Health and disease status of Australia's most critically endangered mammal the Gilbert's potoroo
(Potorous gilbertii)

Dr Rebecca Vaughan BSc BVMS
Veterinarian
Perth Zoo

A dissertation submitted to Murdoch University in fulfillment of the requirements of a Doctor of Philosophy.

Supervisors
Dr Kris Warren BSc BVMS (Hons) PhD, Murdoch University
Dr Cree Monaghan BSc BVMS (Hons) MSc, Perth Zoo
Dr Stan Fenwick BVMS MSc PhD, Murdoch University

June 2008
“The aim of conservation medicine is ultimately to develop a solution-oriented, practice-based approach in addressing health problems derived from environmental change. This builds upon existing knowledge frameworks in wildlife health, public health, epidemiology, ecology, conservation biology, and veterinary science. By working at a larger scale of perspective, conservation medicine provides more specialized disciplines to interact in a more effective manner. In this way, conservation medicine employs concepts of ‘consilience’ by bringing together disciplines long separated by time and tradition” (Daszak 2004).

This thesis is presented as an applied research project embodied within the above framework. It represents a working example of Daszak’s four guiding elements of conservation medicine constituting; interdisciplinary interaction, individual collaboration, institutional cooperation and innovative investigation (Daszak 2004).
I declare that this thesis is my own account of my research and contains as its main content, work which has not been previously submitted for a degree at any tertiary education institution.

Dr Rebecca Vaughan BSc BVMS

June 2008.
Acknowledgements:

This thesis is the result of extensive field work and laboratory investigation which would not have been achieved without the support and contributions of the people below.

Dr Tony Friend, Stephanie Hill and Tim Bunton from the Department of Environment and Conservation (DEC) in Albany who manage the ongoing recovery of the Gilbert’s potoroo in the Two Peoples Bay Nature Reserve as well as Val Hack and other members of the Gilbert’s potoroo action group (GPAG). I would like to acknowledge the time, ongoing dedication and effort of the Albany DEC staff and GPAG volunteers, for assistance in trapping, sample collection, processing, transport and friendship. It has been a pleasure to work with you all.

Dr Nicky Buller of the Department of Agriculture and Food WA (DAFWA) for extensive assistance, microbiology knowledge and funding support. Nicky’s molecular knowledge and commitment to the underlying significance of the potential pathogenicity of isolated species was greatly appreciated.

My supervisors, Dr Kristin Warren, Dr Stan Fenwick and Dr Cree Monaghan. Thankyou so much for all your assistance and enthusiastic support throughout this project. In particular I would like to thank my principal supervisor Kris, who was always available to bounce ideas off, visited me in the field and provided me with help ‘above and beyond’ the call of duty. Kris highlighted the importance of this project from the early days and strove for funding and in doing so managed to secure the bulk of testing at no cost. Through her numerous contacts in conservation medicine and the DEC, Kris was able to ensure this project became a reality and evolved into what is undoubtedly one of the first comprehensive health and disease studies of an endangered marsupial species in Australia. In my 3rd year of my undergraduate veterinary degree Kris also provided me with the inspiration to pursue a wildlife and exotic animal veterinary career. This inspiration led me to then pursue a combined residency in zoo and wildlife medicine and a PhD, a decision I have never looked back upon.
My partner, Ben Higgins is to be thanked for endless proofreading, support and for understanding the importance of this project to me and conservation medicine.

Finally, I would like to thank my family; Dad, Mum, John, Lisa, Michael, Violet, Suzannah, Peter and Sara for always supporting me to achieve my goals, whatever they may be.

Abstract:

The Gilbert’s potoroo (Potorous gilbertii) is a small marsupial endemic to the Two Peoples Bay Nature Reserve in the south-west of Western Australia. The Gilbert’s potoroo is classified as Australia’s most critically endangered mammal (IUCN 2006) with an estimated population of only 35 individuals. This thesis examines the health and disease status of the Gilbert’s potoroo, presenting a strong case for the relatively new concept of disease as a potential threatening factor and modifier of population decline.

Specific diseases, including Cryptococcus, ectoparasitism, endoparasitism, haemoparasitism, Toxoplasma and a novel Treponema organism are extensively studied. An assessment of the clinical significance of these diseases is made, and management strategies are recommended to minimise the impact of these diseases on both the wild and captive population.

The novel Treponema organism which clinically presents with tenacious, green discharge and an associated balanoposthitis in males is molecularly characterized. Epidemiological studies show the effects of this agent on reproductive function and a penicillin-based treatment regime is trialled in the analogous long-nosed potoroo (Potorous tridactylus) with a recommendation to then trial this treatment regime in the critically endangered Gilbert’s potoroo.
Standard haematological and urinalysis findings are tabulated to form reference ranges for this species. A treatment regime for Cryptococcus in the analogous long-nosed potoroo is reported and parasitological findings, including the identification of a novel tick species are discussed.

This thesis addresses key health issues, which have subsequently been incorporated into the Recovery Plan of the Gilbert’s potoroo. A document encompassing multiple disciplines and expertise to support the recovery of this critically endangered marsupial in its current environment. In addition, this thesis outlines a recommended health monitoring and treatment protocol for future translocation procedures and provides a working example of the emerging importance of health monitoring in threatened species recovery programs.

Publications:

Scientific publications arising from this research:

Three manuscripts are currently in preparation.
Conference presentations:

Radio interviews and media reports:

Table of contents:

- Prelude ii
- Declaration iii
- Acknowledgements iv
- Abstract v
- Publications vi
- Table of contents ix
- List of figures xv
- List of tables xviii
- Glossary of abbreviations, acronyms and scientific names of marsupials xxi

CHAPTER 1 Introduction 1

1.1 General overview of project 2
1.2 Causes of population decline in wildlife 3
 1.2.1 Habitat modification 3
 1.2.2 Introduced animals 5
 1.2.3 Over-exploitation 5
 1.2.4 Climate change 6
 1.2.5 Environmental contaminants 6
 1.2.6 Inbreeding depression 7
 1.2.7 Disease 8
1.3 Conservation medicine 8
1.4 The importance of disease in populations 10
1.5 The Gilbert’s potoroo in the context of conservation medicine 14
1.6 Background information regarding the Gilbert’s potoroo 16
 1.6.1 Biology 16
 1.6.2 Reproduction 20
 1.6.3 Nutrition 23
4.1.1 Introduction 71
4.1.2 Materials and methods 78
4.1.3 Results 82
4.1.4 Discussion 85
4.1.5 Conclusion 86

4.2 Gastro-intestinal parasites 87
4.2.1 Introduction 87
4.2.2 Materials and methods 93
4.2.3 Results 93
4.2.4 Discussion 100
4.2.6 Conclusion 107

4.3 Toxoplasma 108
4.3.1 Introduction 108
4.3.2 Materials and methods 117
4.3.3 Results 118
4.3.4 Discussion 119
4.3.5 Conclusion 121

4.4 Haemoparasites 122
4.4.1 Introduction 122
4.4.2 Materials and methods 128
4.4.3 Results 128
4.4.4 Discussion 130
4.4.5 Conclusion 131

CHAPTER 5 Microbiology of the cloaca in the Gilbert’s potoroo 133
5.1 Introduction 134
5.1.1 Commensal microbial flora in mammals 134
5.1.2 Commensal microbial flora and digestive strategy 135
5.1.3 Specific bacteria causing gastro-intestinal and urogenital disease in marsupials and domestic animals

5.1.4 Specific bacteria causing urogenital disease in Gilbert’s potoroos

5.2 Materials and methods

5.3 Results

5.3.1 Cloacal swab of the rectal orifice

5.3.2 Cloacal swab of the urogenital orifice

5.4 Discussion

5.4.1 Results of cloacal swab of the urogenital orifice

5.4.2 Results of cloacal swab of the rectal orifice

5.5 Conclusion

CHAPTER 6 The significance of a novel Treponema infection on the health of the Gilbert’s potoroo

6.1 Introduction

6.1.1 Balanoposthitis in male Gilbert’s potoroos

6.1.2 Treponema infection in rabbits

6.1.3 Diagnosis

6.2 Materials and methods

6.2.1 PCR

6.2.2 Serology

6.2.3 Histopathology

6.2.4 Immunohistochemistry

6.2.5 Treatment trial

6.3 Results

6.3.1 Epidemiology

6.3.2 PCR
6.3.3 Serology 224
6.3.4 Histopathology and Immunohistochemistry 224
6.3.5 Treatment trial 229

6.4 Discussion 235
6.4.1 PCR and sequencing 244
6.4.2 Serology 246
6.4.3 Histopathology and Immunohistochemistry 247
6.4.4 Treatment trial 250

6.5 Conclusion 253

CHAPTER 7 General discussion 256

REFERENCES 273

APPENDICES
1. Gilbert’s potoroo anaesthetic and general physical exam data sheets. 313
2. Gilbert’s potoroo samples tested and dispatched. 315
3. Individuals sampled for gastro-intestinal parasite screening. 316
4. Balanoposthitis chart to grade the severity of preputial and cloacal inflammation. 317
5. Seasonal microbiology findings in the rectal orifice of the cloaca in the Gilbert’s potoroo population. 318
6. Total population urogenitally swabbed. 319
7. Seasonal aerobic urogenital swab results. 320
8. Seasonal anaerobic urogenital swab results. 321

9. Most commonly isolated urogenital aerobes and anaerobes. 322

10. Seasonal aerobic and anaerobic microbiology findings in the urogenital orifice of the cloaca in the Treponema infected compared to the non-Treponema infected population. 323

11. Treponema infection status in individuals. 324

12. Sensitivity and specificity of clinical signs and the presence of discharge, dark field microscopy for spirochaetes and PCR to detect Treponema infection. 325

14. Urinalysis values in the Gilbert's potoroo. 342

List of figures:

Figure 1.1. Locality of Two Peoples Bay Nature Reserve

Figure 1.2 The majority of Gilbert’s potoroos are found within four distinct localities on Mount Gardner.

Figure 2.2 Anaesthesia and sample collection field set up on Mount Gardner and surrounds.

Figure 2.3 Anaesthetised Gilbert’s potoroo maintained on face mask with pulse oximeter probe placed on external pinna.

Figure 3.1 *Cryptococcus neoformans* in a Gilbert’s potoroo. Granulomatous inflammatory lesion in the spinal cord with large distorted yeast forms (a). 400X Haematoxylin and Eosin.

Figure 3.2 The SC administration of dilute amphotericin B given under light gaseous anaesthesia to minimise stress in a long-nosed potoroo with suspected cryptococcosis.

Figure 3.3 Exophthalmos and fixed dilated pupils were prominent.

Figure 3.4 *Cryptococcus gattii* in a long-nosed potoroo. Typical ‘soap-bubble’ lesion in olfactory lobe of the cerebral cortex. 400X Haematoxylin and Eosin.

Figure 4.1 Life cycle of a three host tick.

Figure 4.3 Hair thinning over lateral flanks in male Gilbert’s potoroo 55 (GP M55).

Figure 4.4 Severe inflammation associated with Trombiculid infestation in male Gilbert’s potoroo 55 (GP M55).

Figure 4.13 Life cycle of *Toxoplasma gondii* (Dubey et al. 1995).

Figure 4.15 Peripheral blood smear of a Gilbert’s potoroo showing the presence of (a) a Howell-Jolly body and (b) intra-erythrocytic *Theileria*. The piroplasms were round, ovoid or pear shaped with 1-2 parasites present per cell. Haematoxylin and Eosin 100x.
Figure 4.16 Microfilaroid in a peripheral blood smear of GP M116, November 2006. Haemoxylin and Eosin 40x.

Figure 6.1 Cultivable and non-cultivable species of Treponema found in the human oral cavity (Radolf and Lukehart 2006).

Figure 6.2 Five phylotypes of Treponema are associated with papillomatous digital dermatitis in cattle and sheep (Radolf and Lukehart 2006).

Figure 6.6 Secular trends in population prevalence of Treponema infection in the Gilbert's potoroo.

Figure 6.20 Point prevalence of Treponema infection in the Gilbert’s potoroo.

Figure 6.21 Treponema infection in Gilbert’s potoroos is most closely aligned with phylotypes of Treponema associated with papillomatous digital dermatitis in cattle and sheep (Radolf and Lukehart 2006).

Figure 6.22 Severe balanoposthitis in two male captive Gilbert’s potoroos.

Figure 6.23 Preputial biopsy from a Gilbert’s potoroo with balanoposthitis showing the chronic inflammatory response, secondary epithelial hyperplasia and moderate numbers of spiral bacteria (a). Haemoxylin and Eosin stain.

Figure 6.24 Preputial biopsy from a Gilbert’s potoroo showing spirochaetes (a) diffusely scattered over and penetrating the epithelium. Warthin-Starry stain. x300

Figure 6.25 Minimal balanoposthitis in a male captive long-nosed potoroo.

Figure 6.26 Spirochaetes penetrating the epithelium in a penile biopsy from a long-nosed potoroo. Warthin-Starry stain.

Figure 6.27 Clinical findings of male long-nosed potoroo A20406 throughout the penicillin based treatment trial for Treponema infection.

Figure 6.28 Clinical findings of male long-nosed potoroo A30237 throughout the penicillin based treatment trial for Treponema infection.
Figure 6.29 Clinical findings of male long-nosed potoroo A40367 throughout the penicillin based treatment trial for *Treponema* infection.

Figure 6.31 Moderate numbers of spirochaetes from a preputial specimen were seen under dark field microscopy.

Figure 7.1 Gilbert’s potoroo anaesthetic and general physical exam data sheets for translocation.
List of tables:

Table 2.1 Population numbers trapped at each trapping session.

Table 4.2 Oligonucleotide primers MgCl₂ concentrations and thermocycler annealing temperatures used for rickettsial PCR amplification.

Table 4.5 Seasonal ectoparasite burden in wild Gilbert’s potoroos.

Table 4.6 Nematode prevalence in male compared to female Gilbert’s potoroos.

Table 4.7 Nematode prevalence in the captive compared to the wild population of Gilbert’s potoroos.

Table 4.8 Nematode infection in relation to sub-optimal body condition in captive and wild Gilbert’s potoroos.

Table 4.9 Seasonal spread of nematode infection in captive and wild Gilbert’s potoroos.

Table 4.10 Protozoan infection in males compared to females, and the captive compared to the wild population of Gilbert’s potoroos.

Table 4.11 Protozoal infection in relation to sub-optimal body condition in captive and wild Gilbert’s potoroos.

Table 4.12 Protozoal infection in captive and wild Gilbert’s potoroos in relation to season.

Table 4.14 Interpretation of DAT and MAT for Toxoplasma.

Table 5.1 Seasonal rectal microbiology findings in male compared to female individuals.

Table 5.2 Seasonal rectal microbiology findings in the captive compared to the wild population.

Table 5.3 Seasonal urogenital aerobic microbiology findings in male compared to female individuals.
Table 5.4 Seasonal urogenital anaerobic microbiology findings in male compared to female individuals.

Table 5.5 Seasonal urogenital aerobic microbiology findings in the non-infected *Treponema* Gilbert’s potoroo population.

Table 5.6 Seasonal urogenital anaerobic microbiology findings in the *Treponema* infected and non-*Treponema* infected Gilbert’s potoroo population.

Table 5.7 Seasonal aerobic urogenital microbiology findings in captive compared to wild individuals.

Table 5.8 Seasonal urogenital anaerobic microbiology findings in the captive compared to the wild population.

Table 6.3 Primers used in the PCR for detection of a spirochaetal 16S rRNA gene.

Table 6.4 Primer combinations trialled for detection of a spirochaetal 16S rRNA gene.

Table 6.5 Total Treponeme primers cross-referenced with SPF5 and SPR4 for detection of a spirochaetal 16S rRNA gene.

Table 6.7 Secular trends in population prevalence of *Treponema* infection in the Gilbert’s potoroo.

Table 6.8 Cross tabulation displaying a significant relationship between *Treponema* infection, and clinical signs and discharge.

Table 6.9 Cross tabulation displaying a significant relationship between clinical signs and discharge and sex.

Table 6.10 Seasonal *Treponema* prevalence, presence and level of discharge in the captive compared to the wild population.

Table 6.11 Cross tabulation displaying a lack of statistical association between origin and clinical signs and level of discharge.
Table 6.12 Seasonal *Treponema* prevalence and level of spirochetes found on dark field microscopy.

Table 6.13 Cross tabulation displaying a significant relationship between *Treponema* infection and the presence of spirochaetes seen under dark field microscopy.

Table 6.14 Cross tabulation displaying a significant relationship between *Treponema* infection and PCR positive results.

Table 6.15 Sensitivity and specificity of diagnostic tests.

Table 6.16 Sensitivity and specificity of diagnosing *Treponema* infection through clinical signs and discharge.

Table 6.17 Sensitivity and specificity of diagnosing *Treponema* infection through dark field microscopy for spirochaetes.

Table 6.18 Sensitivity and specificity of diagnosing *Treponema* infection through PCR.

Table 6.19 *Treponema* infection prevalence in various age categories and in females with the presence of pouch young.

Table 6.30 Preputial *Treponema* infection throughout the penicillin treatment trial in long-nosed potoroos.

Table 6.32 *Treponema* infection and microbiological results throughout the penicillin treatment trial.
Glossary of abbreviations, acronyms and scientific names of marsupials.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AARL</td>
<td>Australian Rickettsial Reference Laboratory</td>
</tr>
<tr>
<td>Ab</td>
<td>antibody</td>
</tr>
<tr>
<td>Aepyprymnus rufescens</td>
<td>rufous-rat bettong or rufous-rat kangaroo</td>
</tr>
<tr>
<td>Ag</td>
<td>antigen</td>
</tr>
<tr>
<td>AGT</td>
<td>alanine-glyoxylate aminotransferase</td>
</tr>
<tr>
<td>Al</td>
<td>artificial insemination</td>
</tr>
<tr>
<td>ALP</td>
<td>alkaline phosphatase</td>
</tr>
<tr>
<td>ALT</td>
<td>alanine aminotransferase</td>
</tr>
<tr>
<td>ANOVA</td>
<td>analysis of variance</td>
</tr>
<tr>
<td>Antechinus flavipes</td>
<td>yellow-footed antechinus</td>
</tr>
<tr>
<td>Antechinus stuartii</td>
<td>brown antechinus</td>
</tr>
<tr>
<td>ARKS</td>
<td>animal record keeping system</td>
</tr>
<tr>
<td>AST</td>
<td>aspartate aminotransferase</td>
</tr>
<tr>
<td>Bettongia gaimardi</td>
<td>eastern bettong</td>
</tr>
<tr>
<td>Bettongia lesuer</td>
<td>burrowing bettong</td>
</tr>
<tr>
<td>Bettongia penicillata</td>
<td>brush-tailed bettong</td>
</tr>
<tr>
<td>b.i.d</td>
<td>twice daily</td>
</tr>
<tr>
<td>BFP</td>
<td>biological false positives</td>
</tr>
<tr>
<td>C</td>
<td>captive</td>
</tr>
<tr>
<td>°C</td>
<td>degrees celcius</td>
</tr>
<tr>
<td>CALAS</td>
<td>Cryptococcal Antigen Latex Agglutination System</td>
</tr>
<tr>
<td>CBC</td>
<td>complete blood count</td>
</tr>
<tr>
<td>CDC</td>
<td>Center for Disease Control and Prevention</td>
</tr>
<tr>
<td>CI</td>
<td>confidence interval</td>
</tr>
<tr>
<td>chip</td>
<td>microchip</td>
</tr>
</tbody>
</table>
CK creatine kinase
cm centimetre
CNS central nervous system
CO₂ carbon dioxide
CODD contagious ovine digital dermatitis
CSF cerebrospinal fluid
DAFWA Department of Agriculture and Food Western Australia
Dasyurus geoffroii western quoll
Dasyurus hallucatus northern quoll
DAT Direct agglutination test
DD digital dermatitis in cattle
DEC Department of Environment and Conservation
Dendrogalus matschiei Matschie’s tree kangaroo
Dendrogalus ursinus black-tree kangaroo
DFM dark field microscopy
Didelphis marsupialis American opposum
DNA deoxyribonucleic acid
dNTPs deoxynucleotide triphosphates
EDTA ethylenedinitrilotetraacetic acid
EENT ear, eyes, nose and throat
EIA Enzyme immunoassay
ELISA Enzyme-linked immunosorbent assay
ET tube endotracheal tube
F female
g gram
*g gravity force
G gauge
GNR Gram-negative rod
GP Gilbert’s potoroo
ha hectare
H&E Haematoxylin and Eosin
HIV Human immunodeficiency virus
hpf high power field
HR heart rate
Hypsiprymnodon moschatus musky-rat kangaroo
ID identification
IFA Immunofluorescence antibody
IgG Immunoglobulin G
IgM Immunoglobulin M
IHC Immunohistochemistry
IM Intramuscular
Isoodon macrourus short-nosed, northern-brown, or golden bandicoot
Isoodon obesulus southern-brown bandicoot
IU International Units
IUCN World Conservation Union
IV Intravenous
Juv juvenile
km kilometre
L litre
LCAT Latex cryptococcal antigen test
M male
Macropus agilis agile wallaby
Macropus antilopinus antelopine kangaroo
Macropus bennetti Bennett’s wallaby
Macropus dorsalis black-striped wallaby
Macropus eugenii tammar wallaby
<table>
<thead>
<tr>
<th>Macropus fulginosis</th>
<th>western-grey kangaroo or kangaroo-island kangaroo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macropus giganteus</td>
<td>eastern-grey kangaroo</td>
</tr>
<tr>
<td>Macropus giganteus melanops</td>
<td>black-faced kangaroo</td>
</tr>
<tr>
<td>Macropus irma</td>
<td>black-gloved wallaby</td>
</tr>
<tr>
<td>Macrotis lagostis</td>
<td>bilby</td>
</tr>
<tr>
<td>Macropus parryi</td>
<td>Parry's wallaby</td>
</tr>
<tr>
<td>Macropus robustus</td>
<td>Euro, common or hill wallaroo</td>
</tr>
<tr>
<td>Macropus rufogriseus</td>
<td>red-necked wallaby</td>
</tr>
<tr>
<td>Macropus rufus</td>
<td>red kangaroo</td>
</tr>
<tr>
<td>MAT</td>
<td>Modified agglutination test</td>
</tr>
<tr>
<td>MBD</td>
<td>methylene blue dye binding</td>
</tr>
<tr>
<td>mg</td>
<td>milligram</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesium chloride</td>
</tr>
<tr>
<td>mL</td>
<td>milliliter</td>
</tr>
<tr>
<td>Myrmecobius fasciatus</td>
<td>numbat</td>
</tr>
<tr>
<td>n</td>
<td>number</td>
</tr>
<tr>
<td>NAD</td>
<td>no abnormalities detected</td>
</tr>
<tr>
<td>neg</td>
<td>negative</td>
</tr>
<tr>
<td>NSAID</td>
<td>non-steroidal anti-inflammatory drug</td>
</tr>
<tr>
<td>OIE</td>
<td>World Organization for Animal Health</td>
</tr>
<tr>
<td>p</td>
<td>p-value or probability value</td>
</tr>
<tr>
<td>PHA</td>
<td>Mitogen driven proliferation assays</td>
</tr>
<tr>
<td>pos</td>
<td>positive</td>
</tr>
<tr>
<td>py</td>
<td>pouch young</td>
</tr>
<tr>
<td>PBS</td>
<td>Phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction</td>
</tr>
<tr>
<td>Perameles bougainville</td>
<td>western-barred bandicoot</td>
</tr>
<tr>
<td>Perameles gunnii</td>
<td>eastern-barred bandicoot</td>
</tr>
</tbody>
</table>
Petaurus breviceps sugar glider
Petrogale penicillata Victorian brush-tailed rock wallaby
PHS Potoroo hyperoxaluria Syndrome
PO oral route
Pseudocheirus peregrinus ringtail possum
Onychogalea fraenata bridled nail-tail wallaby
Onychogalea unguifera northern bridled nail-tail wallaby
OR odds ratio
Ornithorhynchus anatinus platypus
Permales nasuta long-nosed bandicoot
Petrogale brachyotis short-eared rock wallaby
Petrogale concinna pygmy rock wallaby
Petrogale herberti Herbert’s rock wallaby
Petrogale inornata unadorned rock wallaby
Petrogale penicillata brush-tailed rock wallaby
Petrogale persephone Proserpine rock-wallaby
Phascolarctos cinereus koala
Potorous gilbertii Gilbert’s potoroo
Potorous longipes long-footed potoroo
Potorous tridactylus long-nosed potoroo
q24hr every 24 hours
RBC red blood cell
RNA ribonucleic acid
rRNA ribosomal RNA
rpm resolutions per minute
RPR Rapid plasmid reagin
RR respiratory rate
Schoinobates volans marsupial glider
Setonix brachyurus quokka
s.i.d once daily
SC Subcutaneous
Sminthopsis murina slender-tailed dunnart
sp. species (singular)
spp. species (plural)
Tachyglossus aculeatus short-beaked echidna
Tarsipes rostratus honey possum
TBE Tris/Borate/EDTA
Thylogale billardierii Tasmanian pademelon or rufous-bellied pademelon
Thylogale stigmatica red-legged pademelon
t.i.d three times daily
TPPA Treponema pallidum particle agglutination
Trichosurus caninus mountain brushtail possum
Trichosurus vulpecula brushtail possum
µg microgram
US United States
UTI urinary tract infection
UV ultra-violet light
V volts
VDRL Venereal Disease Research laboratory
VGI Cryptococcus gattii (molecular type I)
VGII Cryptococcus gattii (molecular type II)
Vombatus ursinus wombat
W wild
WA Western Australia
Wallabia bicolor swamp wallaby or black wallaby
Wallabia eugenii tammar wallaby

xxvi
WBC white blood cell