DEVELOPMENT AND IMPROVEMENT OF CLINICAL TOOLS FOR REHABILITATING ENDANGERED BLACK COCKATOOS (*CALYPTORHYNCHUS* SPP.) BACK TO THE WILD

Anna T. Le Souëf BSc (Hons) BVMS

This thesis is presented for the degree of Doctor of Philosophy

Murdoch University, 2012
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

..

Anna T. Le Souëf

30 November 2012
“Hope” is the thing with feathers –
that perches in the soul –
and sings the tune without the words –
and never stops – at all

- Emily Dickinson
ABSTRACT

Black cockatoos (*Calyptorhynchus* spp.) in the ‘biodiversity hotspot’ of south-west Western Australia are in decline, due to multiple threatening processes that include habitat loss, poaching, competition with other species, vehicle strikes and shootings. The combined efforts of the Perth Zoo Veterinary Department (PZVD) and the Western Australian Department of Environment and Conservation (DEC) have led to a specialised rehabilitation program centred upon the return of injured and debilitating black cockatoos to the wild. This PhD project focused on improving the efficacy of this program and expanding the current knowledge of the health status and biology of black cockatoos.

The medical records of 565 black cockatoos that were admitted to the PZVD from 2000 to 2009 were analysed to determine the effect of the birds’ clinical presentation on survival. Anaemia, superficial and deep soft tissue injuries, fractures, paralysis or paresis and abnormal faecal cytology were identified as significant factors when determining the likelihood of survival of cockatoos undergoing the rehabilitation process. In addition, data on the life histories and origin of admitted cockatoos, post-mortem examination results and post-release information is presented. Haematologic and serum biochemical reference values are also presented for the three species of black cockatoos that are regularly admitted to the PZVD.
The significance of *Chlamydia psittaci* infection to the black cockatoo rehabilitation program was investigated. No wild birds admitted to the PZVD were found to be positive for *C. psittaci* infection, which suggests that this infection either is not present in wild populations, or has a low prevalence. However, the study found that black cockatoos undergoing rehabilitation are at risk of contracting the disease during their stay in captivity through contact with infected birds. These results highlight the importance of disease surveillance to the management of an avian rehabilitation program.

The thesis includes the results of an aviary trial to investigate methods of attaching transmitters to black cockatoos. Mean retention times for the transmitter packages ranged from 44 to 384 days. These results support the potential feasibility of using transmitters on cockatoos post-release, with sufficient retention times to allow for the collection of valuable movement and survival data.

Among the gaps in current knowledge of wild black cockatoos, perhaps the most concerning is that regarding the age structure of wild populations. The thesis encompasses a study that established an aging tool for black cockatoos, based on pentosidine analysis from the skin of 53 black cockatoos of known age. The result is a vital first step towards understanding the population dynamics of wild black cockatoos, and will help provide further information about the life histories of cockatoos admitted to the PZVD following injury or debilitation.
ACKNOWLEDGEMENTS

I would first like to thank my supervisors. My principal supervisor, Kris Warren has been an incredible source of support and inspiration for many years. I have been so grateful for her endless enthusiasm for the project and for guiding me on my first steps on the pathway to a career in conservation medicine. Simone Vitali was always available to me for advice and was a great source of practical and innovative ideas, particularly with respect to the clinical aspects of the project. I am grateful to Carly Holyoake for her help with the epidemiological aspects of my project; Carly's support and friendship during this time will not be forgotten. Stan Fenwick is also thanked gratefully for his input, and for his belief in the project from the early stages.

I would like to extend a thank you to DEC for their cooperation with different aspects of the study. It would not have been possible without their support; in particular, Rick Dawson, who was instrumental in assisting with sample collection and fieldwork, always with a huge amount of enthusiasm and humour. Many thanks also go to Birdlife Australia and WWF-Australia for their help with funding the transmitter aviary trial.

Thanks to Crissa Cooey and Professor Hillar Klandorf at the Division of Forestry and Natural Resources at West Virginia University for their helpful collaboration on the aging study and for kindly hosting me during my stay in the US.
I am enormously appreciative to my colleagues at the PZVD for sample collection and support. I would also like to acknowledge Glenn and Andrea Dewhurst and the team at the Kaarakin Black Cockatoo Rehabilitation Centre, where I have spent many hours and always felt welcome. If only those beautiful birds, such as Lenny, could also realise how they have helped their species by being a part of this project.

To my wonderful family: Mum, Dad, Tim and Kate who have provided lots of support and love over the years. And finally to my husband and best friend Hugh, for being behind me all the way and supporting me through all the ups and downs.
PUBLICATIONS

CONFERENCE AND COMMUNITY PRESENTATIONS

Veterinary rehabilitation of black cockatoos at the PZVD. Carnaby’s Black cockatoo Symposium. Department of Environment and Conservation, Kensington, Western Australia. 1 December 2008.

From pest to plight: Western Australia’s black cockatoos. West Virginia University Wildlife Society meeting. Morgantown, West Virginia, USA. 2 September 2009.

MEDIA REPORTS

AWARDS

Dean’s Prize - Best in Show: A Tool for the Age Estimation of Black cockatoos (*Calyptorhynchus* spp.). School of Veterinary and Biomedical Sciences, Murdoch University Research Poster Day 2011.
TABLE OF CONTENTS

Declaration ii
Abstract iv
Acknowledgements vi
Publications viii
Conference and Community Presentations ix
Media Reports x
Awards x
Table of Contents xi
List of Tables xvii
List of Figures xix
Glossary of Abbreviations and Acronyms xxiii

CHAPTER 1 GENERAL INTRODUCTION

1.1 Introduction 2
1.2 History and taxonomic relationships of south-west Western Australian black cockatoos 3
 1.2.1 White-tailed black cockatoos 3
 1.2.2 Red-tailed black cockatoos 4
1.3 Biology 5
 1.3.1 Carnaby’s cockatoo 5
 1.3.2 Baudin’s cockatoo 12
 1.3.3 Red-tailed black cockatoo 16
1.4 Conservation status, threatening factors and recovery efforts 21
 1.4.1 Carnaby’s cockatoo 22
 1.4.2 Baudin’s cockatoo 25
 1.4.3 Red-tailed black cockatoo 27
1.5 Rehabilitation of wildlife as a conservation strategy 29
1.6 Rehabilitation of black cockatoos at Perth Zoo Veterinary Department 33
1.7 Conclusions 34
1.8 Aims 36
1.9 Structure of chapters 37
CHAPTER 2 AN EPIDEMIOLOGICAL STUDY OF WILD BLACK COCKATOOS ADMITTED TO THE PERTH ZOO VETERINARY DEPARTMENT FROM 2000-2009

2.1 Introduction 40
 2.1.1 Retrospective cohort studies 40
 2.1.2 Published studies on avian rehabilitation programs 40
 2.1.3 Importance of this study to the veterinary management of wild black cockatoos at PZVD 43

2.2 Aims 44

2.3 Materials and methods 45
 2.3.1 PZVD black cockatoo treatment protocol 45
 2.3.2 Sex determination using endoscopy and DNA methods 52
 2.3.3 Acquisition of data 54
 2.3.4 Data management 55
 2.3.5 Statistical analysis 59
 2.3.6 Spatial distribution of cockatoo rescue locations 61
 2.3.7 Post-release data 61
 2.3.8 Analysis of post-mortem examination records 62

2.4 Results 63
 2.4.1 Admission trends 63
 2.4.1.1 Signalment 63
 2.4.1.2 Temporal patterns in admissions 66
 2.4.1.3 Clinical presentation 68
 2.4.1.4 Time spent in care 72
 2.4.1.5 Reasons for euthanasia 72
 2.4.1.6 Outcomes 73
 2.4.2 Univariate analysis of risk factors against outcome 74
 2.4.3 Multivariate analysis of risk factors against outcome 79
2.4.4 Univariate analysis of risk factors against outcome among cockatoos with fractures

2.4.5 Spatial distribution of location found

2.4.6 Data from cockatoos that were released

2.4.7 Post-release data

2.4.8 Post-mortem examination results and evidence of disease
 2.4.8.1 Mycotic pneumonia (aspergillosis)
 2.4.8.2 Parasites
 2.4.8.2.1 Gastrointestinal parasites
 2.4.8.2.2 Ectoparasites

2.5 Discussion
 2.5.1 Admission trends
 2.5.2 Analysis of factors affecting outcome
 2.5.3 Spatial distribution of locations at which cockatoos were found
 2.5.4 Post-release data
 2.5.5 Post-mortem findings and evidence of disease
 2.5.6 Recognition of limitations of the study

2.6 Conclusions

CHAPTER 3 A STUDY OF CHLAMYDIA PSITTACI INFECTION IN WILD BLACK COCKATOOS PRESENTED TO THE PZVD FOR TREATMENT AND REHABILITATION

3.1 Introduction
 3.1.1 Developmental cycle
 3.1.2 Transmission
 3.1.3 Pathogenesis
 3.1.4 Clinical disease and pathology in psittacine birds
 3.1.5 Distribution and host range
 3.1.6 Significance in wild populations
 3.1.7 Public health concerns
 3.1.8 Diagnosis
3.1.8.1 Isolation in cell culture 128
3.1.8.2 Polymerase chain reaction (PCR) 129
3.1.8.3 Serology 130
3.1.8.4 Immunoassays for antigen detection 131
3.1.8.5 Immunohistochemistry and histochemical staining 132
3.1.8.6 DNA microarray technology 133

3.1.9 Treatment and control 133

3.2 Aims 137

3.3 Materials and methods 137

3.3.1 Serological testing 140
3.3.1.1 ImmunoComb® Avian C. psittaci Antibody Test Kit 140
3.3.1.2 Sample collection 141
3.3.1.3 Sample testing using the Immunocomb® Kit 141

3.3.2 PCR testing 141
3.3.2.1 Sample collection 141
3.3.2.2 DNA extraction, PCR and DNA sequencing 143

3.3.3 Statistical analysis 144

3.4 Results 145

3.5 Discussion 146

3.5.1 Results of testing 146
3.5.2 Historical cases of chlamydiosis among wild black cockatoos admitted to the PZVD 148
3.5.3 Outbreak of chlamydiosis at the Kaarakin Black Cockatoo Rehabilitation Centre 150
3.5.4 Management recommendations 153

3.6 Conclusions 156
CHAPTER 7 GENERAL DISCUSSION

7.1 Retrospective studies can provide important information for conservation management 203
7.2 The value of rehabilitating endangered birds 205
7.3 A review of current biosecurity procedures at the Rehabilitation Centre and further recommendations 207
7.4 The role of avian rehabilitation programs in disease surveillance 211
7.5 Public health significance of *Chlamydia psittaci* in black cockatoos 213
7.6 Conclusions and future research 215

7.6.1 Post-release monitoring of rehabilitated black cockatoos 216
7.6.2 Estimation of ages for wild black cockatoos 217

REFERENCES 219

APPENDICES

1a Excerpt from database used to analyse medical records of black cockatoos 272
1b Key to database used to analyse medical records of black cockatoos 274
2 List of black cockatoos used in the final curve for relationship between pentosidine and age (after removal of outliers) 275
LIST OF TABLES

Table 2.1 Retrospective studies on the rehabilitation of wild birds. 41
Table 2.2 Frequency of fractures according to location in black cockatoos presented to the PZVD from 2000-2009. 71
Table 2.3 Days spent in the PZVD for various clinical signs for surviving black cockatoos that presented from 2006-2009. 72
Table 2.4 Factors analysed against outcome for black cockatoos presented to the PZVD from 2000-2009. 76
Table 2.5 Significant variables from multivariate regression analysis of black cockatoos, excluding birds euthanased on the first day of presentation, for 2000-2009 (survival as dependent variable). 79
Table 2.6 Factors analysed against outcome for black cockatoos presenting with fractures (excluding birds euthanased on the first day). 80
Table 2.7 Post-mortem findings for 161 black cockatoos examined at the PZVD from 2000-2009. 88
Table 2.8 Characteristics of mycotic pneumonia found at necropsy in 13 black cockatoos from 2000-2009. 92
Table 3.1 Known hosts of *C. psittaci* serovars (Geens et al. 2005a; Anderson and Christian Franson 2007). 117
Table 3.2 Number of cockatoos tested for *C. psittaci* infection during various stages of rehabilitation. 139
Table 3.3 Results of *C. psittaci* diagnostic testing using serology for antibody detection and PCR for antigen detection for black cockatoos during different stages of rehabilitation.

Table 4.1 Origins of the black cockatoos sampled for compilation of haematologic and biochemical reference ranges.

Table 4.2 Values for haematologic and biochemical tests for Carnaby’s cockatoos.

Table 4.3 Values for haematologic and biochemical tests for Baudin’s cockatoos.

Table 4.4 Values for haematologic and biochemical tests for forest red-tailed black cockatoos.

Table 4.5 Values for analytes that differed significantly between sampling method (jugular vein under anaesthesia vs. metatarsal vein under manual restraint) for Carnaby’s cockatoos.

Table 5.1 Number of black cockatoos of each species assigned to different transmitter groups.

Table 5.2 Transmitter retention times (days) for collar, 12g tail-mount, 6g tail-mount, 12g harness, 16g harness and 20g harness transmitter packages on black cockatoos.

Table 6.1 Origins of the black cockatoos from which skin samples were taken for pentosidine analysis.

Table 6.2 Ages of black cockatoos from which skin samples were taken for pentosidine analysis.
LIST OF FIGURES

Figure 1.1 Comparison of bill and ear covert colour of female (left) and male Carnaby’s cockatoos. 6

Figure 1.2 Distribution of the Carnaby’s cockatoo (Johnstone et al. 1998). 7

Figure 1.3 Heads of the Carnaby’s cockatoo (A) and Baudin’s cockatoo (B), showing differences in upper bill shape and length (Johnstone et al. 1998). 13

Figure 1.4 Distribution of the Baudin’s cockatoo (Johnstone et al. 1998). 14

Figure 1.5 Distribution of the forest and inland red-tailed black cockatoo in Western Australia (Johnstone et al. 1998). 18

Figure 2.1 Appearance of gonads in black cockatoos at various stages of development, as seen via endoscopy (a: immature or quiescent testis (black arrow); b: immature or quiescent ovary (black arrow); c: mature active testis; d: mature active ovary). 53

Figure 2.2 Body condition scoring system for black cockatoos using cross-sectional size of pectoral musculature (Perth Zoo). 56

Figure 2.3 Internal haemorrhage associated with traumatic injury in a black cockatoo (white arrows show free blood clots in the anterior coelomic cavity). 63

Figure 2.4 Immature male Baudin’s cockatoo showing female physical characteristics (sex determined by DNA testing and visualisation of immature testes). 64

Figure 2.5 Seasonal variation in gonadal appearance among black cockatoos that were endoscopically sexed. 65
Figure 2.6 Number of black cockatoos admitted to the PZVD from 2000-2009. 66

Figure 2.7 Seasonality of the numbers of black cockatoo species admitted to the PZVD, pooled for 10 years, from 2000-2009. 67

Figure 2.8 Frequency of black cockatoos admitted to the PZVD according to season from 2000-2009. 68

Figure 2.9 Relative frequency of reason for admission for black cockatoos treated at PZVD during 2000-2009. 69

Figure 2.10 Relative frequency of clinical signs for black cockatoos presented to the PZVD from 2000-2009. 70

Figure 2.11 Primary clinical signs seen in black cockatoos euthanased on first day of presentation at the PZVD from 2000-2009. 73

Figure 2.12 Outcomes for black cockatoos treated from 2000-2009. 74

Figure 2.13 Outcomes for black cockatoos presented to the PZVD with fractures from 2000-2009. 82

Figure 2.14 Map showing urban areas in Perth, Western Australia in which black cockatoos were found before presentation to the PZVD from 2000-2009. 84

Figure 2.15 Map showing regional areas in south-western Western Australia in which black cockatoos were found before presentation to the PZVD from 2000-2009. 85

Figure 2.16 Necropsy lesion associated with aspergillosis in a black cockatoo (green arrow shows white-green caseous nodule in the left lung lobe). 90
Figure 2.1 Percentage of aspergillosis cases among black cockatoos presented to the PZVD, according to year, from 2000-2009.

Figure 3.1 Developmental cycle of chlamydiae (adapted from Vanrompay et al. 1995a).

Figure 3.2 Swabbing the conjunctiva of a Carnaby’s cockatoo for *C. psittaci* PCR testing.

Figure 3.3 Carnaby’s cockatoo (Perth Zoo record number B0912325) diagnosed with chlamydiosis showing splenomegaly (white arrow) and hepatomegaly (green arrow).

Figure 4.1 A normal eosinophil and erythrocytes in the peripheral blood film from a parrot (Wright’s stain, 1000X) (Campbell and Ellis 2007).

Figure 5.1 Field anaesthesia set up for transmitter attachment.

Figure 5.2 Harness design for black cockatoos showing modified ‘X-attachment’ method (and the central cross rests on the sternum of the bird).

Figure 5.3 6g tail-mounted PTT attached to ventral tail feather.

Figure 5.4 Collar attached to cockatoo with barrel resting above the sternum.

Figure 6.1 Collection of the 6mm skin biopsy from the inner patagium of a black cockatoo (a: injecting lignocaine; b: making the biopsy incision; c: sealing the incision with tissue adhesive; d: the final appearance).
Figure 6.2 Pentosidine standard curve used to calculate pentosidine concentrations in the skin of black cockatoos. 197

Figure 6.3 Pentosidine (Ps) concentration in the skin as a function of chronological age in black cockatoos ($n = 49$). 199
GLOSSARY OF ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGE</td>
<td>advanced glycation end-product</td>
</tr>
<tr>
<td>ANGIS</td>
<td>Australian National Genomic Information Service</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>BAWA</td>
<td>Birds Australia (Western Australia)</td>
</tr>
<tr>
<td>BFDV</td>
<td>psittacine beak and feather disease virus</td>
</tr>
<tr>
<td>BOHB</td>
<td>beta-hydroxybutyrate</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>Ca</td>
<td>calcium</td>
</tr>
<tr>
<td>CF</td>
<td>complement fixation</td>
</tr>
<tr>
<td>CHD</td>
<td>chromo-helicase-DNA</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>CK</td>
<td>creatinine phosphokinase</td>
</tr>
<tr>
<td>Cl</td>
<td>chloride</td>
</tr>
<tr>
<td>cm</td>
<td>centimetre</td>
</tr>
<tr>
<td>DAFWA</td>
<td>Department of Food and Agriculture Western Australia</td>
</tr>
<tr>
<td>DEC</td>
<td>Department of Environment and Conservation</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>G</td>
<td>gauge</td>
</tr>
<tr>
<td>g</td>
<td>gram</td>
</tr>
<tr>
<td>GA</td>
<td>general anaesthesia</td>
</tr>
<tr>
<td>h</td>
<td>hour</td>
</tr>
<tr>
<td>Hb</td>
<td>haemoglobin</td>
</tr>
<tr>
<td>HRM</td>
<td>high resolution melt (curve analysis)</td>
</tr>
<tr>
<td>IFAT</td>
<td>immunofluorescent antibody testing</td>
</tr>
<tr>
<td>IgG</td>
<td>immunoglobulin G</td>
</tr>
<tr>
<td>IgM</td>
<td>immunoglobulin M</td>
</tr>
<tr>
<td>IHC</td>
<td>immunohistochemical</td>
</tr>
<tr>
<td>IUCN</td>
<td>International Union for Conservation of Nature</td>
</tr>
<tr>
<td>K</td>
<td>potassium</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram</td>
</tr>
<tr>
<td>km</td>
<td>kilometre</td>
</tr>
<tr>
<td>L</td>
<td>litre</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>m</td>
<td>metre</td>
</tr>
<tr>
<td>MCH</td>
<td>mean corpuscular haemoglobin</td>
</tr>
<tr>
<td>MCHC</td>
<td>mean corpuscular hemoglobin concentration</td>
</tr>
<tr>
<td>MCV</td>
<td>mean corpuscular volume</td>
</tr>
<tr>
<td>MedARKS</td>
<td>Medical Animal Records Keeping System</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MLVA</td>
<td>Multiple Loci Variable Number of Tandem Repeats (VNTR) Analysis</td>
</tr>
<tr>
<td>min</td>
<td>minute</td>
</tr>
<tr>
<td>ml</td>
<td>millilitre</td>
</tr>
<tr>
<td>MOMP</td>
<td>major outer membrane protein</td>
</tr>
<tr>
<td>MZN</td>
<td>modified Ziehl-Neelsen</td>
</tr>
<tr>
<td>n</td>
<td>number</td>
</tr>
<tr>
<td>Na</td>
<td>sodium</td>
</tr>
<tr>
<td>nm</td>
<td>nanometre</td>
</tr>
<tr>
<td>OR</td>
<td>odds ratio</td>
</tr>
<tr>
<td>PZVD</td>
<td>Perth Zoo Veterinary Department</td>
</tr>
<tr>
<td>P</td>
<td>phosphorus</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>P</td>
<td>probability value</td>
</tr>
<tr>
<td>PBFD</td>
<td>psittacine beak and feather disease</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>PCV</td>
<td>packed cell volume</td>
</tr>
<tr>
<td>PO</td>
<td>per oral</td>
</tr>
<tr>
<td>Ps</td>
<td>pentosidine concentration</td>
</tr>
<tr>
<td>PTT</td>
<td>platform transmitter terminal</td>
</tr>
<tr>
<td>RBC</td>
<td>red blood cell</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>s</td>
<td>seconds</td>
</tr>
<tr>
<td>TPP</td>
<td>total plasma protein</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>VNTR</td>
<td>Variable Number of Tandem Repeats</td>
</tr>
<tr>
<td>WCC or WBC</td>
<td>white cell count</td>
</tr>
<tr>
<td>WWF</td>
<td>World Wide Fund for Nature</td>
</tr>
<tr>
<td>μL</td>
<td>microlitre</td>
</tr>
</tbody>
</table>