A_n is *maximal* with respect to a given set of prohibitions if W avoids the prohibitions, but xW and Wx do not avoid the prohibitions for any letter x occurring in W.
Further research

Problem 1 – Prove or disprove the conjecture: $\ell_k(n) = k^2(n - 1) - k - 1$.

Problem 2 – Maximal words of minimal length.

- A word W over A_n is maximal with respect to a given set of prohibitions if W avoids the prohibitions, but xW and Wx do not avoid the prohibitions for any letter x occurring in W.

- Example: 323121 is a maximal abelian square-free word over $\{1, 2, 3\}$ of minimal length.
Problem 1 – Prove or disprove the conjecture: $\ell_k(n) = k^2(n - 1) - k - 1$.

Problem 2 – Maximal words of minimal length.

- A word W over A_n is maximal with respect to a given set of prohibitions if W avoids the prohibitions, but xW and Wx do not avoid the prohibitions for any letter x occurring in W.

- Example: 323121 is a maximal abelian square-free word over $\{1, 2, 3\}$ of minimal length.

- The length of a minimal crucial word gives a lower bound for the length of a shortest maximal word.
Question: Can we use our approach to tackle the problem of finding maximal words of minimal length?
Question: Can we use our approach to tackle the problem of finding maximal words of minimal length?

Korn (2003): the length $\ell(n)$ of a shortest maximal abelian square-free word over A_n satisfies

$$4n - 7 \leq \ell(n) \leq 6n - 10 \quad \text{for } n \geq 6.$$
Question: Can we use our approach to tackle the problem of finding maximal words of minimal length?

- **Korn (2003):** the length $\ell(n)$ of a shortest maximal abelian square-free word over A_n satisfies

 $$4n - 7 \leq \ell(n) \leq 6n - 10 \quad \text{for } n \geq 6.$$

- **Bullock (2004):** $6n - 29 \leq \ell(n) \leq 6n - 12$ for $n \geq 8$.
Question: Can we use our approach to tackle the problem of finding maximal words of minimal length?

- **Korn (2003):** the length $\ell(n)$ of a shortest maximal abelian square-free word over A_n satisfies

 $$4n - 7 \leq \ell(n) \leq 6n - 10 \quad \text{for } n \geq 6.$$

- **Bullock (2004):** $6n - 29 \leq \ell(n) \leq 6n - 12$ for $n \geq 8$.

Question: Can our approach improve Bullock’s result or can it provide an alternative solution?
Thank you!