On a generalisation of trapezoidal words

Amy Glen

School of Chemical & Mathematical Sciences
Murdoch University, Perth, Australia

amy.glen@gmail.com
http://amyglen.wordpress.com

Joint work with Florence Levé (Université de Picardie – Jules Verne).

35th ACCMCC © Monash University

December 5–9, 2011
Words

By a \textit{word}, I mean a \textbf{finite or infinite sequence} of symbols (\textit{letters}) taken from a non-empty finite set \(A \) (\textit{alphabet}).

\textbf{Examples:}

\begin{itemize}
\item 001
\item \((001)^\infty = 00100100100100100100100100100100100 \ldots \)
\item 1100111100011011101111001101110010111111101 \ldots
\item 100102110122220102110021111102212222201112012 \ldots
\item 1121212121212 \ldots
\end{itemize}
Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).

Examples:

- 001
- $(001)^{\infty} = 0.01001001001001001001001001001001001\ldots$
 \[\uparrow\]
- 1100111100011011101111001101110010111111011...
- 100102110122220102110021111102212222201112012\ldots
- 1121212121212\ldots
Words

By a *word*, I mean a **finite or infinite sequence** of symbols (*letters*) taken from a non-empty finite set \mathcal{A} (*alphabet*).

Examples:

- 001
- $(001)_{\infty} = 0.01001001001001001001001001001001\ldots = (2/7)_2$
- 1100111100011011101111001101110010111111101\ldots
- 1001021110122220102110021111102212222201112012\ldots
- 1121212121212\ldots
Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken from a non-empty finite set A (alphabet).

Examples:

- 001
- $(001)\infty = 0.01001001001001001001001001001\ldots = (2/7)_2$
- $1.100111110001101110111001101110010\ldots$
- $10010211012222010211002111102212222201112012\ldots$
- $1121212121212\ldots$
Words

By a *word*, I mean a *finite or infinite sequence* of symbols (*letters*) taken from a non-empty finite set \mathcal{A} (*alphabet*).

Examples:

- 001
- $(001)_{\infty} = 0.01001001001001001001001001\ldots = (2/7)_2$
- $1.100111100011011101111001101110010\ldots = ((1 + \sqrt{5})/2)_2$
- $100102110122220102110021111102212222201112012\ldots$
- $1121212121212\ldots$
Words

By a *word*, I mean a finite or infinite sequence of symbols (*letters*) taken from a non-empty finite set A (*alphabet*).

Examples:

- 001

- $(001)_{\infty} = 0.01001001001001001001001001001001\ldots = (2/7)_2$

- $1.100111100011011101111001101110010\ldots = ((1 + \sqrt{5})/2)_2$

- $10.0102110122220102110021111102212222201112012\ldots$

- $1121212121212\ldots$
By a \textit{word}, I mean a \textbf{finite or infinite sequence} of symbols (\textit{letters}) taken from a non-empty finite set \(A\) (\textit{alphabet}).

\textbf{Examples:}

- 001
- \((001)_{\infty} = 0.01001001001001001001001001001001001001001001001... = (2/7)_2\)
- \(1.1001111000110111011110011011110010... = ((1 + \sqrt{5})/2)_2\)
- \(10.0102110122220102110021111102212222201112012... = (\pi)_3\)
- \(1121212121212...\)
Words

By a word, I mean a finite or infinite sequence of symbols (letters) taken from a non-empty finite set \mathcal{A} (alphabet).

Examples:

- 001
- $(001)_{\infty} = 0.01001001001001001001001001001\ldots = (2/7)_2$
- $1.100111100011011101111001101110010\ldots = ((1 + \sqrt{5})/2)_2$
- $10.0102110122220102110021111102212222201112012\ldots = (\pi)_3$
- $[1; 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, \ldots] = \sqrt{3}$
Depending on the problem to be solved, it may be fruitful to study combinatorial and structural properties of the words representing the elements of a particular set or to impose certain combinatorial conditions on such words.
Depending on the problem to be solved, it may be fruitful to study combinatorial and structural properties of the words representing the elements of a particular set or to impose certain combinatorial conditions on such words.

Most commonly studied words are those which satisfy one or more strong regularity properties; for instance, words containing many repetitions or palindromes.
Depending on the problem to be solved, it may be fruitful to study combinatorial and structural properties of the words representing the elements of a particular set or to impose certain combinatorial conditions on such words.

Most commonly studied words are those which satisfy one or more strong regularity properties; for instance, words containing many repetitions or palindromes.

The extent to which a word exhibits strong regularity properties is generally inversely proportional to its “complexity”.
Depending on the problem to be solved, it may be fruitful to study combinatorial and structural properties of the words representing the elements of a particular set or to impose certain combinatorial conditions on such words.

Most commonly studied words are those which satisfy one or more strong regularity properties; for instance, words containing many repetitions or palindromes.

The extent to which a word exhibits strong regularity properties is generally inversely proportional to its “complexity”.

Basic measure: number of distinct blocks (factors) of each length occurring in the word.
Words: Factor Complexity

- Given a finite or infinite word w, let $F_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.
Words: Factor Complexity

- Given a finite or infinite word w, let $\mathcal{F}_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.

- The function $C_w(n) : \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$C_w(n) = \text{Card}(\mathcal{F}_n(w))$$

is called the **factor complexity function** of w.

Words: Factor Complexity

- Given a finite or infinite word \(w \), let \(\mathcal{F}_n(w) \) denote the set of distinct factors of \(w \) of length \(n \in \mathbb{N}^+ \).

- The function \(C_w(n) : \mathbb{N} \rightarrow \mathbb{N} \) defined by

 \[
 C_w(n) = \text{Card}(\mathcal{F}_n(w))
 \]

 is called the factor complexity function of \(w \).

Example

\(x = (\sqrt{2})_2 = 1.0110101000001001111 \ldots \)
Words: Factor Complexity

- Given a finite or infinite word w, let $\mathcal{F}_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.

- The function $C_w(n) : \mathbb{N} \to \mathbb{N}$ defined by

$$C_w(n) = \text{Card}(\mathcal{F}_n(w))$$

is called the factor complexity function of w.

Example

$$x = (\sqrt{2})_2 = 1.0110101000001001111\ldots$$

$$\mathcal{F}_1(x) = \{0, 1\}, \ C_x(1) = 2$$
Words: Factor Complexity

- Given a finite or infinite word w, let $\mathcal{F}_n(w)$ denote the set of distinct factors of w of length $n \in \mathbb{N}^+$.

- The function $C_w(n) : \mathbb{N} \to \mathbb{N}$ defined by

 $$C_w(n) = \text{Card}(\mathcal{F}_n(w))$$

 is called the *factor complexity function* of w.

Example

$$x = (\sqrt{2})_2 = 1.0110101000001001111 \ldots$$

$$\mathcal{F}_1(x) = \{0, 1\}, \ C_x(1) = 2$$

$$\mathcal{F}_2(x) = \{00, 01, 10, 11\}, \ C_x(2) = 4$$
Words: Factor Complexity

- Given a finite or infinite word \(w \), let \(F_n(w) \) denote the set of distinct factors of \(w \) of length \(n \in \mathbb{N}^+ \).

- The function \(C_w(n) : \mathbb{N} \rightarrow \mathbb{N} \) defined by

\[
C_w(n) = \text{Card}(F_n(w))
\]

is called the \textit{factor complexity function} of \(w \).

Example

\[
x = (\sqrt{2})_2 = 1.0110101000001001111 \ldots
\]

\[
F_1(x) = \{0, 1\}, \quad C_x(1) = 2
\]

\[
F_2(x) = \{00, 01, 10, 11\}, \quad C_x(2) = 4
\]

\[
F_3(x) = \{000, 001, 010, 100, 101, 110, 111\}, \quad C_x(3) = 8
\]
Words: Factor Complexity

- Given a finite or infinite word \(w \), let \(\mathcal{F}_n(w) \) denote the set of distinct factors of \(w \) of length \(n \in \mathbb{N}^+ \).

- The function \(C_w(n) : \mathbb{N} \to \mathbb{N} \) defined by
 \[
 C_w(n) = \text{Card}(\mathcal{F}_n(w))
 \]
 is called the factor complexity function of \(w \).

Example

\[x = (\sqrt{2})_2 = 1.0110101000001001111 \ldots \]
\[\mathcal{F}_1(x) = \{0, 1\}, \quad C_x(1) = 2 \]
\[\mathcal{F}_2(x) = \{00, 01, 10, 11\}, \quad C_x(2) = 4 \]
\[\mathcal{F}_3(x) = \{000, 001, 010, 100, 101, 110, 111\}, \quad C_x(3) = 8 \]

Conjecture: \(C_x(n) = 2^n \) for all \(n \) as it is believed \(\sqrt{2} \) is normal in base 2.
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is **eventually periodic** if and only if $C_w(n) \leq n$ for some $n \in \mathbb{N}^+$.
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word \mathbf{w} is **eventually periodic** if and only if $C_w(n) \leq n$ for some $n \in \mathbb{N}^+$. That is: \mathbf{w} is aperiodic $\iff C_w(n) \geq n + 1$ for all $n \in \mathbb{N}$.

Amy Glen (MU, Perth)

On a generalisation of trapezoidal words

December 2011
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word \(w \) is **eventually periodic** if and only if \(C_w(n) \leq n \) for some \(n \in \mathbb{N}^+ \).

That is: \(w \) is aperiodic \(\iff \) \(C_w(n) \geq n + 1 \) for all \(n \in \mathbb{N} \).

- An infinite word \(w \) is called **Sturmian** if and only if \(C_w(n) = n + 1 \) for each \(n \).
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is **eventually periodic** if and only if $C_w(n) \leq n$ for some $n \in \mathbb{N}^+$. That is: w is aperiodic $\iff C_w(n) \geq n + 1$ for all $n \in \mathbb{N}$.

- An infinite word w is called **Sturmian** if and only if $C_w(n) = n + 1$ for each n.
- Sturmian words are the aperiodic infinite words of minimal complexity.
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word \(w \) is **eventually periodic** if and only if \(C_w(n) \leq n \) for some \(n \in \mathbb{N}^+ \).

That is: \(w \) is aperiodic \(\iff \) \(C_w(n) \geq n + 1 \) for all \(n \in \mathbb{N} \).

- An infinite word \(w \) is called **Sturmian** if and only if \(C_w(n) = n + 1 \) for each \(n \).
- Sturmian words are the aperiodic infinite words of minimal complexity.
- Their low complexity accounts for many interesting features, as it induces certain regularities in such words without, however, making them periodic.
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is *eventually periodic* if and only if $C_w(n) \leq n$ for some $n \in \mathbb{N}^+$. That is: w is aperiodic $\iff C_w(n) \geq n + 1$ for all $n \in \mathbb{N}$.

- An infinite word w is called *Sturmian* if and only if $C_w(n) = n + 1$ for each n.
- Sturmian words are the aperiodic infinite words of minimal complexity.
- Their low complexity accounts for many interesting features, as it induces certain regularities in such words without, however, making them periodic.
- **Applications in:** Combinatorics, Symbolic Dynamics, Number Theory, Discrete Geometry, Theoretical Physics, and Computer Science.
Complexity & Periodicity

Theorem (Morse-Hedlund 1940)

An infinite word w is **eventually periodic** if and only if $C_w(n) \leq n$ for some $n \in \mathbb{N}^+$. That is: w is aperiodic $\iff C_w(n) \geq n + 1$ for all $n \in \mathbb{N}$.

- An infinite word w is called **Sturmian** if and only if $C_w(n) = n + 1$ for each n.
- Sturmian words are the aperiodic infinite words of minimal complexity.
- Their low complexity accounts for many interesting features, as it induces certain regularities in such words without, however, making them periodic.
- **Applications in**: Combinatorics, Symbolic Dynamics, Number Theory, Discrete Geometry, Theoretical Physics, and Computer Science.
- Numerous equivalent definitions & characterisations . . .
A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let $P_w(n)$ denote the *palindromic complexity function* of w, which counts the number of palindromic factors of w of each length $n \geq 0$.
A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let $P_w(n)$ denote the *palindromic complexity function* of w, which counts the number of palindromic factors of w of each length $n \geq 0$.

Theorem (Droubay-Pirillo 1999)

An infinite word w is Sturmian if and only if

$$P_w(n) = \begin{cases} 1 & \text{if } n \text{ is even} \\ 2 & \text{if } n \text{ is odd} \end{cases}$$
A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let $P_w(n)$ denote the palindromic complexity function of w, which counts the number of palindromic factors of w of each length $n \geq 0$.

Theorem (Droubay-Pirillo 1999)

An infinite word w is Sturmian if and only if

$$P_w(n) = \begin{cases}
1 & \text{if } n \text{ is even} \\
2 & \text{if } n \text{ is odd}
\end{cases}$$

Note:

- Any Sturmian word is over a 2-letter alphabet since it has two distinct factors of length 1.
A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let $P_w(n)$ denote the *palindromic complexity function* of w, which counts the number of palindromic factors of w of each length $n \geq 0$.

Theorem (Droubay-Pirillo 1999)

An infinite word w is Sturmian if and only if

\[P_w(n) = \begin{cases}
1 & \text{if } n \text{ is even} \\
2 & \text{if } n \text{ is odd}
\end{cases} \]

Note:

- Any Sturmian word is over a 2-letter alphabet since it has two distinct factors of length 1.

- A Sturmian word over the alphabet $\{a, b\}$ contains either aa or bb, but not both.
A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let $P_w(n)$ denote the *palindromic complexity function* of w, which counts the number of palindromic factors of w of each length $n \geq 0$.

Theorem (Droubay-Pirillo 1999)

An infinite word w is Sturmian if and only if

$$P_w(n) = \begin{cases}
1 & \text{if } n \text{ is even} \\
2 & \text{if } n \text{ is odd}
\end{cases}$$

Note:

- Any Sturmian word is over a 2-letter alphabet since it has two distinct factors of length 1.
- A Sturmian word over the alphabet $\{a, b\}$ contains either aa or bb, but not both.

What do such words look like?
A Characterisation by Palindromic Complexity

Given a finite or infinite word w, let $P_w(n)$ denote the palindromic complexity function of w, which counts the number of palindromic factors of w of each length $n \geq 0$.

Theorem (Droubay-Pirillo 1999)

An infinite word w is Sturmian if and only if

\[
P_w(n) = \begin{cases}
1 & \text{if } n \text{ is even} \\
2 & \text{if } n \text{ is odd}
\end{cases}
\]

Note:

- Any Sturmian word is over a 2-letter alphabet since it has two distinct factors of length 1.
- A Sturmian word over the alphabet \{a, b\} contains either aa or bb, but not both.

What do such words look like? And how can we construct them?
Constructing Sturmian words

Let’s consider a nice geometric realisation of infinite Sturmian words . . .
Constructing Sturmian words

Let’s consider a nice geometric realisation of infinite Sturmian words . . .

Consider a line (call it ℓ) of the form:

$$y = \alpha x + \rho$$

where α is an irrational number in $(0, 1)$ and $\rho \geq 0$.
Constructing Sturmian words

- Let’s consider a nice geometric realisation of infinite Sturmian words . . .

- Consider a line (call it \(\ell \)) of the form:

\[
y = \alpha x + \rho
\]

where \(\alpha \) is an irrational number in \((0, 1)\) and \(\rho \geq 0 \).

- Let \(\mathcal{P} \) denote the path along the integer lattice that starts at the point \((1, 0)\) below the line \(\ell \) with the property that the region in the plane enclosed by \(\mathcal{P} \) and \(\ell \) contains no other points in \(\mathbb{Z} \times \mathbb{Z} \) besides those of the path \(\mathcal{P} \).
Constructing Sturmian words

- Let’s consider a nice geometric realisation of infinite Sturmian words . . .

- Consider a line (call it \(\ell \)) of the form:

\[
y = \alpha x + \rho
\]

where \(\alpha \) is an irrational number in \((0, 1)\) and \(\rho \geq 0 \).

- Let \(\mathcal{P} \) denote the path along the integer lattice that starts at the point \((1, 0)\) below the line \(\ell \) with the property that the region in the plane enclosed by \(\mathcal{P} \) and \(\ell \) contains no other points in \(\mathbb{Z} \times \mathbb{Z} \) besides those of the path \(\mathcal{P} \).

- The so-called Sturmian word of slope \(\alpha \) and intercept \(\rho \) is obtained by coding the steps of the path \(\mathcal{P} \).
Constructing Sturmian words

Let’s consider a nice geometric realisation of infinite Sturmian words . . .

Consider a line (call it \(\ell \)) of the form:

\[
y = \alpha x + \rho
\]

where \(\alpha \) is an irrational number in \((0, 1)\) and \(\rho \geq 0\).

Let \(\mathcal{P} \) denote the path along the integer lattice that starts at the point \((1, 0)\) below the line \(\ell \) with the property that the region in the plane enclosed by \(\mathcal{P} \) and \(\ell \) contains no other points in \(\mathbb{Z} \times \mathbb{Z} \) besides those of the path \(\mathcal{P} \).

The so-called Sturmian word of slope \(\alpha \) and intercept \(\rho \) is obtained by coding the steps of the path \(\mathcal{P} \).

– A horizontal step is denoted by the letter \(a \).
Constructing Sturmian words

- Let’s consider a nice geometric realisation of infinite Sturmian words . . .
- Consider a line (call it ℓ) of the form:

$$y = \alpha x + \rho$$

where α is an irrational number in $(0, 1)$ and $\rho \geq 0$.

- Let P denote the path along the integer lattice that starts at the point $(1, 0)$ below the line ℓ with the property that the region in the plane enclosed by P and ℓ contains no other points in $\mathbb{Z} \times \mathbb{Z}$ besides those of the path P.

- The so-called Sturmian word of slope α and intercept ρ is obtained by coding the steps of the path P.
 - A horizontal step is denoted by the letter a.
 - A vertical step is denoted by the letter b.
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \quad \rightarrow \quad \text{Fibonacci word} \quad (\text{Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2}) \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \rightarrow \textit{Fibonacci word} \quad \text{(Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2} \text{)} \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \quad \rightarrow \quad \text{Fibonacci word} \quad \text{(Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2}) \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \rightarrow \text{Fibonacci word} \ (\text{Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2}) \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \rightarrow \textit{Fibonacci word} \text{ (Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2}) \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \rightarrow \text{Fibonacci word} \quad \text{(Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2}) \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5}-1}{2} x \rightarrow \textit{Fibonacci word} \quad \text{(Standard Sturmian word of slope } \frac{\sqrt{5}-1}{2}) \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5}-1}{2} x \rightarrow \text{Fibonacci word} \quad (\text{Standard Sturmian word of slope } \frac{\sqrt{5}-1}{2}) \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \quad \longrightarrow \quad \text{Fibonacci word} \quad \text{(Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2} \text{)} \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \quad \rightarrow \quad \textit{Fibonacci word} \quad \text{(Standard Sturmian word of slope} \quad \frac{\sqrt{5} - 1}{2} \text{)} \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \rightarrow \textit{Fibonacci word} \ (\text{Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2}) \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5}-1}{2} x \quad \rightarrow \quad \text{Fibonacci word} \quad (\text{Standard Sturmian word of slope } \frac{\sqrt{5}-1}{2}) \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \rightarrow \text{Fibonacci word} \] (Standard Sturmian word of slope \(\frac{\sqrt{5} - 1}{2} \))

\[f = a \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \rightarrow \textit{Fibonacci word} \text{ (Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2} \text{)}\]

\[f = ab \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \quad \rightarrow \quad \text{Fibonacci word} \quad \text{(Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2} \text{)}\]

\[f = a b a \]

Amy Glen (MU, Perth)

On a generalisation of trapezoidal words

December 2011
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \rightarrow \text{Fibonacci word} \] (Standard Sturmian word of slope \(\frac{\sqrt{5} - 1}{2} \))

\[f = abaa \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \rightarrow \text{Fibonacci word} \] (Standard Sturmian word of slope \(\frac{\sqrt{5} - 1}{2} \))

\[f = abaab \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \implies \text{Fibonacci word} \ (\text{Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2}) \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \rightarrow \textit{Fibonacci word} \text{ (Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2} \text{)} \]

\[f = abaabab \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5}-1}{2}x \rightarrow \textbf{Fibonacci word} \text{ (Standard Sturmian word of slope } \frac{\sqrt{5}-1}{2} \text{)} \]

\[f = abaababa \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \quad \rightarrow \quad \text{Fibonacci word} \quad (\text{Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2}) \]

\[f = a b a a b a b a b a a \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5} - 1}{2} x \quad \rightarrow \quad \text{Fibonacci word} \quad (\text{Standard Sturmian word of slope } \frac{\sqrt{5} - 1}{2}) \]

\[f = abaababaabaab \]
Sturmian words: Construction by example

\[y = \frac{\sqrt{5}-1}{2} x \quad \rightarrow \quad \text{Fibonacci word} \quad (\text{Standard Sturmian word of slope } \frac{\sqrt{5}-1}{2}) \]

\[f = \text{abaababaab} \ldots \]
Fibonacci word: \(f = \text{abaababaabaabaabaaba} \cdots \)

- The Fibonacci numbers show up in connection with many combinatorial properties of the Fibonacci word \(f \).
Fibonacci word: $f = abaababaababaababaababaabaabaabaaba\cdots$

- The Fibonacci numbers show up in connection with many combinatorial properties of the Fibonacci word f (hence the name!).
Fibonacci word: $f = abaababaabaababaaba \cdots$

- The Fibonacci numbers show up in connection with many combinatorial properties of the Fibonacci word f (hence the name!).
- For instance, the Fibonacci word begins with arbitrarily long palindromes, starting with

 ε (empty word), a, aba, $abaaba$, $abaababaaba$, $abaababaabaaba$, \ldots
Fibonacci word: \(f = abaababaabaabaabaabaaba \cdots \)

- The Fibonacci numbers show up in connection with many combinatorial properties of the Fibonacci word \(f \) (hence the name!).

- For instance, the Fibonacci word begins with arbitrarily long palindromes, starting with

 \(\varepsilon \) (empty word), \(a \), \(aba \), \(ababa \), \(abababaabaabaabaabaabaabaabaabaabaabaabaabaaba \), \(\ldots \)

And it can be shown that the palindromic prefixes of \(f \) have lengths

\[
\{F_{n+1} - 2\}_{n \geq 1} = 0, 1, 3, 6, 11, 19, \ldots
\]

where \(\{F_n\}_{n \geq 0} \) is the sequence of Fibonacci numbers

\(1, 1, 2, 3, 5, 8, 13, 21, \ldots \), defined by: \(F_0 = F_1 = 1, F_n = F_{n-1} + F_{n-2} \)

for \(n \geq 2 \).
Standard Sturmian words

- Sturmian words (such as the Fibonacci word) that correspond to lines that pass through the origin (zero intercept) are said to be **standard** or characteristic.
Sturmian words (such as the Fibonacci word) that correspond to lines that pass through the origin (zero intercept) are said to be standard or characteristic.

It turns out that all Sturmian words of the same slope have the same set of finite factors, and so for most purposes it suffices to consider just the standard ones.
Standard Sturmian words

- Sturmian words (such as the Fibonacci word) that correspond to lines that pass through the origin (zero intercept) are said to be standard or characteristic.

- It turns out that all Sturmian words of the same slope have the same set of finite factors, and so for most purposes it suffices to consider just the standard ones.

- As in the case of the Fibonacci word, any standard Sturmian word begins with infinitely many different palindromes.
Standard Sturmian words

- Sturmian words (such as the Fibonacci word) that correspond to lines that pass through the origin (zero intercept) are said to be standard or characteristic.

- It turns out that all Sturmian words of the same slope have the same set of finite factors, and so for most purposes it suffices to consider just the standard ones.

- As in the case of the Fibonacci word, any standard Sturmian word begins with infinitely many different palindromes.

 In fact, such words have a purely combinatorial construction using the iterated palindromic closure operator . . .
Iterated Palindromic Closure

- The iterated palindromic closure operator (Justin, 2005) is denoted by Pal and is defined as follows.
The **iterated palindromic closure operator** (Justin, 2005) is denoted by Pal and is defined as follows.

For a given word v, let v^+ denote the unique shortest palindrome beginning with v.
Iterated Palindromic Closure

- The **iterated palindromic closure operator** (Justin, 2005) is denoted by Pal and is defined as follows.

 - For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

$$(\text{glen})^+ =$$
Iterated Palindromic Closure

- The **iterated palindromic closure operator** (Justin, 2005) is denoted by Pal and is defined as follows.

- For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

$$(glen)^+ = glenelg$$
Iterated Palindromic Closure

The iterated palindromic closure operator (Justin, 2005) is denoted by Pal and is defined as follows.

For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

$\text{(glen)}^+ = \text{glenelg}$

$\text{(race)}^+ =$
The *iterated palindromic closure operator* (Justin, 2005) is denoted by Pal and is defined as follows.

For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

$$(\text{glen})^+ = \text{glenelg}$$

$$(\text{race})^+ = \text{racecar}$$
Iterated Palindromic Closure

- The iterated palindromic closure operator (Justin, 2005) is denoted by Pal and is defined as follows.

- For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

 For example:

 $$(glen)^+ = glenelg$$
 $$(race)^+ = racecar$$

- We define $\text{Pal}(\varepsilon) = \varepsilon$
Iterated Palindromic Closure

- The iterated palindromic closure operator (Justin, 2005) is denoted by Pal and is defined as follows.
- For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

$$(\text{glen})^+ = \text{glenelg}$$

$$(\text{race})^+ = \text{racecar}$$

- We define $\text{Pal}(\varepsilon) = \varepsilon$, and for any word w and letter x,

$$\text{Pal}(wx) = (\text{Pal}(w)x)^+.$$
Iterated Palindromic Closure

- The iterated palindromic closure operator (Justin, 2005) is denoted by Pal and is defined as follows.

- For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

$(glen)^+ = glenelg$

$(race)^+ = racecar$

- We define $\text{Pal}(\varepsilon) = \varepsilon$, and for any word w and letter x,

$\text{Pal}(wx) = (\text{Pal}(w)x)^+.$

For example:

$\text{Pal}(race) = \varepsilon$
Iterated Palindromic Closure

- The iterated palindromic closure operator (Justin, 2005) is denoted by Pal and is defined as follows.

 - For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

 For example:

 $$(glen)^+ = glenelg$$
 $$(race)^+ = racecar$$

- We define $Pal(\varepsilon) = \varepsilon$, and for any word w and letter x,

 $$Pal(wx) = (Pal(w)x)^+.$$

 For example:

 $$Pal(race) = \underline{r}$$
Iterated Palindromic Closure

The iterated palindromic closure operator (Justin, 2005) is denoted by Pal and is defined as follows.

For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

$$(glen)^+ = glenelg$$

$$(race)^+ = racecar$$

We define $Pal(\varepsilon) = \varepsilon$, and for any word w and letter x,

$$Pal(wx) = (Pal(w)x)^+.$$

For example:

$$Pal(race) = ra$$
Iterated Palindromic Closure

- The **iterated palindromic closure operator** (Justin, 2005) is denoted by Pal and is defined as follows.

- For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

 For example:

 $$(glen)^+ = glenelg$$
 $$(race)^+ = racecar$$

- We define $Pal(\varepsilon) = \varepsilon$, and for any word w and letter x,

 $$Pal(wx) = (Pal(w)x)^+.$$

 For example:

 $$Pal(race) = rar$$
Iterated Palindromic Closure

• The iterated palindromic closure operator (Justin, 2005) is denoted by Pal and is defined as follows.

• For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

$$(glen)^+ = glenelg$$

$$(race)^+ = racecar$$

• We define $Pal(\varepsilon) = \varepsilon$, and for any word w and letter x,

$$Pal(wx) = (Pal(w)x)^+.$$

For example:

$$Pal(race) = \underline{rarc}$$
Iterated Palindromic Closure

- The iterated palindromic closure operator (Justin, 2005) is denoted by Pal and is defined as follows.

- For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

$$(\text{glen})^+ = \text{glenelg}$$

$$(\text{race})^+ = \text{racecar}$$

- We define $\text{Pal}(\varepsilon) = \varepsilon$, and for any word w and letter x, $$\text{Pal}(wx) = (\text{Pal}(w)x)^+.$$

For example:

$\text{Pal}(\text{race}) = \underline{\text{r}} \underline{\text{a}} \underline{\text{r}} \text{c} \underline{\text{r}} \text{a} \text{r}$$
Iterated Palindromic Closure

- The *iterated palindromic closure operator* (Justin, 2005) is denoted by Pal and is defined as follows.

- For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

\[
(glen)^+ = glenelg
\]
\[
(race)^+ = racecar
\]

- We define $Pal(\varepsilon) = \varepsilon$, and for any word w and letter x,

\[
Pal(wx) = (Pal(w)x)^+.
\]

For example:

\[
Pal(race) = \underline{r}a\underline{r}c\underline{r}a\underline{r}e
\]
Iterated Palindromic Closure

- The iterated palindromic closure operator (Justin, 2005) is denoted by Pal and is defined as follows.

- For a given word v, let v^+ denote the unique shortest palindrome beginning with v.

For example:

$$(glen)^+ = glenelg$$

$$(race)^+ = racecar$$

- We define $Pal(\varepsilon) = \varepsilon$, and for any word w and letter x,

$$Pal(wx) = (Pal(w)x)^+.$$

For example:

$$Pal(race) = \underline{rar} \underline{crar} \underline{erar} \underline{crar}$$
Standard Sturmian words: Palindromic Construction

Theorem (de Luca 1997)

An infinite word s over $\{a, b\}$ is a **standard Sturmian word** if and only if there exists an infinite word $\Delta = x_1 x_2 x_3 \cdots$ over $\{a, b\}$ (not of the form ua^∞ or ub^∞) such that

$$s = \lim_{n \to \infty} \text{Pal}(x_1 x_2 \cdots x_n) = \text{Pal}(\Delta).$$

Amy Glen (MU, Perth)
Standard Sturmian words: Palindromic Construction

Theorem (de Luca 1997)

An infinite word s over $\{a, b\}$ is a standard Sturmian word if and only if there exists an infinite word $\Delta = x_1 x_2 x_3 \cdots$ over $\{a, b\}$ (not of the form ua^∞ or ub^∞) such that

$$s = \lim_{n \to \infty} Pal(x_1 x_2 \cdots x_n) = Pal(\Delta).$$

- Δ: *directive word* of s
Standard Sturmian words: Palindromic Construction

Theorem (de Luca 1997)

An infinite word s over $\{a, b\}$ is a **standard Sturmian word** if and only if there exists an infinite word $\Delta = x_1 x_2 x_3 \cdots$ over $\{a, b\}$ (not of the form ua^∞ or ub^∞) such that

$$s = \lim_{n \to \infty} Pal(x_1 x_2 \cdots x_n) = Pal(\Delta).$$

- Δ: **directive word** of s

- **Example**: Fibonacci word is directed by $\Delta = (ab)(ab)(ab)\cdots$
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5}-1}{2} \rightarrow$ Fibonacci word
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5} - 1}{2} \longrightarrow$ Fibonacci word

$$\Delta = (ab)(ab)(ab) \cdots \longrightarrow f = Pal(\Delta) = a$$
Recall: Fibonacci word

Line of slope \(\frac{\sqrt{5} - 1}{2} \) \(\longrightarrow \) Fibonacci word

\[\Delta = (ab)(ab)(ab) \cdots \longrightarrow f = Pal(\Delta) = ab \]
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5} - 1}{2} \rightarrow$ Fibonacci word

$\Delta = (ab)(ab)(ab) \cdots \rightarrow f = Pal(\Delta) = abab$
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5}-1}{2} \longrightarrow$ Fibonacci word

$$\Delta = (ab)(\underline{ab})(ab) \cdots \longrightarrow f = Pal(\Delta) = \underline{aba}a$$
Recall: Fibonacci word

Line of slope \(\frac{\sqrt{5} - 1}{2} \) \(\rightarrow \) Fibonacci word

\[\Delta = (ab)(ab)(ab) \cdots \rightarrow f = Pal(\Delta) = \underline{abaaba} \]
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5} - 1}{2} \rightarrow \text{Fibonacci word}$

$$\Delta = (ab)(ab)(ab) \cdots \rightarrow f = Pal(\Delta) = \text{abaabab}$$
Recall: Fibonacci word

Line of slope $\frac{\sqrt{5}-1}{2}$ \longrightarrow Fibonacci word

$$\Delta = (ab)(ab)(ab) \cdots \longrightarrow f = Pal(\Delta) = \underline{abaaba} \underline{baba} \cdots$$
Trapezoidal words were first introduced by de Luca (1999) when studying the behaviour of the factor complexity of finite Sturmian words (i.e., finite factors of infinite Sturmian words).
Trapezoidal words were first introduced by de Luca (1999) when studying the behaviour of the factor complexity of finite Sturmian words (i.e., finite factors of infinite Sturmian words).

Theorem (de Luca 1999)

If w is a finite Sturmian word of length $|w|$, then the graph of its complexity $C_w(n)$ as a function of n (for $0 \leq n \leq |w|$) is that of a regular trapezoid (or possibly an isosceles triangle).
Trapezoidal words were first introduced by de Luca (1999) when studying the behaviour of the factor complexity of finite Sturmian words (i.e., finite factors of infinite Sturmian words).

Theorem (de Luca 1999)

If w is a finite Sturmian word of length $|w|$, then the graph of its complexity $C_w(n)$ as a function of n (for $0 \leq n \leq |w|$) is that of a regular trapezoid (or possibly an isosceles triangle).

That is:

- $C_w(n)$ increases by 1 with each n on some interval of length r.

Amy Glen (MU, Perth)
Trapezoidal words were first introduced by de Luca (1999) when studying the behaviour of the factor complexity of finite Sturmian words (i.e., finite factors of infinite Sturmian words).

Theorem (de Luca 1999)

If w is a finite Sturmian word of length $|w|$, then the graph of its complexity $C_w(n)$ as a function of n (for $0 \leq n \leq |w|$) is that of a regular trapezoid (or possibly an isosceles triangle).

That is:

- $C_w(n)$ increases by 1 with each n on some interval of length r.
- Then $C_w(n)$ is constant on some interval of length s.

Amy Glen (MU, Perth)
Trapezoidal words were first introduced by de Luca (1999) when studying the behaviour of the factor complexity of finite Sturmian words (i.e., finite factors of infinite Sturmian words).

Theorem (de Luca 1999)

If \(w \) is a finite Sturmian word of length \(|w| \), then the graph of its complexity \(C_w(n) \) as a function of \(n \) (for \(0 \leq n \leq |w| \)) is that of a regular trapezoid (or possibly an isosceles triangle).

That is:
- \(C_w(n) \) increases by 1 with each \(n \) on some interval of length \(r \).
- Then \(C_w(n) \) is constant on some interval of length \(s \).
- Finally \(C_w(n) \) decreases by 1 with each \(n \) on an interval of length \(r \).
Example

Graph of the factor complexity of the finite Sturmian word $aabaabab$
Trapezoidal Words . . .

- This “trapezoidal property” does not characterise Sturmian words.
This “trapezoidal property” does not characterise Sturmian words. For example, \textit{aabb} is trapezoidal ([1, 2, 3, 2, 1]), but not Sturmian.
This “trapezoidal property” does not characterise Sturmian words. For example, \textit{aabb} is trapezoidal ([1, 2, 3, 2, 1]), but not Sturmian.

Note: If \(w \) is a \textit{trapezoidal word} (i.e., its “complexity graph” has the same behaviour as that of Sturmian words), then necessarily \(C_w(1) = 2 \).
This “trapezoidal property” does not characterise Sturmian words. For example, \textit{aabb} is trapezoidal ([1, 2, 3, 2, 1]), but not Sturmian.

\textbf{Note:} If \(w \) is a \textit{trapezoidal word} (i.e., its “complexity graph” has the same behaviour as that of Sturmian words), then necessarily \(C_w(1) = 2 \).

This is because there is 1 factor of length 0, namely the \textit{empty word} \(\varepsilon \).
This “trapezoidal property” does not characterise Sturmian words. For example, \textit{aabb} is trapezoidal ([1, 2, 3, 2, 1]), but not Sturmian.

\textbf{Note:} If \(w\) is a \textit{trapezoidal word} (i.e., its “complexity graph” has the same behaviour as that of Sturmian words), then necessarily \(C_w(1) = 2\).

This is because there is 1 factor of length 0, namely the \textit{empty word} \(\varepsilon\).

So any trapezoidal word is on a \textit{binary alphabet} and the family of trapezoidal words properly contains all finite Sturmian words.
This “trapezoidal property” does not characterise Sturmian words.

For example, $aabb$ is trapezoidal ($[1, 2, 3, 2, 1]$), but not Sturmian.

Note: If w is a trapezoidal word (i.e., its “complexity graph” has the same behaviour as that of Sturmian words), then necessarily $C_w(1) = 2$.

This is because there is 1 factor of length 0, namely the empty word ε.

So any trapezoidal word is on a binary alphabet and the family of trapezoidal words properly contains all finite Sturmian words.

Inspired by a question of Ian Wanless at the 2010 AustMS conference, we recently introduced the following natural generalisation of trapezoidal words.
Inspired by a question of Ian Wanless at the 2010 AustMS conference, we recently introduced the following natural generalisation of trapezoidal words.

Generalised Trapezoidal Words (G.-Levé 2011)

We say that finite word w with alphabet \mathcal{A} (of size $|\mathcal{A}| \geq 2$) is a generalised trapezoidal word (or GT-word for short) if the graph of its factor complexity $C_w(n)$ as a function of n (for $0 \leq n \leq |w|$) is either constant or a regular trapezoid (possibly an isosceles triangle) on the interval $[1, |w| - |\mathcal{A}| + 1]$.
Inspired by a question of Ian Wanless at the 2010 AustMS conference, we recently introduced the following natural generalisation of trapezoidal words.

Generalised Trapezoidal Words (G.-Levé 2011)

We say that finite word w with alphabet \mathcal{A} (of size $|\mathcal{A}| \geq 2$) is a **generalised trapezoidal word** (or GT-word for short) if the graph of its factor complexity $C_w(n)$ as a function of n (for $0 \leq n \leq |w|$) is either constant or a regular trapezoid (possibly an isosceles triangle) on the interval $[1, |w| - |\mathcal{A}| + 1]$.

![Diagram of Generalised Trapezoidal Words](image-url)
Inspired by a question of Ian Wanless at the 2010 AustMS conference, we recently introduced the following natural generalisation of trapezoidal words.

Generalised Trapezoidal Words (G.-Levé 2011)

We say that finite word w with alphabet \mathcal{A} (of size $|\mathcal{A}| \geq 2$) is a **generalised trapezoidal word** (or **GT-word** for short) if the graph of its factor complexity $C_w(n)$ as a function of n (for $0 \leq n \leq |w|$) is either constant or a regular trapezoid (possibly an isosceles triangle) on the interval $[1, |w| - |\mathcal{A}| + 1]$.

Clearly these words coincide with the (original) trapezoidal words when $|\mathcal{A}| = 2$.
Some Examples

Length 10 over $\mathcal{A} = \{a, b, c\}$

<table>
<thead>
<tr>
<th>GT-word</th>
<th>$C(n)$ for $n = 0, 1, 2, \ldots, 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaaaaaaaabc</td>
<td>1, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1</td>
</tr>
<tr>
<td>abcbbcbbcba</td>
<td>1, 3, 4, 4, 4, 4, 4, 4, 3, 2, 1</td>
</tr>
<tr>
<td>abcbbcbbbab</td>
<td>1, 3, 4, 5, 5, 5, 5, 4, 3, 2, 1</td>
</tr>
<tr>
<td>abcabcabcab</td>
<td>1, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1</td>
</tr>
</tbody>
</table>
Some Examples

Length 10 over $\mathcal{A} = \{a, b, c\}$

<table>
<thead>
<tr>
<th>GT-word</th>
<th>$C(n)$ for $n = 0, 1, 2, \ldots, 10$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$aaaaaaaabc$</td>
<td>$1, 3, 3, 3, 3, 3, 3, 3, 3, 2, 1$</td>
</tr>
<tr>
<td>$abcbcbcba$</td>
<td>$1, 3, 4, 4, 4, 4, 4, 4, 3, 2, 1$</td>
</tr>
<tr>
<td>$abcbcbcba$</td>
<td>$1, 3, 4, 5, 5, 5, 5, 4, 3, 2, 1$</td>
</tr>
<tr>
<td>$abcbcabcab$</td>
<td>$1, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1$</td>
</tr>
</tbody>
</table>

Length 8 over $\mathcal{A} = \{a, b, c, d\}$

<table>
<thead>
<tr>
<th>GT-word</th>
<th>$C(n)$ for $n = 0, 1, 2, \ldots, 8$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$aaaaabcd$</td>
<td>$1, 4, 4, 4, 4, 4, 3, 2, 1$</td>
</tr>
<tr>
<td>$aaaabacd$</td>
<td>$1, 4, 5, 5, 5, 4, 3, 2, 1$</td>
</tr>
<tr>
<td>$aaabcdab$</td>
<td>$1, 4, 5, 6, 5, 4, 3, 2, 1$</td>
</tr>
</tbody>
</table>
Some Basic Properties

The language of all GT-words is closed . . .

Theorem (G.-Levé 2011)

If w is a GT-word, then each factor of w (containing at least two different letters) is also a GT-word.
Some Basic Properties

The language of all GT-words is closed . . .

Theorem (G.-Levé 2011)

If w is a GT-word, then each factor of w (containing at least two different letters) is also a GT-word.

Moreover, the language of all GT-words is closed under reversal.

Theorem (G.-Levé 2011)

A finite word w is a GT-word if and only if its reversal is a GT-word.
Binary Case

In the case when $|\mathcal{A}| = 2$, we have proved the following.

Theorem (de Luca-G.-Zamboni 2008)

Let w be a binary palindrome. Then w is trapezoidal if and only if w is Sturmian.
Binary Case

In the case when $|\mathcal{A}| = 2$, we have proved the following.

Theorem (de Luca-G.-Zamboni 2008)
Let w be a binary palindrome. Then w is trapezoidal if and only if w is Sturmian.

Theorem (de Luca-G.-Zamboni 2008)
Let w be a binary trapezoidal word. Then w contains $|w| + 1$ distinct palindromes (including ε).
Binary Case

In the case when $|\mathcal{A}| = 2$, we have proved the following.

Theorem (de Luca-G.-Zamboni 2008)

Let w be a binary palindrome. Then w is trapezoidal if and only if w is Sturmian.

Theorem (de Luca-G.-Zamboni 2008)

Let w be a binary trapezoidal word. Then w contains $|w| + 1$ distinct palindromes (including ε).

That is, trapezoidal words (and hence finite Sturmian words) are “rich” in palindromes in the sense that they contain the maximum number of distinct palindromic factors, according to the following result.
Trapezoidal Words
A Generalisation

Binary Case

In the case when \(|\mathcal{A}| = 2\), we have proved the following.

Theorem (de Luca-G.-Zamboni 2008)

Let \(w\) be a binary palindrome. Then \(w\) is trapezoidal if and only if \(w\) is Sturmian.

Theorem (de Luca-G.-Zamboni 2008)

Let \(w\) be a binary trapezoidal word. Then \(w\) contains \(|w| + 1\) distinct palindromes (including \(\varepsilon\)).

That is, trapezoidal words (and hence finite Sturmian words) are “rich” in palindromes in the sense that they contain the maximum number of distinct palindromic factors, according to the following result.

Theorem (Droubay-Justin-Pirillo 2001)

A finite word \(w\) contains at most \(|w| + 1\) distinct palindromes (including \(\varepsilon\)).
Rich Words

Definition (G.-Justin 2007)

A finite word w is rich iff w contains exactly $|w| + 1$ distinct palindromes.
Rich Words

Definition (G.-Justin 2007)

A finite word w is rich iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:
- $abac$ is rich, whereas $abca$ is not rich.
Rich Words

Definition (G.-Justin 2007)

A finite word w is rich iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:

- $abac$ is rich, whereas $abca$ is not rich.
- The word $rich$ is rich . . . and $poor$ is rich too!
Rich Words

Definition (G.-Justin 2007)

A finite word w is *rich* iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:

- *abac* is rich, whereas *abca* is not rich.
- The word *rich* is rich ... and *poor* is rich too!
- Any binary trapezoidal word is rich, but not conversely.
Rich Words

Definition (G.-Justin 2007)

A finite word w is rich iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:

- $abac$ is rich, whereas $abca$ is not rich.
- The word $rich$ is rich ... and $poor$ is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., $aabbaa$ is rich, but not trapezoidal
Rich Words

Definition (G.-Justin 2007)

A finite word w is *rich* iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:

- $abac$ is rich, whereas $abca$ is not rich.
- The word *rich* is rich . . . and *poor* is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., $aabbabaa$ is rich, but not trapezoidal ($C(1) = 2$, $C(2) = 4$)
Rich Words

Definition (G.-Justin 2007)
A finite word w is rich iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:
- $abac$ is rich, whereas $abca$ is not rich.
- The word rich is rich . . . and poor is rich too!
- Any binary trapezoidal word is rich, but not conversely.

E.g., $aabbbaa$ is rich, but not trapezoidal ($C(1) = 2$, $C(2) = 4$)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.
Rich Words

Definition (G.-Justin 2007)

A finite word \(w \) is **rich** iff \(w \) contains exactly \(|w| + 1\) distinct palindromes.

Examples:
- \(abac \) is rich, whereas \(abca \) is **not** rich.
- The word \(rich \) is rich . . . and \(poor \) is rich too!
- Any binary trapezoidal word is rich, but not conversely.

E.g., \(aabbaa \) is rich, but not trapezoidal (\(C(1) = 2, \ C(2) = 4 \))

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: \(abaabaabaaaaabaaaaaab \cdots \)
Rich Words

Definition (G.-Justin 2007)
A finite word w is rich iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:
- $abac$ is rich, whereas $abca$ is not rich.
- The word rich is rich ... and poor is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., $aabbaa$ is rich, but not trapezoidal ($C(1) = 2$, $C(2) = 4$)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: $abaabaaabaaaabaaaaaabab \cdots$
Rich Words

Definition (G.-Justin 2007)

A finite word w is *rich* iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:

- $abac$ is rich, whereas $abca$ is not rich.
- The word *rich* is rich \ldots and *poor* is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., $aabbaa$ is rich, but not trapezoidal ($C(1) = 2$, $C(2) = 4$)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: $a_baabaabaaaaabaabaaaab\cdots$
Rich Words

Definition (G.-Justin 2007)
A finite word \(w \) is **rich** iff \(w \) contains exactly \(|w| + 1\) distinct palindromes.

Examples:
- \(abac \) is rich, whereas \(abca \) is **not** rich.
- The word **rich** is rich . . . and **poor** is rich too!
- Any binary trapezoidal word is rich, but not conversely.
 - E.g., \(aabbaa \) is rich, but not trapezoidal \((C(1) = 2, C(2) = 4)\)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: \(abaabaaabaaabaaaab \cdots \)
Rich Words

Definition (G.-Justin 2007)
A finite word \(w \) is \textit{rich} iff \(w \) contains exactly \(|w| + 1 \) distinct palindromes.

Examples:

- \textit{abac} is rich, whereas \textit{abca} is \textbf{not} rich.
- The word \textit{rich} is rich … and \textit{poor} is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., \textit{aabbaa} is rich, but not trapezoidal \((C(1) = 2, \ C(2) = 4)\)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: \textit{abaa}baaaba\ldots
Rich Words

Definition (G.-Justin 2007)

A finite word w is rich iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:

- $abac$ is rich, whereas $abca$ is not rich.
- The word $rich$ is rich ... and $poor$ is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., $aabbaa$ is rich, but not trapezoidal ($C(1) = 2$, $C(2) = 4$)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: $abaabaaabaaabaaabaaababaaab$
Rich Words

Definition (G.-Justin 2007)

A finite word \(w \) is **rich** iff \(w \) contains exactly \(|w| + 1 \) distinct palindromes.

Examples:

- \(abac \) is rich, whereas \(abca \) is not rich.
- The word \(rich \) is rich ... and \(poor \) is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., \(aabbaa \) is rich, but not trapezoidal \((C(1) = 2, C(2) = 4)\)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: \(abaaba \)aabaaaabaaaaaab \ldots \)
Rich Words

Definition (G.-Justin 2007)

A finite word \(w \) is \textit{rich} iff \(w \) contains exactly \(|w| + 1 \) distinct palindromes.

Examples:

- \(abac \) is rich, whereas \(abca \) is \textbf{not} rich.
- The word \textit{rich} is rich \ldots and \textit{poor} is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., \(aabbaa \) is rich, but not trapezoidal \((C(1) = 2, C(2) = 4)\)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: \(abaabaa \) \(abaaabaaaaab \cdots \)
Rich Words

Definition (G.-Justin 2007)

A finite word w is **rich** iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:

- $abac$ is rich, whereas $abca$ is **not** rich.
- The word **rich** is rich . . . and **poor** is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., $aabbaa$ is rich, but not trapezoidal ($C(1) = 2$, $C(2) = 4$)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: $abaabaaaabaaabaaabaaaab · · ·$
Rich Words

Definition (G.-Justin 2007)

A finite word w is rich iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:

- $abac$ is rich, whereas $abca$ is not rich.
- The word $rich$ is rich . . . and $poor$ is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., $aabbaa$ is rich, but not trapezoidal ($C(1) = 2$, $C(2) = 4$)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: $abaa_baaab_aaaabaaaab\cdots$
Rich Words

Definition (G.-Justin 2007)

A finite word w is **rich** iff w contains exactly $|w| + 1$ distinct palindromes.

Examples:

- $abac$ is rich, whereas $abca$ is **not** rich.
- The word **rich** is rich . . . and **poor** is rich too!
- Any binary trapezoidal word is rich, but not conversely.

 E.g., $aabbaa$ is rich, but not trapezoidal ($C(1) = 2, C(2) = 4$)

Roughly speaking, a finite or infinite word is rich if and only if a new palindrome is introduced at each new position.

Example: $abaabaabaaaabaaaaaabab \cdots$
Richness & GT-words when $|\mathcal{A}| \geq 3$

Unlike in the binary case ($|\mathcal{A}| = 2$), **not** all GT-words are palindromic-rich.
Richness & GT-words when $|A| \geq 3$

Unlike in the binary case ($|A| = 2$), not all GT-words are palindromic-rich.

Example

The GT-word $ababadbc$ is not rich since it contains a non-palindromic complete return to b, namely $badb$.
Richness & GT-words when $|\mathcal{A}| \geq 3$

Unlike in the binary case ($|\mathcal{A}| = 2$), not all GT-words are palindromic-rich.

Example

The GT-word $ababadbc$ is not rich since it contains a non-palindromic complete return to b, namely $badb$.

However, all palindromic GT-words are rich by the following more general result.
Richness & GT-words when $|\mathcal{A}| \geq 3$

Unlike in the binary case ($|\mathcal{A}| = 2$), not all GT-words are palindromic-rich.

Example

The GT-word $ababadbc$ is not rich since it contains a non-palindromic complete return to b, namely $badb$.

However, all palindromic GT-words are rich by the following more general result.

Theorem

Suppose w is a GT-word and let v denote the unique factor of w such that $w = bve$ where b is the longest (possibly empty) prefix of w such that $|w|_x = 1$ for each $x \in \text{Alph}(b)$ and e is the longest (possibly empty) suffix of w such that $|w|_x = 1$ for each $x \in \text{Alph}(e)$.

If v is a palindrome, then w is rich.
Examples

- The GT-word \(w = abacabade \) has \(v = abacaba \) (a palindrome) and \(w \) is indeed rich.
Examples

- The GT-word $w = abacabade$ has $v = abacaba$ (a palindrome) and w is indeed rich.

- The converse of the theorem does not hold.
Examples

- The GT-word \(w = abacabade \) has \(v = abacaba \) (a palindrome) and \(w \) is indeed rich.

- The converse of the theorem does not hold. For example, the GT-word \(ababadae \) is rich, but the corresponding \(v \) is \(ababada \) (non-palindromic).
Thank You!

Dammit, I’m mad!

* Both phrases are (rich) palindromes! *