DEVELOPMENT OF TECHNIQUES TO CLASSIFY MARINE BENTHIC HABITATS USING HYPERSPECTRAL IMAGERY IN OLIGOTROPHIC, TEMPERATE WATERS

Matthew J. Harvey

This thesis is presented for the degree of Doctor of Philosophy in the School of Environmental Science, Murdoch University

February 2009
Declaration

I declare that this thesis is my own account of my research and contains, as its main content, work which has not been previously submitted for a degree at any tertiary education institution.

...

Matthew J. Harvey
Abstract

There is an increasing need for more detailed knowledge about the spatial distribution and structure of shallow water benthic habitats for marine conservation and planning. This, linked with improvements in hyperspectral image sensors provides an increased opportunity to develop new techniques to better utilise these data in marine mapping projects. The oligotrophic, optically-shallow waters surrounding Rottnest Island, Western Australia, provide a unique opportunity to develop and apply these new mapping techniques. The three flight lines of HyMap hyperspectral data flown for the Rottnest Island Reserve (RIR) in April 2004 were corrected for atmospheric effects, sunglint and the influence of the water column using the Modular Inversion and Processing System. A digital bathymetry model was created for the RIR using existing soundings data and used to create a range of topographic variables (e.g. slope) and other spatially relevant environmental variables (e.g. exposure to waves) that could be used to improve the ecological description of the benthic habitats identified in the hyperspectral imagery. A hierarchical habitat classification scheme was developed for Rottnest Island based on the dominant habitat components, such as *Ecklonia radiata* or *Posidonia sinuosa*. A library of 296 spectral signatures at HyMap spectral resolution (~15 nm) was created from >6000 *in situ* measurements of the dominant habitat components and subjected to spectral separation analysis at all levels of the habitat classification scheme. A separation analysis technique was developed using a multivariate statistical optimisation approach that utilised a genetic algorithm in concert with a range of spectral metrics to determine the optimum set of image bands to achieve maximum separation at each classification level using the entire spectral library. These results
determined that many of the dominant habitat components could be separated spectrally as pure spectra, although there were almost always some overlapping samples from most classes at each split in the scheme. This led to the development of a classification algorithm that accounted for these overlaps. This algorithm was tested using mixture analysis, which attempted to identify 10,000 synthetically mixed signatures, with a known dominant component, on each run. The algorithm was applied directly to the water-corrected bottom reflectance data to classify the benthic habitats. At the broadest scale, bio-substrate regions were separated from bare substrates in the image with an overall accuracy of 95% and, at the finest scale, bare substrates, *Posidonia*, *Amphibolis*, *Ecklonia radiata*, *Sargassum* species, algal turf and coral were separated with an accuracy of 70%. The application of these habitat maps to a number of marine planning and management scenarios, such as marine conservation and the placement of boat moorings at dive sites was demonstrated.
Contents

Acknowledgments .. 1

1 General introduction .. 5
 1.1 Biodiversity conservation in Australia .. 5
 1.2 Surrogates for biodiversity .. 8
 1.3 Mapping marine benthic habitats .. 10
 1.3.1 Acoustic remote sensing in the marine environment ... 12
 1.3.2 Passive optical remote sensing in the marine environment 14
 1.3.3 Hyperspectral remote sensing in marine environments 16
 1.3.4 Classifying remotely sensed images ... 18
 1.4 Study rationale and aims ... 21

2 Study site description and habitat classification scheme .. 25
 2.1 The nearshore marine environment of south-western Australia 25
 2.2 Rottnest Island .. 28
 2.2.1 Introduction ... 28
 2.2.2 The nearshore marine environments of Rottnest Island 30
 2.3 A benthic habitat classification scheme for south-western Australia with a focus on Rottnest Island .. 36
 2.4 Discussion ... 40

3 A digital bathymetry model for Rottnest Island Reserve .. 49
 3.1 Introduction .. 49
 3.2 Methods .. 52
 3.2.1 Datasets .. 53
 3.2.2 Data assembly and tide correction ... 55
3.2.3 Data validation...57
3.2.4 Interpolation algorithm cross-validation...58
3.2.5 Digital bathymetric model interpolation and validation..61
3.2.6 Topographic variables..62
3.2.7 Abiotic variables affecting benthic habitats...65

3.3 Results...69
3.3.1 Data validation...69
3.3.2 Interpolation algorithm cross-validation...70
3.3.3 Digital bathymetric model interpolation and validation..73
3.3.4 Topographic variables..74
3.3.5 Abiotic variables affecting the benthic habitats..80

3.4 Discussion..87

4 Development of a spectral library for the dominant habitat components of Rottnest Island Reserve..95

4.1 Introduction ..95

4.2 Methods ..99
4.2.1 Collection of in situ spectra..99
4.2.2 Data Processing...100
4.2.3 Spectral separability analysis of library...106
4.2.4 Development of the classification algorithm...115
4.2.5 Testing the classification algorithm using mixture analysis115

4.3 Results...118
4.3.1 Calibration of the Teflon reflectance panel..118
4.3.2 The spectral library...118
4.3.3 Spectral separability analysis..126
4.3.4 Testing the classification algorithm using mixture analysis135

4.4 Discussion..144
5 HyMap image classification for the benthic habitats of Rottnest Island 153

5.1 Introduction .. 153

5.2 Methods .. 158

5.2.1 HyMap data collection and water correction .. 158

5.2.2 Image classification for benthic habitat maps ... 160

5.2.3 Validation of image classification ... 163

5.3 Results .. 166

5.3.1 Data collection pre-processing .. 166

5.3.2 Image classification for benthic habitat maps and validation 168

5.4 Discussion ... 181

6 Examples of management applications of the benthic habitat maps for Rottnest Island...... 189

6.1 Introduction ... 189

6.2 Methods .. 194

6.2.1 Ascertaining the extent of shallow benthic habitats protected by new sanctuary zones implemented in July 2007 .. 195

6.2.2 Modelling the potential home range and population size of the Western Rock Lobster, *Panulirus cygnus*, on reefs in the Rottnest Island Reserve ... 195

6.2.3 Modelling the shallow benthic habitats and beach environments potentially impacted from a floating pollutant spill .. 199

6.2.4 Modelling potential locations for boat moorings at popular dive sites within Rottnest Island Reserve ... 200

6.3 Results .. 202

6.3.1 Ascertaining the extent of shallow benthic habitats protected by new sanctuary zones implemented in July 2007 .. 202
6.3.2 Modelling the potential home range and population size of the Western Rock Lobster, *Panulirus cygnus*, on reefs in the Rottnest Island Reserve ... 205

6.3.3 Modelling the shallow benthic habitats and beach environments potentially impacted from a floating pollutant spill .. 209

6.3.4 Modelling potential locations for boat moorings at popular dive sites within Rottnest Island Reserve ... 210

6.4 Discussion ... 211

7 Conclusions ... 218

8 References .. 224

Appendix 1: Spectral separation analysis results ... 251

Appendix 2: Benthic habitat classification probability maps ... 263
Acknowledgments

I would firstly like to acknowledge my supervisors, Associate Professor Lynnath Beckley and Dr Halina Kobryn, without whom my PhD would never have been completed. Thank you for providing the guidance to enable me to integrate remote sensing and marine ecology for this thesis as well as ensuring financial assistance towards my research and attending conferences. Thanks to Halina for introducing me to remote sensing and to Lynnath for providing an almost continuous stream of feedback on my work - it was instrumental in getting this thesis across the line.

The PhD scholarship provided by Murdoch University and the research funds contributed by the Rottnest Island Authority and Department of Environment and Conservation are gratefully acknowledged. The Rottnest Island Authority also provided considerable in-kind support to facilitate my field work and I would particularly like to acknowledge Harriet Davie, Claire Wright, Emma Jackson and Melissa Robbins for their assistance with all things Rottnest over the last four years.

Thanks to everyone who helped with my field work especially Barb Muhling who persevered and helped me on almost every field trip. Thanks also to Warren Chisholm, Dave Holliday, Aaron McDonald, Thea Linke, Jessica Eastwell and Michelle Wildsmith for their contributions. Much appreciated, guys. I would also like to thank the Murdoch technicians, especially Gus Paccani, Michael Taylor, Phil Good and Steve Goynich, who made getting out in the field so much easier by keeping ‘Squilla’ ship-shape and dive gear serviced and available (even at short notice). I am also grateful for the eternal patience and invaluable assistance of Heather Gordon and Frank Salleo in the School of Environmental Science who made negotiating the bureaucratic minefield that is any
university so much easier! Thanks also to Ross Lantzke for his support throughout my
time at Murdoch and Karen Olkowski, from the graduate centre, for her assistance.

Thomas Hegge (EOMAP) is acknowledged for providing the corrected HyMap data that
made my research possible as well as supporting and encouraging me during my PhD.
Thanks to Peter Hausknecht (formerly of HyVista Corporation) for his involvement in
the initial acquisition of the HyMap imagery and his continued interest and advice with
respect to my research. Also, thanks to Nicole Pinnel for her advice and
couragement. Russ Babcock and Peter Fearns (CSIRO) are acknowledged for their
support and interest in the early stages of my PhD and for inviting me to get some field
time with them prior to starting my own research.

A big thanks to my close friends who always supported me and provided an escape
from the all encompassing world that is a PhD - those distractions saved me more than
once! Also, special thanks the Claire Smallwood for putting up with me in the office
for so long and providing those essential distractions!

And last, but not least, I would like to thank my family for all their support throughout
my PhD as, without them, I would not have been able to get through. I would especially
like to thank my brother, Daniel, for his tireless efforts towards helping me realise some
of my more obscure ideas about processing hyperspectral imagery by writing the reams
of Java code to make it happen. I couldn’t have done it without your help, thanks! A
big thanks to my sister, Megs, and Grandad for their continuous encouragement.
Finally, sincere thanks to my parents, Trevor and Brenda, for their constant support and
making sure I had a place to live, even when things got tight. Without the support of
my family and friends I could not have made it through. Thanks.