Student and teacher perceptions of preparation in mathematics in middle school and its impact on students' self-efficacy and performance in an upper secondary school in Western Australia

Ron Aubrey.

Murdoch University

2006

Dissertation submitted in part fulfilment of the requirements for the degree of Master of Education (Research) in the School of Education Murdoch University
Acknowledgements.

My thanks go to participants in interviews and all who provided input into this research, including students and staff in the network of schools in the region.

Special thanks go to Associate Professor Irene Styles at the School of Education, Murdoch University for her encouragement and support.

To the mathematics staff at the College and my family for their patience and sympathy, and for cleverly disguising which one of these they were providing at any particular time.

To Keith King, the leadership team and staff at the College thank you for your help and support during the extended period of this research.
TABLE OF CONTENTS

Acknowledgements... ii
Table of Contents ... iii
Appendices .. iv
List of Tables and Figures ... v
Abstract .. vi
Chapter 1 ... 1
 Significance of the study .. 2
 Context of the study ... 3
 Structure of the dissertation .. 5
Chapter 2 ... 6
 Review of the Literature .. 6
 Constructivism and student-centred learning ... 6
 Outcomes/ Standards based education ... 15
 Relational understanding (relevance and reality) .. 24
 Change which has the potential to increase ‘tensions’ within schools 29
 Change and the possible new content or approaches to courses in mathematics 33
 Middle Schooling in Western Australia ... 35
 Mixed-ability classes .. 39
 Self-efficacy ... 42
 Summary ... 48
Chapter 3 .. 51
 Methodology ... 51
 Research aims .. 51
 The Case and a naturalistic, constructivist inquiry ... 51
 Research Design-Mixed Methods ... 52
 Instruments .. 52
 Survey of Year 11’s making the transition from Year 10 to Year 11 57
 (Years 1, 2, 3 and 4 of the study) and corresponding analysis .. 57
 The Mathematical Skills Test .. 58
 The Student Survey: Self-Efficacy Scale, Self-Directed Scale; Views on Teaching (Current and Prior) .. 60
 Self-Directed Learner Scale ... 61
 Views on Teaching (Current and Prior) ... 62
 The Teacher views .. 63
 Procedures .. 63
 Ethical Issues ... 65
 Data Analysis ... 66
Chapter 4 .. 67
 Results –Skills Test and Student Survey (Quantitative Data) ... 67
 The Skills Test .. 68
 The Student Survey .. 73
 Self-efficacy .. 74
 Student’s Perspective on Current Teaching .. 74
 Student’s Perspective on Prior Teaching ... 74
 Elements of Self-Directed Regulation (Control over learning, independence) 74
 Reliability Analysis .. 75
 Cronbach’s Alpha ... 75
Analysis of individual items over four years.. 77
Relationships amongst variables .. 84
Multiple regressions ... 85
Chapter 5 ..
Results – Student and teacher perceptions ... 87
Dialogues from the National Council of Teachers of Mathematics, U.S.A........... 88
Teacher comments.. 90
Upper secondary teacher views... 90
Middle (and ‘other’) school teacher views... 93
Self Efficacy, Independence and Tensions .. 130
Student comments from the survey administered 2002 to 2005 132
Chapter 6 ..
Summary and discussion of relevant parts of the study .. 140
Conclusion .. 156
Recommendations .. 159
Limitations ... 160
Future Research .. 161
References ... 163

Appendices

Appendix A The Kalamazoo Model .. 184
Appendix B (i) Skills Test (Y 10 Background Objective Test) 185
Appendix B (ii) Skills Test (% of students with correct answers) 194
Appendix C Student Survey ... 195
Appendix D: Cronbach’s Alpha – Reliability Analysis of Survey 198
Appendix E Regression and Non-parametric Correlations 201
Appendix F Graphs of student responses from survey .. 204
Appendix G Goals for process skills in mathematics .. 208
List of Tables and Figures

Table 2.1 Negative numbers outcome- a comparison across curricula

Table 2.2 I.L.A.P.’s (Interdisciplinary lively application projects)

Table 2.3 Types of teaching groups

Table 2.4 Advantages and disadvantages of mixed-ability grouping

Table 2.5 Self efficacy and outcome expectations

Table 3.1 Design of study

Figure 4.1 Scatter graphs (Semester 1 Mathematics Mark against Monitoring Standards in Education 2005- Year 4 of study)

Figure 4.2 Scatter graph and correlation example (Semester 1 Mathematics Mark against Skills Test 2005 Year 4 of study)

Table 4.3 Correlations (Mathematics Mark and Skills Test Years 1, 2 and 3 of study)

Figure 4.4 Column graph example

Figure 4.5 Column graph comparison

Table 4.6 ANOVA F statistics and p values for all scales for comparing four groups of students

Table 4.7 Scheffe Multiple Comparisons

Table 4.8 Distribution of means and standard deviations for 4 scales (ratings for schools and years)

Table 4.9 Two-way Between Groups Anova

Table 4.10 Correlations

Table 4.11 Multiple Regression: Coefficients self-efficacy

Table 4.12 Multiple Regression: Coefficients Mathematics mark
Abstract

Middle school initiatives (including heterogeneous classes and an integrated, flexible curriculum together with promotion of student input) have been implemented in schools in Western Australia in response to a perceived need to align schools more closely with a more student-centred approach to learning, in the expectation of meeting more students’ needs and thereby reducing student dissatisfaction and increasing the possibility of students pursuing life long learning. Specific goals underlying the initiative include the development of independent learning and student responsibility for learning through a series of strategies such as self-paced learning, student involvement in negotiating their own learning, and a strong emphasis on respecting and valuing student input into the implementation of curricula. However, owing to the way that the curricula for Middle and Upper secondary school mathematics are currently structured, problems might arise for students in the transition from “a relaxed to a highly discipline-based organization of content” (as described by Venville, Wallace, Rennie, Malone (1998). Students accustomed to the current approaches implemented in Middle schools (Years 8 to 10) may be disadvantaged in the transition to Upper secondary school courses (Years 11 and 12) compared with those students who have been exposed to a more discipline-based organization of content throughout early adolescence and prior to entry into courses leading to tertiary entrance (T.E.E. courses). The aim of this project was to investigate the possible effects of Middle school initiatives in a group of students from three Middle schools in Western Australia in one subject area – mathematics – on the perceptions of self-efficacy and preparation in mathematics once the students encounter Year 11 Upper school courses.

A survey containing Likert-type rating scales pertinent to four areas of interest – Self-efficacy in mathematics; Self-Directed Regulation; Views on current teaching;
and Views on prior teaching were administered to students transferring from three
“feeder” Middle schools to Year 11 (Upper secondary school) classes in one Senior
College in Western Australia for each of 4 consecutive years. Students were also
asked for their comments regarding preparation for the challenges of their chosen
courses in mathematics. In addition, their levels of performance in a range of
mathematical skills were assessed using a teacher-developed test. The perceptions of
their Middle and Senior School teachers were also sought. As the survey was
administered to all students as a routine part of action research within the
mathematics faculty at the Senior College, only the results of those students who
subsequently agreed to be participants in the study are reported in this dissertation.
Results indicated that a mismatch existed in approaches and skills between Middle
School and Senior College Mathematics. The reliance on students making suitable
choices for themselves, the absence of specialist teachers of mathematics in middle
schools, mixed ability classes in which specialist teachers of mathematics find it
difficult to operate successfully and a curriculum that was so flexible that teachers
omitted key elements required for later studies were the main factors that resulted in
a significant number of students making the transition from middle to senior school
with insufficient preparation. Implications for the teaching of mathematics in these
three Middle schools and the Upper school are discussed.