Overcoming soil water constraints to chickpea yield in rainfed environments of Western Australia and Bangladesh

By
Wendy Vance
MAgrSc

This thesis is presented for the degree of
Doctor of Philosophy
of
Murdoch University

2013
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary institution.

Wendy Vance
Abstract

Chickpea (*Cicer arietinum* L.) is a major cool-season grain legume mainly grown in subtropical environments with summer-dominant rainfall or temperate environments with winter-dominant rainfall. In these environments, represented by the High Barind Tract of Bangladesh (HBT) and south-west Western Australia (WA), respectively, chickpea relies on either stored residual soil water or within-season rainfall. Limited soil water can constrain chickpea growth in both environments, from establishment to pod-fill. This thesis examines agronomic means of alleviating these stresses. It particularly considers the effects of newly introduced mechanised row-sowing and minimum tillage techniques in the HBT on soil water relations.

Plant population density (PPD) (modified through row spacing) and soil water content within the profile at sowing (modified through pre-season irrigation) were investigated in WA to determine how best to alleviate soil water stress. Additional profile soil water significantly improved crop yields through improved early biomass production, including increased ability of roots to extract water. Wider row spacing enhanced yield in a season of low rainfall, but when average rain fell during the season, pre-season irrigation did not alter the effect of row spacing on grain yield. This indicated that in-season rainfall was the main determinant of differential chickpea performance with row spacing.

In pot experiments, chickpea emergence was optimal at gravimetric soil water content of 17% and delayed when lower than 12% or higher than 23%. Soil strength impeded early root growth at >1 MPa, causing lateral roots to predominate. Seedling shoots tolerated high soil strength better than emerging radicles. In the HBT, with one-pass machine planting, soil water contents in the range 12 to 24% did not limit emergence of chickpea in the HBT across a wide sowing window (22 November to 22 December). However, the optimum sowing date for suitable seedbed conditions and to avoid limiting weather conditions during later vegetative and reproductive growth was found to be between 30 November and 10 December.

Mechanised one-pass row-sowing, permits earlier sowing than under traditional broadcast, full tillage techniques, when soil water contents are higher. In this study the tillage types which
disturbed the soil most, created a better seed-bed under high soil water contents and thus had greater success in chickpea emergence. Where soil water content in the seed-bed was moderate to marginal, emergence was not different between zero, strip and line sowing with full rotary tillage, but was better than traditional broadcast with full rotary tillage. Further, chickpea grain yields were higher with mechanised row-sowing than with traditional broadcast with full rotary tillage.

In the HBT, profile soil water content (0 to 50 cm depth) at podding was lower than wilting point, after this time chickpea accessed water from deeper in the soil profile. In some cases the extraction of soil water at depth later in the growing season was different between tillage treatments; these differences were attributed to differences in PPD. The investigation of PPD and profile soil water content provide insight into possible benefits to alteration in row spacing in the HBT, an environment with high initial soil water content in the profile and very little in-season rainfall. In such conditions wider row spacing may be of benefit as was the case in the WA trials under lower rainfall conditions.
Table of Contents

Declaration ... II
Abstract ... III
Table of Contents .. V
List of Tables .. X
List of Figures ... XII
List of Abbreviations .. XX
List of Botanical Names ... XXIII
Acknowledgements ... XXIV

1 Literature review ... 1
 1.1 Introduction ... 1
 1.2 Chickpea growing environments .. 4
 1.2.1 South-west Western Australia – Mediterranean-type climate............................. 4
 1.2.2 High Barind Tract in Bangladesh – Summer-dominant rainfall........................ 6
 1.2.2.1 Cultivation practices .. 11
 1.3 Abiotic, biotic and socioeconomic constraints .. 12
 1.3.1 Constraints – south-west Western Australia ... 12
 1.3.2 Constraints – High Barind Tract, Bangladesh .. 13
 1.3.3 Constraints common to both regions ... 16
 1.3.4 Factors affecting crop establishment .. 18
 1.3.5 Manifestations and mechanisms of temperature and drought stress 23
 1.4 Alleviation of temperature and drought stress .. 25
 1.4.1 Genetic options ... 25
 1.4.2 Agronomic options ... 29
 1.4.2.1 Crop establishment ... 29
 1.4.2.2 Plant population density, row spacing, and drought 31
 1.4.2.3 Cultivation practices .. 37
 1.5 Objectives .. 42

2 The effect of row spacing and growing season rainfall on chickpea yield and water use....... 45
 2.1 Introduction ... 45
 2.2 Materials and Methods ... 48
 2.2.1 2007 Row spacing experiment .. 49
 2.2.1.1 Soil water content ... 51
2.2.1.2 Statistical analysis ... 51
2.2.2 2008 Row spacing experiment .. 51
 2.2.2.1 Soil physical properties .. 53
 2.2.2.2 Soil water content ... 53
 2.2.2.3 Evapotranspiration .. 55
 2.2.2.4 Leaf water potential and relative water content 56
 2.2.2.5 Statistical analysis ... 56
2.2.3 Plant measurements - 2007 and 2008 57
2.3 Results ... 59
 2.3.1 Weather ... 59
 2.3.2 Soil physical properties .. 59
 2.3.3 2007 Row spacing ... 60
 2.3.3.1 Chickpea crop growth and yield 60
 2.3.3.2 Soil water content .. 66
 2.3.4 2008 Row spacing ... 67
 2.3.4.1 Chickpea crop growth and yield 67
 2.3.4.2 Crop water stress .. 73
 2.3.4.3 Soil water profiles .. 75
2.4 Discussion ... 89
 2.4.1 Chickpea grain yield and biomass 89
 2.4.2 Crop water use as affected by row spacing 92
 2.4.3 Evapotranspiration .. 97
 2.4.4 Crop water stress ... 98
 2.4.5 Water use efficiency ... 100
2.5 Conclusion .. 101
3 Soil physical conditions that limit chickpea emergence with
particular reference to soils of the High Barind Tract of
Bangladesh .. 105
 3.1 Introduction ... 105
 3.2 Materials and Methods .. 108
 3.2.1 Soil ... 108
 3.2.2 Seed ... 109
 3.2.3 Definitions of germination and emergence 109
 3.2.4 Germination and emergence of chickpea at different water contents 109
 3.2.4.1 Experiment 1 .. 109
 3.2.4.2 Experiment 2 .. 110
 3.2.4.3 Experiment 3 .. 110
3.2.4.4 Experiment 4 and 5 ... 111
3.2.5 Emergence of chickpea at different soil bulk densities and aggregate size
distribution ... 111
3.2.5.1 Experiment 6 ... 112
3.2.5.2 Experiment 7 .. 113
3.2.6 Soil physical properties .. 114
3.2.7 Statistical analysis ... 115
3.3 Results .. 116
3.3.1 Soil physical characteristics .. 116
3.3.2 Germination and emergence of chickpea at different water contents 117
3.3.3 Emergence of chickpea at different soil bulk densities and aggregate size
distribution ... 126
3.4 Discussion ... 134
3.4.1 Effect of soil water content and aeration on germination and emergence of chickpea .. 134
3.4.1.1 Soil water and soil aeration .. 134
3.4.1.2 Shoot development .. 138
3.4.1.3 Seed priming ... 139
3.4.2 Effects of soil bulk density and aggregate size on emergence of chickpea 140
3.5 Conclusion .. 145
4 The effect of sowing time on chickpea crop establishment and subsequent crop growth in the High Barind Tract of Bangladesh .. 149
4.1 Introduction .. 149
4.2 Materials and Methods .. 151
4.2.1 Soil water content and soil strength ... 153
4.2.2 Plant measurements .. 154
4.2.3 Statistical analysis ... 155
4.3 Results .. 157
4.3.1 Weather .. 157
4.3.2 Soil water content and soil strength ... 159
4.3.3 Plant numbers at emergence and throughout the growing season 166
4.3.4 Chickpea growth and yield ... 168
4.3.4.1 2007 .. 168
4.3.4.2 2008 .. 171
4.3.4.3 2009 .. 172
4.4 Discussion .. 175
5 The effect of tillage type on initial seed-bed soil water content and chickpea yields .. 189

5.1 Introduction ... 189

5.2 Materials and methods .. 192

5.2.1 Weather .. 192

5.2.2 2007 Tillage type and sowing date trial ... 192

5.2.3 2008 Tillage type and residue trial .. 193

5.2.3.1 Soil physical properties .. 194

5.2.3.2 Soil water content ... 195

5.2.3.3 Crop growth observations .. 195

5.2.3.4 Root distribution ... 196

5.2.3.5 Statistical analysis .. 196

5.2.4 2009 Tillage type trial .. 197

5.2.4.1 Soil physical properties .. 198

5.2.4.2 Soil water content ... 198

5.2.4.3 Crop growth observations .. 200

5.2.4.4 Statistical analysis .. 201

5.3 Results ... 201

5.3.1 Weather .. 201

5.3.2 Soil physical properties .. 201

5.3.3 2007 Tillage type and time of sowing trial ... 202

5.3.3.1 Tillage method ... 202

5.3.3.2 Soil water content .. 202

5.3.3.3 Chickpea growth and yield .. 203

5.3.4 2008 Tillage type and residue trial .. 203

5.3.4.1 Tillage method ... 203

5.3.4.2 Soil water content .. 206

5.3.4.3 Chickpea growth and yield .. 208

5.3.4.4 Root distribution ... 212

5.3.4.5 Profile soil water content ... 214

5.3.5 2009 Tillage type trial ... 215

5.3.5.1 Soil conditions at sowing ... 215
List of Tables

Table 1.1. The characteristics of the two climate types (Berger and Turner 2007) where chickpea is produced... 2

Table 1.2. Constraints to chickpea production in south-west Western Australia (WA)........ 13

Table 1.3. Constraints to chickpea production in the High Barind Tract (HBT) of Bangladesh... 15

Table 1.4. The characteristics of the abiotic constraints which can lead to poor crop establishment, low temperature stress and/or terminal drought to chickpea production in south-west Western Australia (WA) and the High Barind Tract (HBT) of Bangladesh. These two regions represent the two main climate types described in Berger and Turner (2007) for chickpea production, viz the Mediterranean-type environment and the summer-dominant rainfall environment........ 18

Table 1.5. The farmer-researcher ideotype for chickpea improvement in the High Barind Tract (HBT) of Bangladesh as described in Johansen et al. (2008b)........... 29

Table 1.6. The configuration of the Versatile Multi-crop Planter when sowing by zero tillage, strip tillage or by full tillage with one or more passes. 40

Table 2.1. Spacing and fertiliser combinations. ... 49

Table 2.2. The chickpea plant parameters measured during crop growth and at harvest for the row spacing experiments established at Merredin in Western Australia during 2007 and 2008... 58

Table 2.3. The soil physical properties of the soil used in the 2008 chickpea row spacing trial in Merredin WA... 60

Table 2.4. Phenology of crop development of the chickpea in the 2007 row spacing experiment... 61

Table 2.5. Phenology of crop development of the chickpea in the 2008 row spacing experiment... 68

Table 2.6. The measured profile soil water content (SWC) (mm) to 60 cm depth and approximations of profile SWC to 100 cm depth between 1 May and 2 September 2008 (75 days after sowing, DAS) during the chickpea growing season. The inputs of water to the experiment via irrigation and rainfall are also shown along with the mean profile SWC of the pre-season irrigated and non-irrigated plots as measured by the Sentek Diviner soil water capacitance probe on 2 September.. 77

Table 2.7. The biomass water use efficiency (WUE) and grain water use efficiency (GWUE) for the 2008 Merredin row spacing trial... 88

Table 3.1. The particle size distribution and bulk density of the Merredin and Bangladesh soil types... 109

Table 3.2. Schedule of treatment combinations used in Experiment 7 to test chickpea germination and emergence with different soil structure conditions. Top core refers to conditions above the seed while base core refers to physical conditions below the seed... 114

Table 3.3. The mean gravimetric soil water content (θ_g, %) of each treatment at sowing in Experiment 1. Values are means of three replicates. The θ_f at field capacity (θ_f, -10 kPa) and wilting point (θ_w, -1500 kPa) were determined experimentally, while the soil water potentials (ψ, kPa) for each soil water treatment were calculated from the water release curve (Figure 3.2)... 117

Table 3.4. The mean gravimetric soil water (θ_g) at sowing and the seed development classified as emerged or germinated in Experiment 2. Each treatment had a total of 110 seeds sown in two replicate pots... 120

Table 3.5. The growth of each chickpea seed as classified at harvest. Seeds were sown in High Barind Tract soil (HBT) of Bangladesh soil at soil water contents between 2 and 27 % . Data is presented for experiments conducted in the growth cabinet at
Table 3.6. Gravimetric soil water contents (θ) at sowing for soil in each treatment component of the cores in Experiment 7. Components are the 0-3 cm above-seed soil layer with aggregate sizes of <2 mm, <4 mm or >4 mm and the below-seed soil (3-12 cm depth).

Table 3.7. The growth of chickpea seeds as classified at harvest in Experiment 7. Seeds were classified as either emerged (%), not-emerged but with root development (%), not-emerged with root development only (%) and not-germinated (%). Each treatment has a total of 10 seeds.

Table 4.1. Details of location, soil type, experimental treatments, plot design and seed and fertiliser rates for sowing date trials established in 2007, 2008 and 2009 in the High Barind Tract of Bangladesh.

Table 4.2. The chickpea plant parameters measured during crop growth and at harvest for the sowing date experiments established in the High Barind Tract (HBT) of Bangladesh in 2007, 2008 and 2009.

Table 4.3. Phenology of crop development of the chickpea in the 2007 time of sowing trial in Rajshahi, Bangladesh.

Table 4.4. Phenology of crop development of the chickpea in the 2008 time of sowing trial in Rajshahi, Bangladesh.

Table 4.5. The chickpea crop growth parameters for the 2008 time of sowing trial in Rajshahi, Bangladesh.

Table 4.6. Phenology of crop development of the chickpea in the 2009 time of sowing trial in Rajshahi, Bangladesh.

Table 5.1. Soil physical properties of the trial sites established in 2008 and 2009 in the High Barind Tract of Bangladesh.

Table 5.2. Observations of soil conditions at sowing of the 2007 trial with the tillage treatments of the power tiller operated seeder (PTOS), strip tillage (ST) and zero tillage (ZT). The treatments have been ranked where one is optimal for sowing and seed-bed preparation and three is poor.

Table 5.3. Phenology of crop development of the chickpea in the 2008 tillage type and mulch trial in Rajshahi, Bangladesh.

Table 5.4. Crop growth parameters from the 2008 chickpea tillage type and surface residue trial. Tillage types were single pass shallow tillage (SPST) and strip tillage (ST). Residue treatments were cut rice retained (RR) on the surface as mulch and standing stubble (S) as surface residue.

Table 5.5. The mean above-ground biomass (g/m²), grain yield (g/m²), and pod number (pods/m²) of the chickpea plants sampled from quadrats at harvest (119 DAS, 24 March 2010) for the tillage type trial sown in 2009. Treatments were the tillage types: broadcast, single pass shallow tillage (SPST), zero tillage (ZT), and strip tillage (ST).

Table 5.6. Phenology of chickpea development of the chickpea in the 2009 tillage type trial in Rajshahi, Bangladesh.

Table 5.7. The mean of plant population after emergence (plant/m²) and dry biomass (kg/ha) on 30 January (at 50 % podding) and 23 February (root sampling) are presented.

Table 5.8. The mean above-ground biomass (g/m²), grain yield (g/m²), and pod number (pods/m²) of the chickpea plants sampled from quadrats at harvest (119 DAS, 24 March 2010) for the tillage type trial sown in 2009. Treatments were the tillage types: broadcast, single pass shallow tillage (SPST), zero tillage (ZT), and strip tillage (ST).
List of Figures

Figure 1.1. The mean monthly rainfall (1903 to 2013) and minimum and maximum temperatures (1966 to 2013) at Merredin, Western Australia. Station Number: 010092, Latitude: 31.48°S, Longitude: 118.28°E, Elevation: 315 m (BOM 2013)........... 5

Figure 1.2. The mean monthly rainfall and minimum and maximum temperatures in Rajshahi Bangladesh (BARC 2011). Mean of the years 1994 to 2008, Rajshahi Station. Latitude: 24.35°N, Longitude: 88.56°E, Elevation: 20 m... 8

Figure 2.1. The plot design of the 2007 row spacing experiment completed at Merredin in Western Australia. Shading represents buffers. Row spacing 23 cm, 50 cm, 75 cm and 100 cm. Fertiliser placement W = with seed, B = below-seed, Seed priming NP = not primed, P = primed... 50

Figure 2.2. Plot design of the chickpea row spacing experiment carried out in 2008 at Merredin, Western Australia. Row spacing at 23, 50 and 75 cm. Shading represents buffers. ... 52

Figure 2.3. Relationship between volumetric water content (θ_v) and scaled frequency counts (SF) from the Diviner 2000 for the 0-10 cm horizon (●, ———), 20-30 cm horizon (●, ——), 30-60 cm horizon (▲, ———), and 60-100 cm (○). Symbols are data points and lines are fitted regression equations shown above in the text. 54

Figure 2.4. Weather parameters for the years a) 2007 and b) 2008. Daily minimum and maximum temperatures (ºC) are shown as is daily rainfall (mm). ... 59

Figure 2.5. The mean chickpea plant density (plants/m²) in the quadrats sampled during the 2007 growing season at final emergence (1 August, 44 days after sowing (DAS)), early growth (15 August, 50 DAS), flowering (26 September, 92 DAS) and final harvest (26 November, 123 DAS) for a) 100 cm row spacing, b) 75 cm row spacing, c) 50 cm row spacing, and d) 23 cm row spacing. The error bars for each data point represents ± 1 standard error. The floating error bar on figure a) 100 cm row spacing represents the least significant difference (l.s.d.) at $P = 0.05$ for the interaction of irrigation x row spacing x fertiliser placement, averaged over all dates. Actual l.s.d. values were between 14.7 and 16.2. .. 62

Figure 2.6. The mean chickpea above-ground biomass (g/m²) in the quadrats sampled during the 2007 growing season at early growth (15 August, 50 days after sowing (DAS)), flowering (26 September, 92 DAS) and final harvest (26 November, 123 DAS) for a) 100 cm row spacing, b) 75 cm row spacing, c) 50 cm row spacing, and d) 23 cm row spacing. The error bars for each data point represents ± 1 standard error. The floating error bars on figure a) 100 cm row spacing, represent the least significant difference (l.s.d.) at $P = 0.05$ for the interaction of irrigation x row spacing x fertiliser placement, at each monitoring date. ... 63

Figure 2.7. The mean chickpea grain yield determined by a) quadrat sampling (g/m²) and b) whole plot machine harvest (kg/ha). The floating error bar on each figure represents the least significant difference (l.s.d.) at $P = 0.05$ for the interaction of irrigation x row spacing x fertiliser placement, either within the irrigation treatments (left) or between the irrigation treatments (right). .. 65

Figure 2.8. The mean harvest index of chickpea from the quadrat samples. Black bars indicate pre-season irrigation, open bars indicate non-irrigated treatments. The floating error bar on each figure represents the least significant difference (l.s.d.) at $P = 0.05$ for the interaction of irrigation x row spacing either within the irrigation treatments (left) or between the irrigation treatments (right). .. 65

Figure 2.9. The mean gravimetric soil water content (%) of the soil profiles of the pre-season irrigated (filled circles) and non-irrigated (open circles) plots on 1 June 2007. Error bars represent ± 1 standard error (n = 6 to 8 from 0-40 cm, n = 2 for 50-60 cm). ... 66
Figure 2.10. The mean gravimetric soil water content (%) of the soil profiles of a) the pre-season irrigated and b) non-irrigated plots on 19 September 2007. Only 1 plot per treatment was sampled...67

Figure 2.11. The mean plant density (plants/m²) from the quadrats collected during the growing season for 23 cm (●), 50 cm (▲) and 75 cm (■) row spacing treatments with (closed symbol) and without (open symbol) pre-season irrigation. Error bars indicate the average least significant difference (l.s.d.) at $P = 0.05$ for the row spacing treatment where they were significantly different at each date of sampling.68

Figure 2.12. The mean above-ground biomass (g/m²) from the quadrats collected during the growing season for 23 cm (●), 50 cm (▲) and 75 cm (■) row spacing treatments with (closed symbol) and without (open symbol) pre-season irrigation. Error bars indicate the average least significant difference (l.s.d.) at $P = 0.05$ for the irrigation treatment (IRR) and the row spacing treatment (RS) where they were significantly different at each date of sampling. ...69

Figure 2.13. The mean a) pod number (pods/m²) and b) pod weight (g/m²) from the quadrats collected during the growing season from the 23 cm (●), 50 cm (▲) and 75 cm (■) row spacing treatments with (closed symbol) and without (open symbol) pre-season irrigation. Error bars indicate the average least significant difference (l.s.d.) at $P = 0.05$ for the irrigation treatment (IRR) and the row spacing treatment (RS) where they were significantly different at each date of sampling. 70

Figure 2.14. Final chickpea grain yields (kg/ha) collected by machine harvest. The error bars indicate the average least significant difference (l.s.d.) at $P = 0.05$ either within irrigation treatment (IRR) or between the irrigation treatments. Closed symbols represent with and open symbols without pre-season irrigation..71

Figure 2.15. Crop growth parameters measured from the quadrats sampled at final harvest of the chickpea plots on the 10 December 2008. Means are presented for grain yield (g/m²) and harvest index. Closed symbols represent pre-season irrigation and open symbols without irrigation. The error bars indicate the average least significant difference (l.s.d.) at $P = 0.05$ either within irrigation treatment (IRR) or between the irrigation treatments. ... 72

Figure 2.16. The mean of a) leaf water potential (LWP) (MPa) and b) relative water content (RWC) (%) of the chickpea crop under row spacing treatments of 23 cm (filled bar), 50 cm (hatched bar) and 75 cm (checked bar) with (black) or without (green) pre-season irrigation during the 2008 growing season. In figure a) the error bars for each data point represent 1 standard error. In figure b) where significant differences occur between RWC of the irrigation treatment the l.s.d. at $P = 0.05$ was presented as a floating error bar above the appropriate sampling date, n.s. indicates not significant... 74

Figure 2.17. Volumetric water content (%) of the soil profile before irrigation began (1 May, n = 2) (triangle), at sowing (19 June, n = 3) (squares), and 21 days after sowing (DAS) (10 July, n = 3) (circles). Open symbols indicate the non-irrigated treatment, closed symbols the pre-season irrigated treatment. The error bars represent ± 1 standard error of the mean. ..23

Figure 2.18. The mean profile soil water content (SWC) (mm) in a 100 cm profile measured during the chickpea crop growing season in the 23 cm row spacing treatments, with (full line) and without (dashed line) pre-season irrigation. Clear squares represent the cumulative rainfall between measurements of SWC. Floating error bars for each measurement indicate the least significant difference (l.s.d.) at $P = 0.05$ for the irrigation x probe spacing interaction................................. 75

Figure 2.19. The mean profile soil water content (SWC) (mm) in a 100 cm profile measured during the chickpea crop growing season in the 50 cm row spacing treatments, with (full line) and without (dashed line) pre-season irrigation, at 12 cm (●) and 25 cm (◆) from the seed row. Clear squares represent the cumulative rainfall between measurements of SWC. Floating error bars for each measurement
indicate the least significant difference (l.s.d.) at $P = 0.05$ of the irrigation x probe spacing interaction.

Figure 2.20. The mean profile soil water content (SWC) (mm) in a 100 cm profile measured during the chickpea crop growing season in the 75 cm row spacing treatments at 12 cm (♦), 25 cm (■) and 37 cm (▲) from the seed row, with (full line) and without (dashed line) pre-season irrigation. Clear squares represent the cumulative rainfall between measurements of SWC. Floating error bars for each measurement indicate the least significant difference (l.s.d.) at $P = 0.05$ of the irrigation x probe spacing interaction.

Figure 2.21. The mean change in water storage (mm) at 12 cm from the seed row ($n = 4$) of each 10 cm soil layer under a) the 23 cm row spacing with pre-season irrigation, and b) the 23 cm row spacing with no irrigation ($n = 4$).

Figure 2.22. The mean change in water storage (mm) of each 10 cm soil layer under a) the 50 cm row spacing with irrigation measured 12 cm from the seed row, b) the 50 cm row spacing with irrigation measured 25 cm from the seed row, c) the 50 cm row spacing with no irrigation measured 12 cm from the seed row, and d) the 50 cm row spacing with no irrigation measured 25 cm from the seed row ($n = 4$).

Figure 2.23. The mean change in water storage (mm) of each 10 cm soil layer under a) the 75 cm row spacing with irrigation measured 12 cm from the seed row, b) the 75 cm row spacing with irrigation measured 25 cm from the seed row, c) the 75 cm row spacing with irrigation measured 37 cm from the seed row, d) the 75 cm row spacing with no irrigation measured 12 cm from the seed row, e) the 75 cm row spacing with no irrigation measured 25 cm from the seed row, and f) the 75 cm row spacing with no irrigation measured 37 cm from the seed row ($n = 4$).

Figure 2.24. The mean of total evapotranspiration (mm) (sowing to harvest) for each row spacing treatment with (filled bars) and without (unfilled bars) pre-season irrigation. Probe spacing indicates the distance from the seed row where measurement was taken. Floating error bars for each measurement indicate the average least significant difference (l.s.d.) at $P = 0.05$ between the irrigation treatments and within the separate pre-season irrigation (PRE-IRR) and non-irrigated (NON-IRR) treatments ($n = 4$). See Section 2.2.2.3 in text for the calculation of evapotranspiration.

Figure 2.25. The mean cumulative evapotranspiration (mm) in a 100 cm profile measured during the chickpea crop growing season in the 23 cm row spacing treatments at 12 cm from the seed row, with (closed symbol) and without (open symbol) pre-season irrigation. Floating error bars indicate the least significant difference (l.s.d.) at $P = 0.05$ for the interaction of irrigation x probe spacing for each date of measurement.

Figure 2.26. The mean cumulative evapotranspiration (mm) in a 100 cm profile measured during the chickpea crop growing season in the 50 cm row spacing treatments at 12 cm from the seed row, and b) 25 cm from the seed, with (closed symbol) and without (open symbol) pre-season irrigation. Floating error bars indicate the least significant difference (l.s.d.) at $P = 0.05$, for the interaction of irrigation x probe spacing for each date of measurement.

Figure 2.27. The mean cumulative evapotranspiration (mm) in a 100 cm profile measured during the chickpea crop growing season in the 75 cm row spacing treatments at a) 12 cm from the seed row, b) 25 cm from the seed row, and c) 37 cm from the seed row, with (closed symbol) and without (open symbol) pre-season irrigation. Floating error bars indicate the least significant difference (l.s.d.) at $P = 0.05$, for the interaction of irrigation x probe spacing for each date of measurement.

Figure 3.1. Pot construction to ensure consistent soil physical properties below and above the chickpea seed in Experiments 6 and 7.

Figure 3.2. Fitted water release curve for the Merredin soil (---) and the Bangladesh soil (—). The soil water potentials (ψ) of field capacity (-10 kPa, ---) and wilting point
Figure 3.3. The germination and shoot production characteristics of chickpea seeds sown at water contents ranging from 13 to 28 % (w/w) in a Merredin sandy clay loam for Experiment 1. a) Percentage germination of chickpea seeds 3 to 12 days after sowing (DAS). b) The percentage of seeds which had a visible shoot at 3 to 12 days after sowing (DAS). Error bars indicate 1 standard error of the mean where visible. .. 119

Figure 3.4. Mean gravimetric soil water content (\(\theta_g\)) during 12 days after sowing (DAS) when chickpea germination was monitored in Experiment 1. Treatments are the starting \(\theta_g\) at sowing, which equates to the \(\theta_g\) at 0 DAS. Error bars indicate 1 standard error of the mean where visible. ... 119

Figure 3.5. Mean soil water potential (\(\psi\)) during 12 days after sowing (DAS) when chickpea germination was monitored during Experiment 1. Where \(\psi\) was greater than the residual water content (\(\theta_r\)) the highest calculated \(\psi\) from the RETC analyses was inserted, \(-1.3 \times 10^6\) kPa. Treatments are the starting \(\theta_g\) at sowing, which equates to the \(\psi\) at 0 DAS. Error bars indicate 1 standard error of the mean where visible. ... 119

Figure 3.6. Cumulative emergence of chickpea seed at the soil water contents (\(\theta_g\)) of 14, 15, 18 and 21 % in Experiment 2. .. 121

Figure 3.7. The relationship between the gravimetric water content (\(\theta_g\)) of each pot at sowing and at harvest in Experiment 3. The 1 to 1 line shows where water content should be if no drying of the soil in each pot had occurred. ... 121

Figure 3.8. Rate of emergence of chickpea seeds sown into the Merredin sandy clay loam at gravimetric soil water contents (\(\theta_g\)) ranging from 12 to 23 % in Experiment 3. Note that no seedlings emerged at the \(\theta_g\) of 3 to 10 and 27 %. Eight replicates were sown for each treatment. ... 122

Figure 3.9. Rate of emergence of chickpea seeds sown into soil from the High Barind Tract of Bangladesh at gravimetric soil water contents (\(\theta_g\)) ranging from 14 to 23 % (w/w) from Experiment 4. No chickpea plants emerged at the \(\theta_g\) of 12 %. Eight replicates were sown for each treatment. .. 123

Figure 3.10. Rate of emergence of chickpea seeds sown into High Barind Tract soil of Bangladesh (Experiment 5) at gravimetric water contents (\(\theta_g\)) ranging from 12 to 27 % with either a) not primed or b) primed seed. No seedlings emerged at \(\theta_g\) less than 12 % or greater than 21 %. Ten replicates were sown for each treatment. ... 124

Figure 3.11. Mean soil water content at sowing (n =2) and harvest (n =10) for the chickpea emergence pot trial conducted in Rajshahi, Bangladesh using High Barind Tract soil, Experiment 5. Error bars indicate 1 standard error of the mean where visible. .. 126

Figure 3.12. The shoot length (cm) of chickpea seeds sown in soils compacted to bulk densities between 1.3 and 1.9 g/cm³ in Experiment 6. Error bars indicate 1 standard error of the mean. .. 127

Figure 3.13. The total root length (cm) of chickpea seeds sown in soils compacted to bulk densities between 1.3 and 1.9 g/cm³ in Experiment 6. Mean root lengths with identical letters are not significantly different. Error bars indicate 1 standard error of the mean. .. 128

Figure 3.14. The main root (a) and lateral root (b) length (cm) of chickpea seeds sown in soils compacted to bulk densities between 1.3 and 1.9 g/cm³ in Experiment 6. Mean root lengths with identical letters are not significantly different. Error bars indicate 1 standard error of the mean. .. 128

Figure 3.15. The mean soil penetration resistance (MPa) of the below-seed layer at sowing of the chickpea seeds into soils compacted to bulk densities between 1.3
and 1.9 g/cm³. Mean penetration resistance bars with identical letters are not significantly different. Error bars indicate 1 standard error of the mean. 129

Figure 3.16. The relationship between mean soil penetration resistance (MPa) of the below-seed layer at sowing of the chickpea seeds and (a) mean root length or (b) mean shoot length. Soil was compacted to bulk densities between 1.3 and 1.9 g/cm³. Error bars indicate ± 1 standard error of the mean. 129

Figure 3.17. Gravimetric soil water content (θ_g) above and below the seed at harvest for Experiment 7. Values are means of 10 samples regardless of harvest date. Error bars indicate 1 standard error of the mean where visible. 131

Figure 3.18. Cumulative emergence of chickpea seedlings sown in Merredin soil in Experiment 7. Treatments were combinations for layers above or below the seed. Bulk densities were either 0.9 (above-seed), 1.3 or 1.8 g/cm³. Soil aggregate sizes were <2 mm, >4 mm or <4 mm. Refer to Table 3.2 for further details. 132

Figure 3.19. Main root, lateral root and total root lengths for the seeds which did emerge in Experiment 7. Error bars indicate 1 standard error of the mean. The numbers of emerged seeds in each treatment are given in Table 3.7. 133

Figure 3.20. Main root, lateral root and total root lengths for the seeds which did not emerge in Experiment 7. Error bars indicate 1 standard error of the mean. The numbers of emerged seeds in each treatment are given in Table 3.7. 134

Figure 3.21. The percentage emergence of chickpea seedlings with different soil water content and soil water potential across different studies in Western Australia (present study and Hosseini et al. (2009b)), Bangladesh (present study) and India (Saxena et al. 1983; Sharma 1985). .. 135

Figure 4.1. Relationship between volumetric water content (θ_v) (%) (calculated from the gravimetric soil water content) and MP406 volumetric water content (θ_{probe}) (%) for the data collected at 10 cm increments down the soil profile collected from 2007 to 2009. The soil profile depth was to 70 cm. Symbols are data points and the line represents the regression equation shown above in the text. ... 153

Figure 4.2. Weather parameters for the 2007 to 2009 chickpea growing seasons. Daily minimum and maximum temperature (ºC) are shown with rainfall (mm). For each trial, the dates of phenological development are shown as symbols on the graph in association with the weather data. Letters on the top of each graph represent the stages of chickpea phenology: S, sowing; E, emergence; FL, flowering; PD, Podding; and PM, physiological maturity. Trials are differentiated by SD, sowing date; and TT, tillage type. The tillage type experiments are described in Chapter 5. .. 158

Figure 4.3. Relationship between soil penetration resistance (Q_{p}) (MPa) and volumetric soil water content (θ_v) (%) for the 2008 (∗) and 2009 (○) chickpea sowing dates and at final emergence counts in 2009 (●). Values are for the surface soil layer of 0-6 cm depth. The line represents the regression equation shown above in the text..... 159

Figure 4.4. The mean volumetric soil water content (θ_v) (%) and strength (MPa) of the surface soil in the 2007 time of sowing trial. Soil water was measured at 0-6 cm depth on each sowing date (●) (n =20 to 24) and pre-sowing (○) (n =24 to 28). Soil strength was measured on sowing dates 4, 11 and 14 December at 0-2.5 cm (□), 2.5-5 cm (■), and 5-10 cm (■) depths (n =10 to 24). Error bars indicate ± 1 standard error. .. 160

Figure 4.5. The mean soil volumetric water content (θ_v) (%) and strength (MPa) of the surface soil in the 2008 time of sowing trial. Soil water was measured at 0-6 cm (○) and 6-12 cm (●) depth on each sowing date (n =8). Soil strength was measured at 0-2.5 cm (□), and 2.5-5 cm (■) depths (n =8). Error bars indicate ± 1 standard error. .. 161

Figure 4.6. The mean volumetric soil water content (θ_v) (%) and strength (MPa) of the surface soil in the 2009 time of sowing trial. Soil water was measured at 0-6 cm (○) and 6-12 cm (●) depth on each sowing date (n =8). Soil strength was measured
Figure 4.7. The mean volumetric soil water content (θ_v (%) of the 2008 time of sowing trial from sowing to final emergence which shows the drying down of the surface soil before and after sowing. Measurements taken were the 0-6 cm depth of the unsown plots (●), and the 0-6 cm (○) depth and 6-12 cm (●) depth of the previously sown plots (n =8 to 24). Error bars indicate ± 1 standard error. .. 163

Figure 4.8. The mean volumetric soil water content (θ_v (%) of the 2009 time of sowing trial from sowing to final emergence which shows the drying down of the surface soil before and after sowing. Measurements taken were the 0-6 cm (●) and 6-12 cm (○) depth within the seed row, the 0-6 cm (■) and 6-12 cm (□) depth between the seed row, and the 0-6 cm depth in the unsown plots (●) (n =8 to 32). Where visible error bars indicate ± 1 standard error. ... 164

Figure 4.9. The mean soil strength (MPa) in the 2008 time of sowing trial measured at two-day intervals from the 22 November to the 4 December. Soil strength was measured before sowing in the uncultivated soil at depth of 0-2.5 cm (●) and 2-5 cm (■). Soil strength was measured in the previously sown plots within the seed row at 0-2.5 cm (○), 2.5-5 cm (●) and 5-10 cm (■) depth. Error bars indicate ± 1 standard error. ... 165

Figure 4.10. The volumetric soil water content (θ_v (%) at 10 cm depth increments at each sowing date to 70 cm and at flowering and maturity to 30 cm (n =12 to 24) for the 2007 time of sowing trial. Error bars indicate ± 1 standard error. ... 165

Figure 4.11. The mean plant population (plants/m²) at various times during the chickpea growth for: a) the 2007 trial at emergence (full bar) and harvest (hatched bar) for each sowing date and tillage treatment viz, power tiller operated seeder (PTOS), strip tillage (ST) and zero tillage (ZT); b) during the 2008 trial at emergence for each sowing date; and c) in 2009 at emergence (grey bar), podding (black bar) and harvest (hatched bar) for each sowing date. Error bars indicate 1 standard error.........167

Figure 4.12. The mean weight per plant (g) at flowering (full bar) and harvest (hatched bar) for the 2007 time of sowing trial for each sowing date and tillage treatment viz, power tiller operated seeder (PTOS), strip tillage (ST) and zero tillage (ZT). Error bars indicate 1 standard error.. 169

Figure 4.13. The mean pod number per plant at podding (full bar) and harvest (hatched bar) for the 2007 time of sowing trial for each sowing date and tillage treatment viz, power tiller operated seeder (PTOS), strip tillage (ST) and zero tillage (ZT). Error bars indicate 1 standard error.. 169

Figure 4.14. The mean grain yield (kg/ha) (full bar) and above-ground biomass (kg/ha) (hatched bar) of the 2007 time of sowing trial for each sowing date and tillage treatment viz, power tiller operated seeder (PTOS), strip tillage (ST) and zero tillage (ZT). Measurements were taken from the whole plot. Error bars indicate 1 standard error.. 170

Figure 4.15. The mean grain weight per plant (g) at harvest of the 2007 time of sowing trial for each sowing date and tillage treatment viz, power tiller operated seeder (PTOS), strip tillage (ST) and zero tillage (ZT). Error bars indicate 1 standard error.. 171

Figure 4.16. The mean above-ground biomass (g/m²) (filled bar) and pod weight (g/m²) (hatched bar) of the quadrats measured at podding of the 2009 sowing date trial. Error bars indicate 1 least significant difference (L.s.d.) at the $P <0.05$................................. 173

Figure 4.17. The mean above-ground biomass (g/m²) (filled bar) and pod weight (g/m²) (hatched bar) of the quadrats measured at harvest of the 2009 sowing date trial. Error bars indicate 1 least significant difference (L.s.d.) at $P <0.05$ 174

Figure 4.18. The mean number of total pods (number/m²) (filled bar) and filled pods (hatched bar) of the quadrats measured at harvest of the 2009 sowing date trial. Error bars indicate 1 least significant difference (L.s.d.) at $P <0.05$. 174
Figure 4.19. The mean grain weight (kg/ha) (filled bar) and plant biomass (kg/ha) (hatched bar) of the whole plot at harvest of the 2009 sowing date trial. Error bars indicate 1 least significant difference (l.s.d.) at $P<0.05$. 175

Figure 4.20. The mean grain yield (kg/ha) for the different sowing dates over the three seasons (2007, 2008, 2009). This includes the data for variation in tillage technique in 2007 although each tillage type is not differentiated. Error bars indicate ± 1 standard error. .. 180

Figure 5.1. Trial layout for the 2008 tillage type and residue trial. .. 194

Figure 5.2. Relationship between gravimetrically calculated volumetric water content (θ_v) (%) and MP406 volumetric water content (θ_{probe}) (%) for the 0-60 cm horizon from the data collected in 2009. Symbols are data points and the line represents the regression equation shown above in the text. .. 200

Figure 5.3. The surface conditions of soil after sowing of the 2008 tillage type trial with single pass shallow tillage (SPST) in a) wide shot where yellow lines indicate the boundary of three rows sown after one-pass and b) close-up of the seed row. 204

Figure 5.4. The surface conditions of soil after sowing of the 2008 tillage type trial with strip tillage (ST) in a) wide shot, b) close-up of the seed row and c) close-up of the smeared furrow wall and chickpea seed. .. 205

Figure 5.5. Soil water content (θ_v) (%) at 0-6 cm and 6-12 cm depth for the surface residue treatments of rice retained (RR) and standing stubble (S) in the 2008 trial (residue treatments n =10, at rice harvest n =6). Error bars were ± 1 standard error of the mean and * indicates significant difference at $P =0.05$ level between treatments on that date of measurement. ... 206

Figure 5.6. Soil water content (θ_v) (%) at 0-6 cm and 6-12 cm depth for the tillage treatments of strip tillage (ST) and single pass shallow tillage (SPST) (Tillage treatment n =10). Error bars were ± 1 standard error of the mean. .. 207

Figure 5.7. Surface soil water content (θ_v) (%) at 0-6 cm depth for each treatment combination of surface residue (rice retained (RR), stubble (S)) and tillage treatment (Strip tillage (ST), Single pass shallow tillage (SPST)). Error bars were ± 1 standard error of the mean. ... 208

Figure 5.8. The mean of a) specific root length (SRL) (m/g), b) root dry weight (g) and c) root length (m), for the single pass shallow tillage (SPST) and strip tillage (ST) treatments at the soil depths 0-15, 15-30, 30-45 and 45-60 cm. Error bars indicate 1 standard error of the mean (n =5). Means with identical letters are not significantly different. .. 213

Figure 5.9. The mean of a) root volume (cm3) and b) root length density (RLD) (cm/cm3) for the single pass shallow tillage (SPST) and strip tillage (ST) treatments at the soil depths 0-15, 15-30, 30-45 and 45-60 cm. Error bars indicate 1 standard error of the mean (n =5). Means with identical letters are not significantly different for the factor of depth only. .. 214

Figure 5.10. The mean volumetric soil water content (θ_v) (%) to 60 cm depth in the soil profile during the tillage trial of 2008. Tillage treatments were single pass shallow tillage (SPST) and strip tillage (ST). Measurements were taken at sowing (26 November 2008), podding (30 January 2009) and when plant roots were sampled (23 February 2009). Error bars indicate ± 1 standard error of the mean. 215

Figure 5.11. Pictures of a) the power tiller used to incorporate the broadcast chickpea seed, b) the Versatile Multi-crop Planter (VMP) with rotary blades in front of furrow openers for seed and fertiliser placement (roller not shown) and the soil structure in the seed-bed for c) single pass shallow tillage (SPST) and d) strip tillage (ST). ... 216

Figure 5.12. The mean volumetric soil water content (θ_v) (%) measured during the period from rice harvest to chickpea sowing and emergence, 20 November to 18 December 2009. The soil depths measured were a) 0-6 cm and b) 6-12 cm. Treatments were the tillage types: broadcast (▲), single pass shallow tillage
(SPST; ●), zero tillage (ZT; ♦), strip tillage (ST; ■), and an unsown fallow treatment (△). In figure a) pre-sowing measurements (○) of θ_v are shown with standard error bars. For the tillage and fallow treatments floating error bars for each date of measurement indicate the least significant difference (l.s.d.) at P = 0.05. ...

Figure 5.13. The mean chickpea plant numbers (plants/m²) at emergence, podding and harvest for the tillage type trial sown in 2009. From 3 to 23 DAS, plant numbers relate to emergence. Treatments were the tillage types: broadcast (▲), single pass shallow tillage (SPST; ●), zero tillage (ZT; ♦), and strip tillage (ST; ■). Error bars indicate the least significant difference (l.s.d.) at P = 0.05. ...

Figure 5.14. The mean of chickpea growth parameters of fresh pod weight (g/m²), pod number (pods/m²), and leaf and stem dry biomass (g/m²), at podding (89 days after sowing (DAS), 22 February 2010) and physiological maturity (117 DAS, 22 March 2010) for the tillage type trial sown in 2009. Treatments were the tillage types: broadcast, single pass shallow tillage (SPST), zero tillage (ZT), and strip tillage (ST). Error bars indicate the least significant difference (l.s.d.) at P = 0.05. ...

Figure 5.15. The mean of chickpea final grain yield (kg/ha) (black bar) and above-ground biomass (kg/ha) (grain + stem + leaf) (open bar) (119 DAS, 24 March 2010) for the tillage type trial sown in 2009. Treatments were the tillage types: broadcast, single pass shallow tillage (SPST), zero tillage (ZT), and strip tillage (ST). Error bars indicate the least significant difference (l.s.d.) at P = 0.05. ...

Figure 5.16. The mean volumetric soil water content (θ_v) (%) at 10 cm increments down the soil profile in the tillage and fallow treatments. Tillage treatments were the tillage types: broadcast, single pass shallow tillage (SPST), zero tillage (ZT), and strip tillage (ST). Measurements were taken at sowing (▼, 25 November 2009), podding (●, 20 February 2010) and crop maturity (○, 21 March 2010). Error bars indicate ± 1 standard error of the mean. ...

Figure 5.17. The mean profile soil water content (SWC) (mm) to 40 cm at sowing (grey bar), podding (filled bars) and harvest (unfilled bars) for the tillage type trial sown in 2009. Treatments were the fallow and the tillage types: broadcast, single pass shallow tillage (SPST), zero tillage (ZT), and strip tillage (ST). Error bars indicate the least significant difference (l.s.d.) at P = 0.05 between the tillage and fallow treatments within each measurement period of either podding or harvest.
List of Abbreviations

100 cm row spacing 100RS
23 cm row spacing 23RS
50 cm row spacing 50RS
75 cm row spacing 75RS
above-ground biomass water use efficiency WUE
analysis of variance ANOVA
Agricultural Production Systems Simulator APSIM
Boron Bo
Botrytis grey mould BGM
bulk density ρ_b
change in water storage ΔW
cone diameter d_p
crop lower limit CLL
cumulative evapotranspiration ET$_{cum}$
days after sowing DAS
Decision Support System for Agrotechnology Transfer DSSAT
drainage D
dry weight DW
emergence E
evapotranspiration ET
flowering FL
force F
fresh weight FW
grain water use efficiency GWUE
gravimetric soil water content θ_g
gravimetric soil water content at an air-filled porosity of 10 % $\theta_{a|f|p}$
harvest index HI
High Barind Tract HBT
Irrigated IRR
leaf water potential LWP
least limiting water range LLWR
least significant difference l.s.d.
maximum root growth pressure σ_{max}
Molybdenum Mo
Nitrogen N
New South Wales NSW
non-irrigated NON-IRR
not significant n.s.
number of samples n
parameters of the water release curve equation (Van Genutchen 1980)

- constant n
- constant m
- degree of saturation S_e
- inverse of air entry potential α
- residual water content θ_r
- saturated water content θ_s

- penetrometer resistance Q_p
- percentage clay clay %
- percentage sand sand %
- percentage silt silt %
- physiological maturity PM
- plant population density PPD
- podding PD
- power tiller operated seeder PTOS
- precipitation use efficiency PUE
- pre-season irrigation PRE-IRR
- probability P
- profile soil water content SWC
- rainfall P
- relative water content RWC
- residual maximum likelihood REML
- rice retained RR
- root growth pressure σ
- root length density RLD
- row spacing RS
- scaled frequency SF
- single pass shallow tillage SPST
- soil surface runoff R
- soil water potential ψ
- sowing S
- sowing date trial SD
- specific root length SRL
- standard error S.E
- strip tillage ST
- stubble S
- Sulphur S
- summer fallow rainfall SFR
- Systemic Acquired Resistance SAR
- tillage type trial TT
- Transplanted Aman rice T. Aman
- triple superphosphate TSP
- turgid weight TW
- two-wheel tractor 2WT
- versatile multi-crop planter VMP
- volumetric soil water content θ_v
- volumetric soil water content at water potential of -10kPa field capacity θ_{fc}
volumetric soil water content at water potential of -1500 kPa wilting point θ_{wp}
volumetric soil water content from MP406 probe θ_{probe}
Western Australia WA
zero tillage ZT
Zinc Zn
List of Botanical Names

barley
black gram
chickpea
common vetch
cotton
dry bean
faba bean
field pea or dry pea
lentil
linseed
lupin
maize
marshmallow
mungbean
mustard
narbon bean
pearl millet
pigeonpea
rice
ricegrass
ryegrass
sorghum
soybean
wheat
wild radish

(Hordeum vulgare L.)
(Vigna mungo L. Hepper)
(Cicer arietinum L.)
(Vicia sativa L.)
(Gossypium hirsutum L.)
(Phaseolus vulgaris L.)
(Vicia faba L.),
(Pisum sativum L.)
(Lens culinaris Medikus)
(Linum usitatissimum L. Griesb.)
(Lupinus angustifolius L.)
(Zea mays L.)
(Malva parviflora)
(Vigna radiata L. R. Wilczek)
(Brassica campestris L.)
(Vicia narbonesis L.)
(Pennisetum glaucum L.)
(Cajanus cajan L.)
(Oryza sativa L.)
(Oryzopsis holciform (M.B.) Richt.)
(Lolium rigidum)
(Sorghum bicolor L. Moench)
(Glycine max L. Merr.)
(Triticum aestivum L.)
(Raphanus raphanistrum)
Acknowledgements

I thank my university supervisors Professor Richard Bell and Dr Chris Johansen for their expert scientific advice and continued enthusiasm, support and encouragement during the life of this study.

Much of this work was completed in Rajshahi, Bangladesh (Chapters 4 and 5). Colleagues from the People's Resources Oriented Voluntary Association (PROVA) assisted in experimental work, maintained experimental plots, and completed sampling protocols when I was not in Bangladesh. They also made sure I was safe, happy and well whilst in Rajshahi. I am extremely grateful to them for all their support. I thank: Abu M. Musa, A.K.M. Shahidullah, Md. Nur Nobi Mia, Md. Babul Akhtar, Dr Nargis Akhter, Naznin Akhtar Jahan, and Md. Babul Akther. Special thanks to the Bangladesh landholders who allowed experiments to be conducted on their land.

Dr Enamul Haque (IDE International) was instrumental in ensuring sowing equipment and technical support for sowing operations would be available in the experimental locations when required. I also thank him for his expert technical advice, his continued good humour and hospitality, and persistence in trying to teach me Bengali.

I thank my friends Janice and Steve Twartz for being my Australian family whilst in Bangladesh, providing a home in Dhaka when I was passing through and visiting me in rural north-west Bangladesh to make sure I was okay.

Chapter 2 reports work from two trials completed in 2007 and 2008 at the Merredin Research Station, Department of Agriculture and Food Western Australia (DAFWA). The 2007 trial was completed in collaboration with Dr Bob French from DAFWA. Dr French had previous experience in wide row spacing experiments, this knowledge was instrumental in preparing me for the 2007 and the following 2008 Merredin row spacing trials. In this thesis the 2007 trial is included to add a second growing season with which to study crop row spacing interactions with seasonal conditions and their effects on final grain yield. Part of the 2007 trial was reported in the Crop Updates paper in 2008 (French and Vance 2008). From the DAFWA office at Merredin I thank: Laurie Maiolo, Alan Harrod, Leanne Young and Matthew Harrod for
sowing, harvesting and logistical support; from the Perth office I thank Mike Baker for advice on methods and equipment and Dr Jane Speijers (Biometrician) provided statistical advice for all experiments.

I thank the following people for volunteering their assistance when the job required more than two hands: Noraisha Oyama, Rebecca Roberts, Rachel Standish, Kelley Whisson, Jonathan Anderson, John Vance and Tricia Vance.

The Australian Centre for International Agricultural Research (ACIAR) and Murdoch University provided the scholarship and funding for this work which was part of the ACIAR project, Addressing constraints to pulses in cereal-based cropping systems, with particular reference to poverty alleviation in north-western Bangladesh.

I thank my family of John, Tricia and Narrelle for their encouragement.

Once again I am extremely grateful to my husband Peter for his continued support and encouragement during the life of this thesis, without which completion would not have been possible. I thank Peter not only for his emotional support but also assistance and advice on field trips, and keeping the home fires burning when I was in Bangladesh.