PhD Thesis

Using the Submergent *Triglochin huegelii* for

Domestic Greywater Treatment

by

Ross Mars

September, 2001
Conference Papers

Full papers are published in Conference Proceedings.

Abstract

In recent years, there has been increased interest in alternative and innovative technologies which are used in the treatment of wastewaters, with the aim of developing efficient systems which are low-cost and low-maintenance. However, greywater reuse from domestic houses appears to have received very little attention and the role of indigenous wetland plants, especially submergents, in contributing to nutrient reduction in wastewater is largely unknown.

Species of Triglochin, commonly known as water ribbons, are fast growing submergent macrophytes. In Western Australia, Triglochin huegelii is mainly a submergent plant but as water recedes, the leaves become emergent. Triglochin huegelii can tolerate a range of water regimes and high nutrient concentrations, and this is useful in wastewater treatment applications. The aims of this present study were to examine the use of Triglochin huegelii for domestic greywater treatment, to compare the effectiveness of this plant with other better known, and more frequently used, emergent macrophytes, and to investigate why Triglochin huegelii is so successful in nutrient accumulation.

A series of investigations using Triglochin huegelii in greywater treatment experiments showed that Triglochin has consistently removed more nitrogen and phosphorus, in all parts of the plant - leaves, tubers and roots, than most other indigenous emergent macrophyte species, including those of Schoenoplectus, Baumea and Juncus which are commonly used for
wastewater nutrient-stripping. In some cases, such as in the leaves, twice as much nitrogen (N) and one and a half times more phosphorus (P) is assimilated in the *Triglochin* tissue. In all parts of the plant there has been an increase in Total N and Total P.

Investigations were conducted using different environmental conditions for the plants. A comparison was made between root zone (substrate-only) and complete pond conditions, with some changes to loading rate and retention times. *Triglochin huegelii* has many practical applications in wastewater management, especially if the level of influent/wastewater can be controlled, thus allowing sufficient time for *Triglochin huegelii* to respond with changed structure and morphology. Proline, a substance known to be produced by plants under stress (such as changing water levels), was detected in *Triglochin huegelii*.

In a pond, the leaves of *Triglochin* can be directly involved in nutrient absorption and assimilation. A study of leaf structure and other aspects of its biology showed that nutrients can easily pass into leaf tissue and then into other regions in the plant. In *Triglochin huegelii*, nitrogen was primarily stored or found in leaves then tubers then roots, while levels of phosphorus were higher in tubers then roots then leaves.

The above-ground:below-ground (AG:BG) ratio of *Triglochin huegelii* also depends on the water regime. For all samples, whether pond or substrate-only, the ratio was 0.84. However, when consideration is given to pond conditions the ratio increases to 1.11. It appears that in pond conditions, and
especially with long retention times, proportionally more above-ground growth (leaves) occurs and in substrate-only conditions, proportionally more biomass is found below-ground, with the number and size of leaves reduced in these plants.

The highest nutrient levels recorded for *Triglochin huegelii* were 11.74 mgP/g and 35.7 mgN/g dry weight. *Triglochin huegelii* has been found to have a protein content of at least 1.7 g/100 g wet weight in the leaves, and less in roots and tubers. *Triglochin huegelii* could have potential as a fodder source because of its high protein content, similar to that of lucerne.

Triglochin huegelii seems to remove nitrogen and phosphorus at a greater rate than many other types of aquatic macrophytes. Other parameters such as BOD, Suspended Solids and fecal coliforms were also examined, with reductions of up to 90%, 84% and 99% respectively. The implication is that instead of only planting the perimeter of lagoons, artificial wetlands and constructed basins we should be planting the bulk of the waterway with submergent species such as *Triglochin spp* which are far more effective in stripping nutrients than emergents currently used for that purpose. In addition, systems need to be designed that mimic natural ecosystems, and yet are economical and functional.

This current research can be used as a basis for further study to establish the extent of nutrient removal by *Triglochin huegelii* and its interactions with other macrophytes in polyculture systems.
Acknowledgements

I wish to acknowledge and sincerely thank the following people who have all helped to make this research possible. Many others have given advice and support, especially Laboratory Technicians and staff in Environmental Science, Biology and Chemistry, and I wish to thank them as well.

Rinse van der Mei - for analysis of some of the daily output samples.

Ross Taplin - for statistical analysis of some of the data.

Gordon Thomson - for microscope slide preparation of plant samples.

Arthur McComb - for critical appraisal of Triglochin chapter.

Andrew Woodward and Ian Bennett - for help with proline analysis.

Gene Tulinowski - for loan of equipment and supply of reagents.

Marine and Freshwater Research Laboratory - for TN and TP analysis.

Margaret and Dan Sampey - for proofreading.

Supervisors Kuruvilla Mathew and Goen Ho - for on-going support and advice.
Table of Contents

Declaration ii
List of Papers Published ii
Abstract iv
Acknowledgements vii
Contents viii
List of Tables xv
List of Figures xix
List of Plates xxii
Glossary of Terms and Abbreviations xxiii

1 Introduction 1

1.1 Household Wastewater 1

1.2 *Triglochin huegelii* 4

1.3 Aims of Research 6

1.4 Scope and Layout of Thesis 7

2 Literature Review 8

2.1 Introduction 8

2.2 Greywater 11

2.3 Greywater Treatment Using Chemical and Physical Methods 13
3 Materials and Methods

3.1 Experimental Design Considerations

3.2 Materials

3.2.1 Experimental tanks for Investigations 1 to 4

3.2.2 Plant descriptions for subsurface tank system

(Investigation 5)

3.3 Investigation Procedures

3.3.1 Investigation 1: Comparison of nitrate and phosphate reduction in *Triglochin huegelii* and *Schoenoplectus validus.*

3.3.2 Investigation 2: Nutrient, BOD, fecal coliform and suspended solids reduction in wetland plants.

3.3.3 Investigation 3: Nutrient reduction in the root zones of *Triglochin huegelii* and *Schoenoplectus validus.*

3.3.4 Investigation 4: Comparison of substrate-only and pond systems in tanks planted with *Triglochin huegelii.*

3.3.5 Investigation 5: Comparison of nutrient uptake between eight wetland macrophytes.

3.4 Analytical Methods

3.4.1 Suspended solids
3.4.2 Biochemical Oxygen Demand (BOD) 88
3.4.3 Fecal coliforms 89
3.4.4 Plant digestion and solution preparation 89
3.4.5 Nitrate concentration 90
3.4.6 Ammonium concentration 91
3.4.7 Total Nitrogen determination 91
3.4.8 Phosphate concentration 91
3.4.9 Total Phosphorus determination 91
3.4.10 pH 92
3.4.11 Total Dissolved Solids (TDS) 92
3.4.12 Proline determination - acid ninhydrin method 92

4 Triglochin huegelii 95
4.1 Introduction 95
4.2 Morphology and Characteristics 96
4.3 Microscopic Examination 98
4.4 Seed Germination Experiments 103
4.5 Wet and Dry Weights 106
4.6 Nutrient Content 109

xi
5 Results and Discussion 118

5.1 Investigation 1: Comparison of nitrate and phosphate removal (reduction) from greywater in mesocosms (tanks) containing *Triglochin huegelii* and *Schoenoplectus validus*. 118

5.2 Investigation 2: The Effect of Wetland Plants on Nutrient, BOD, Fecal Coliform and Suspended Solids Reduction in Greywater. 127

5.2.1 Suspended solids 128

5.2.2 Biochemical Oxygen Demand (BOD) 129

5.2.3 Fecal coliforms 130

5.2.4 Nitrate concentration 131

5.2.5 Ammonium concentration 133

5.2.6 Phosphate concentration 135

5.2.7 pH 136

5.2.8 Total Dissolved Solids (TDS) 137

5.3 Investigation 3: Nutrient Reduction in the Root Zones of *Triglochin huegelii* and *Schoenoplectus validus*. 140

5.3.1 Suspended solids 140

5.3.2 Biochemical Oxygen Demand (BOD) 141
5.3.3 Nitrate concentration

5.3.4 Ammonium concentration

5.3.5 Phosphate concentration

5.3.6 Correlation of data

5.4 A Comparison Between Pond and Substrate-only Conditions.

(Investigations 2 and 3)

5.4.1 Biochemical Oxygen Demand (BOD)

5.4.2 Nitrate concentration

5.4.3 Ammonium concentration

5.4.4 Phosphate concentration

5.5 Investigation 4: Comparison of Substrate-only and Pond Systems in Tanks Planted with *Triglochin huegelii*.

5.5.1 Total nitrogen in plant samples

5.5.2 Total phosphorus in plant samples

5.5.3 Nitrate concentration changes in water samples

5.5.4 Ammonium concentration changes in water samples

5.5.5 Phosphate concentration changes in water samples

5.5.6 Biomass studies

5.6 Investigation 5: Comparison of Nutrient Tissue Content Between Eight Wetland Macrophytes.

xiii
5.6.1 Raw data and comment 173
5.6.2 Total nitrogen 174
5.6.3 Total phosphorus 179
5.6.4 Other comments 182
5.7 General Discussion 184

6 Conclusions and Recommendations 194
 6.1 Conclusions 194
 6.2 Future Research and Recommendations 196
 6.2.1 Recommendations for further research 196
 6.2.2 Possible domestic on-site treatment system 198

7 References 201

Appendix 1 229
 Description and Contents of CD 229
 (enclosed CD)
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Concentration of nutrients in greywater.</td>
<td>13</td>
</tr>
<tr>
<td>2.2</td>
<td>Typical values of greywater per person per day.</td>
<td>13</td>
</tr>
<tr>
<td>2.3</td>
<td>Summary of physical-chemical methods for greywater treatment.</td>
<td>14</td>
</tr>
<tr>
<td>2.4</td>
<td>Summary of common physico-chemical methods for phosphorus removal.</td>
<td>40</td>
</tr>
<tr>
<td>2.5</td>
<td>Typical nutrient concentrations in macrophytes.</td>
<td>44</td>
</tr>
<tr>
<td>2.6</td>
<td>Nutrient concentrations in a wetland.</td>
<td>45</td>
</tr>
<tr>
<td>2.7</td>
<td>Amount of nutrient reduction by various plants.</td>
<td>45</td>
</tr>
<tr>
<td>2.8</td>
<td>Amount of nutrient reduction by various floating and/or submergent plants.</td>
<td>48</td>
</tr>
<tr>
<td>2.9</td>
<td>Examples of systems used for coliform and pathogen removal.</td>
<td>53</td>
</tr>
<tr>
<td>3.1</td>
<td>Comparison of nutrient concentrations in typical greywater samples.</td>
<td>83</td>
</tr>
<tr>
<td>3.2</td>
<td>Average absorbance values of proline standards.</td>
<td>94</td>
</tr>
<tr>
<td>4.1</td>
<td>Effect of different environmental conditions on leaf number and size.</td>
<td>98</td>
</tr>
<tr>
<td>4.2</td>
<td>Mean percentage dry weight for plant parts.</td>
<td>106</td>
</tr>
<tr>
<td>4.3</td>
<td>Proportion (as %) of plant parts under different conditions.</td>
<td>107</td>
</tr>
<tr>
<td>4.4</td>
<td>Proportion (as %) of dry weight plant parts for different plant sizes.</td>
<td>107</td>
</tr>
<tr>
<td>4.5</td>
<td>Above-ground to below-ground ratio under different conditions.</td>
<td>108</td>
</tr>
</tbody>
</table>
4.6 A comparison of total nitrogen and total phosphorus in plant samples.

4.7 Comparison of proline concentration between old and young leaves.

4.8 Comparison of proline concentration between emergent and submergent plants.

4.9 Reduction of proline concentration between tip and middle sections of leaves.

4.10 Proline concentration in young submergent leaves.

4.11 Comparison of TN and TP concentrations between emergent and submergent leaves.

5.1 Nitrogen and phosphorus concentration in plants before and after initial experiment.

5.2 Summary of nutrient changes in both species.

5.3 Relative nutrient increase or decrease during experiment duration.

5.4 The relative amounts of nitrogen and phosphorus in above and below-ground plant tissues based on concentration changes.

5.5 Amount of nitrate and phosphorus absorbed by plants.

5.6 Percentage reduction of suspended solids in greywater.

5.7 Percentage reduction of BOD in greywater.

5.8 Percentage reduction of fecal coliforms in greywater.
5.9 Percentage assimilation or retention of nitrate in greywater.

5.10 Percentage assimilation or retention of ammonium in greywater.

5.11 Percentage assimilation or retention of phosphate in greywater.

5.12 Changes in average pH in tanks.

5.13 Changes in average Total Dissolved Solids (conductivity in mS/cm) in the tanks.

5.14 Percentage reduction in BOD by individual tanks.

5.15 Percentage reduction of nitrate over all trials.

5.16 Regression analysis for the effect of nitrogen load on nitrate removal.

5.17 Percentage reduction of ammonium over all trials.

5.18 Regression analysis for the effect of ammonium-nitrogen load on ammonium removal.

5.19 Percentage reduction of phosphate over all trials.

5.20 Correlation coefficients for nutrient removal.

5.21 Percentage reduction in BOD by each system.

5.22 Percentage reduction of nitrate by each system.

5.23 Percentage reduction of phosphate by each system.

5.24 Percentage reduction of ammonium by each system.

5.25 Average increase in total nitrogen tissue content during the investigation.
5.26 Changes in nitrogen content per plant.

5.27 Total nitrogen gain per tank system (mg).

5.28 Average changes in P concentration in plant tissues.

5.29 Average changes in total P storage in plant biomass.

5.30 Comparison of total nitrate-nitrogen gain for each experimental set-up.

5.31 Comparison of total ammonium-nitrogen gain for each experimental set-up.

5.32 Nitrogen balance in each tank system.

5.33 Proportion on nitrogen taken up by plants.

5.34 Comparison of total phosphorus gain for each experimental set-up.

5.35 Comparison of the total nitrogen and total phosphorus input and biomass gain in plants.

5.36 Changes observed in plant size.

5.37 Productivity and biomass changes in Triglochin huegelii.

5.38 Summary of all data of the total N and P measurements for all plants.

5.39 Plant total nitrogen and total phosphorus showing the change in nutrient concentrations.
List of Figures

2.1 Segregation of household wastes. 11

2.2 A typical greywater treatment system. 19

2.3 Distribution of *Triglochin huegelii* in Western Australia. 25

3.1 Cross-section of a typical tank. 65

3.2 Layout of mini-wetland with planted species. 68

3.3 Plan view of tank layout for Investigation 3. 76

3.4 Cross-section of typical planted tank system for pond conditions. 81

3.5 Plan view of tank layout and applied conditions. 82

3.6 Cross-section of pond system for Investigation 5. 86

3.7 Standard absorbance curve for proline standards. 94

4.1 Cross-sections of leaves and tubers in typical samples of

Triglochin huegelii. 97

4.2 Carpel and seed structures in *Triglochin huegelii*. 105

5.1 The effect of BOD loading on BOD removal. 142

5.2 BOD removal for Trial 1 substrate. 142

5.3 The effect of nitrate-nitrogen loading on nitrate removal. 145

5.4 Nitrate removal for Trial 6. 146

5.5 Ammonium-nitrogen removal for Trial 2. 149

5.6 The effect of ammonium-nitrogen loading on ammonium removal. 149
5.7 The relationship between TN or TP gain and productivity. 172

5.8 Total Nitrogen content of leaf/stem plant parts. 176

5.9 Total Nitrogen content of root plant parts. 177

5.10 Total Nitrogen content of whole plant. 177

5.11 Total Phosphorus content of rhizome/tuber plant parts. 180

5.12 Total Phosphorus content of root plant parts. 181

5.13 Total Phosphorus content of whole plant. 182

6.1 Domestic wastewater treatment tank. 199
List of Plates

3.1 Inside a tank showing a tap to direct water flow and the dispersion pipes on the bottom to spread water evenly over the tank floor. 66

3.2 Tanks were either planted with one or two species of macrophytes or remained unplanted (as controls). 66

3.3 The arrangement of the experimental tanks. 67

3.4 A typical substrate-only tank. *Triglochin huegelii* plants were generally smaller than those in ponds. 80

3.5 A typical pond tank. *Triglochin huegelii* plants were generally larger with leaves emerged above the water surface. 81

3.6 The subsurface coil allowed greywater to circulate throughout the bottom part of the tank. 86

3.7 The fibreglass tank held up to 1000 L. Usually, three to four samples of eight different macrophytes were randomly planted. 87

3.8 The planted tank three months later. 87

4.1 A typical specimen of *Triglochin huegelii*, showing leaves and flower stalk. 98

4.2 Cross-section of *Triglochin huegelii* leaf. 99

4.3 Transverse section of lower part of *Triglochin huegelii* leaf. 100

4.4 Transverse section of upper part of *Triglochin huegelii* leaf. 100

xxi
4.5 Cross-section of leaf of *Schoenoplectus validus*.

4.6 Transverse section of leaf of *Schoenoplectus validus*.

4.7 Transverse section of leaf of *Juncus pallidus*.

4.8 Young germinated seedlings of *Triglochin huegelii*.

xxii
Glossary of Terminology and Abbreviations

Aerobic - processes using oxygen.

Anaerobic - no free oxygen or nitrate present (or used in reactions).

Anoxic - no free oxygen, but with nitrate present.

Batch Feeding - intermittent supply of nutrients/water to the system.

Biological Oxygen Demand (BOD) - a measure of organic material in suspension and solution. It is the total amount of oxygen taken up by bacteria as they decompose the organic material.

Black water - wastewater from household toilet systems.

BOD$_5$ - BOD determined over 5 days.

CBOD - carbonaceous BOD.

Chemical Oxygen Demand (COD) - total amount of oxygen required for all types of chemical reactions. Determined by oxidation of matter, usually using potassium dichromate.

Denitrification - reduction of nitrate to nitrogen gas by (denitrifying) bacteria.

DO - dissolved oxygen.

Downflow system - water enters the top of the system and moves downwards.
Ecosystem pond - stable water environment where a variety of different organisms exist. A complex food web, with many interactions, is a common feature of these ponds.

Enteric - intestinal. Organisms which are found in a human’s digestive tract.

Greywater - wastewater from all internal household water fixtures, other than toilet wastes. Also called sullage.

Hydraulic conductivity - the permeability of water to move through a soil, which is dependent on the available pore space and degree of clogging or biomass within it.

Kjeldahl nitrogen - the combination of organic nitrogen and ammonium-nitrogen (generally nitrogen sources other than nitrate and nitrite).

N - nitrogen.

NBOD - nitrogenous BOD.

Nitrification - oxidation of ammonia to nitrate by bacteria (called nitrifying bacteria).

P - phosphorus.

Plug Flow - flow of water where it is assumed that each amount of inflow remains as one unit as it passes through the system.

Rhizosphere - the immediate area/environment surrounding the roots of plants.
Sessile - organisms which are permanently attached to an object, stationary.

SS - suspended solids.

TN - total nitrogen.

TP - total phosphorus.

TSS - total suspended solids.

Upflow system - water enters the bottom of the system and percolates upwards.

Water regime - the integration of continuously changing depth over time, and includes the depth, duration, frequency, rate, magnitude, timing and predictability of inundation and drying phases.