Polyketide synthesis

in

Stagonospora nodorum

Dipl. Biol. Christian Krill

This thesis is presented for the degree of

Doctor of Philosophy of Murdoch University

2012
There is a theory which states that if anybody ever discovers exactly what the Universe is and why it is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.

- Douglas Adams
DECLARATION

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

Christian Krill
ACKNOWLEDGEMENTS

nani gigantum humeris insidentes

-Bernard of Chartres

I would like to express my sincere gratitude and appreciation towards everybody who helped me along this epic journey, the destination of which not only being this thesis, but what still lies ahead. As a scientist, I am standing on the shoulders of giants, and you have helped me to widen my horizon far beyond what I ever thought possible.

To begin with, I would like to express my gratitude to my supervisors Richard Oliver, Robert Trengove and Peter Solomon. You have guided me well throughout this project, each of you helping to the best of their powers to take out or, in fact, put back in just the right amount of crazy into science. You were a source for both inspiration and knowledge, and helped me develop myself into an efficient and self-sufficient scientist.

Much appreciated also is the support by all members past and present of the ACNFP and the Separation Science and Metabolomics Laboratory, showing “the new guy” the way around, making sure there’s “never a dull day at Murdoch” and keeping the labs running smoothly and efficiently even in the most turbulent of times.

Then, there are three particularly colourful characters that came along the way with me: KC, Master of Rackets, Proteins and Photography; Joel, the externalised extension to my own Id; and Garth, the Obi Wan Kenobi of MS, Music and all things SciFi. I can only think of one word that describes the importance of every single one of you to me - Friend!
Finally, to my parents and to Eva, you deserve special thanks. You are the constants in my life, my resting place. Without your support in all these years, your love and understanding, I would not have accomplished anything. You brought me this far, together we will go much, much further still.
ABSTRACT

Stagonospora nodorum is a necrotrophic fungal pathogen of wheat and related grasses. It is the causal agent of *Stagonospora nodorum* blotch of wheat, a major disease causing upwards of 100 million dollars (AU$) damage in yield loss per annum.

Stagonospora nodorum is a member of the Dothideomycete class of filamentous ascomycetes. Within this class are numerous plant pathogens that rely on secondary metabolite (SM) phytotoxins of the polyketide class as pathogenicity and/or virulence factors. While the production of proteinaceous host specific toxins has been studied extensively in *S. nodorum*, the role of secondary metabolites in the pathogenic lifecycle of this fungus is completely unexplored.

In this study a combination of bioinformatics, molecular biology and analytical chemistry techniques are used to investigate polyketide synthesis in *S. nodorum*. *In silico* analysis of polyketide synthase (PKS) gene and protein sequences was used to catalogue and classify the PKS repertoire of *S. nodorum*, assign putative functions to PKS genes based on homology, identify PKS gene clusters and elucidate the phylogenetic history of PKSs in *S. nodorum*. Transcriptomics techniques were used to identify genes active during important stages of the pathogenic lifecycle as candidates for targeted gene deletion experiments. The role these genes play in host colonisation and disease progression was analysed using knockout mutagenesis and *in vitro* and *in planta* characterisation of mutant strains. Secondary metabolite extraction and LC-MS analysis techniques were evaluated to identify key compounds produced by the wild type fungus that were differentially abundant in the knockout mutants.
With this approach, a highly conserved alternative melanisation pathway gene cluster involving the putative DHN-melanin synthase *MEL1*, a putative oxidoreductase and a putative transcription factor has been identified. Further findings highlighted a rapid evolution and plasticity of PKS genes in *S. nodorum*. Knockout mutants for the *SMS1*, *PKS1* and *PKS3* polyketide synthase genes have been generated and were tested for defects in pathogenicity, metabolism and sporulation. No significant differences to the wild type were detected, indicating a menial role for these genes during pathogenesis. An SPE based method for isolating SM from culture filtrate was developed and used to identify compounds produced by *S. nodorum* in liquid culture, as well as two putative polyketide products absent in cultures of the *SMS1* knockout mutant putatively linked to a cryptic mycotoxin pathway.
Table of Contents

1. General Introduction
 1.1 Wheat production and impact of disease
 1.2 Fungal pathogens
 1.3 *Stagonospora nodorum*
 1.4 Secondary metabolism in fungi
 1.4.1 Polyketide Synthesis in Fungi
 1.4.2 Ecological role of fungal secondary metabolites
 1.4.3 Significant fungal secondary metabolites in history
 1.4.3.1 Claviceps alkaloids
 1.4.3.2 Aflatoxins and related mycotoxins
 1.4.3.3 The history of fungal pharmacy
 1.4.3.4 The discovery of Penicillin
 1.4.3.5 Present day fungal pharmaceuticals
 1.5 Secondary metabolites in pathogenesis
 1.5.1 Appressoria function
 1.5.2 Photosensitizers
 1.5.3 Targeting membrane function and energy generation
 1.5.4 Subverting the plant defence
 1.6 Summary and project aims

2. General Materials and Methods
 2.1 Reagents
 2.2 General solutions and media additions
 2.3 Media
 2.4 *S. nodorum* strain and culturing conditions
 2.5 Isolation of fungal spores
 2.6 Storage of fungal strains
 2.7 Wheat Cultivars and Growth Conditions
 2.8 Primer sequences
2.9 Isolation of fungal genomic DNA ... 46
2.10 Nucleic acid synthesis ... 46
2.11 Gel electrophoresis ... 48
2.12 Determination of nucleic acid concentration 48
2.13 Statistical analysis – JMP® .. 48

3 In silico analysis of Polyketide Synthases in Stagonospora nodorum ⎯ 49
3.1 Introduction ... 50
3.2 Materials and methods ... 52
 3.2.1 Orthologs of S. nodorum PKSs in other organisms 52
 3.2.2 Phylogenetic analysis of S. nodorum PKSs 52
 3.2.3 Analysis of secondary metabolite gene clusters 53
3.3 Results ... 54
 3.3.1 Polyketide Synthases in S. nodorum and putative orthologs ... 54
 3.3.2 Phylogeny of S. nodorum PKSs and their orthologs 60
 3.3.3 Gene cluster analysis .. 63
3.4 Discussion ... 67
 3.4.1 Polyketide synthases in S. nodorum 67
 3.4.2 Assigning functions based on homology 69
 3.4.3 Phylogenetic relationship and evolutionary history 70
 3.4.4 Analysis of PKS gene clusters 70
 3.4.5 An alternative melanin pathway in S. nodorum? 72
3.5 Conclusions ... 72

4 Functional Analysis of Polyketide Synthase Genes in Stagonospora nodorum .. 75
4.1 Introduction ... 76
4.2 Materials and Methods ... 79
 4.2.1 Validation of microarray data by qRT-PCR 79
 4.2.1.1 Sample preparation ... 79
 4.2.1.2 RNA extraction ... 79
 4.2.1.3 Reverse Transcription ... 80
4.2.1.4 qRT-PCR

4.2.2 Targeted gene disruption (knockout) experiments

4.2.2.1 Buffers and solutions

4.2.2.2 Synthesis of knockout constructs

4.2.2.3 Generating Protoplasts

4.2.2.4 Transformation of Protoplasts

4.2.2.5 Transformant Screening

4.2.3 Analysis of *S. nodorum* knockout Mutants

4.2.3.1 Growth assay

4.2.3.2 Whole Plant Spray

4.2.3.3 Latent Period Assay

4.2.3.4 Detached Leaf Assay

4.3 Results

4.3.1 Selecting knockout candidates

4.3.2 Validation of microarray data by qRT-PCR

4.3.3 Generation and screening of knockout mutants

4.3.4 General characterisation of mutants

4.3.5 Growth Assay

4.3.6 Whole plant spray assays

4.3.7 Detached leaf assays

4.3.8 Sporulation

4.4 Discussion

4.5 Conclusions

5 Method evaluation and application for LC-MS analysis of *Stagonospora nodorum*

5.1 Introduction

5.1.1 Solid Phase Extraction (SPE) for sample preparation

5.1.2 Analytical technologies

5.1.2.1 Liquid Chromatography

5.1.2.2 Mass spectrometry
5.1.3 Metabolomics of *Stagonospora nodorum* 118

5.2 Materials and Methods 121

5.2.1 Solid substrate cultures 121

5.2.1.1 Media and culturing conditions 121

5.2.1.2 Sampling 121

5.2.1.3 Extraction methods 121

5.2.1.4 Sample preparation for LC-MS analysis 122

5.2.2 Liquid media cultures 123

5.2.2.1 Media and culturing conditions 123

5.2.2.2 Sampling 123

5.2.2.3 Extraction methods 124

5.2.2.4 Sample preparation for LC-MS analysis 125

5.2.3 LC-MS instrumentation and parameters 126

5.2.4 Data analysis 127

5.3 Results 129

5.3.1 Assessing media and extraction techniques 129

5.3.1.1 Solid substrate cultures according to Nielsen and Smedsgaard (2003) 129

5.3.1.2 Solid substrate cultures according to Smedsgaard (1997) 138

5.3.1.3 Liquid media cultures according to Gummer (2012) 144

5.3.2 Comparative screening of SN15 and sms1 for secondary metabolites 152

5.3.3 Multivariate analysis 157

5.4 Discussion 160

5.4.1 Plate based assays –quick and dirty 160

5.4.2 A flask-based culturing and extraction method 162

5.4.3 Comparative LC-MS screening of SN15 and sms1 for secondary metabolites 164

5.5 Conclusions 168
6 Final conclusions and outlook .. 170
6.1 Project outcome and outlook ... 171
6.2 On the mycotoxigenic potential of S. nodorum 173
Bibliography ... 174
7 Appendices ... 204
LIST OF FIGURES

Figure 1-1 Wheat growing regions of Australia .. 3
Figure 1-2 Phylogenetic background of *S. nodorum* ... 11
Figure 1-3 Pathogenic life cycle of *Stagonospora nodorum* 12
Figure 1-4 Estimated losses in wheat yield due to *Stagonospora nodorum* 12
Figure 1-5 The common mechanism of polyketide and fatty acid synthesis 16
Figure 1-6 mechanism of 6-MSA synthesis.. 17
Figure 1-7 Ergotism in European arts of the 16th century 22
Figure 1-8 Molecular structures 1-4 .. 29
Figure 1-9 Molecular Structures 5-11... 35
Figure 1-10 Molecular structures 12-13 ... 38
Figure 3-1 Phylogenetic tree based on SNOG_00477 and putative orthologs.... 61
Figure 3-2 Phylogenetic tree based on SNOG_08614 and putative orthologs.... 61
Figure 3-3 Phylogenetic tree based on SNOG_11981 and putative orthologs.... 62
Figure 3-4 Collinear melanin synthesis clusters in *S. nodorum* and *C. heterostrophus* .. 66
Figure 4-1 Fusion PCR for synthesis of knockout constructs 84
Figure 4-2 Expression profiles of PKS genes up-regulated early *in planta* 92
Figure 4-3 Gene expression of knockout candidates determined by qRT-PCR.. 92
Figure 4-4 Comparison of microarray and qRT-PCR data.................................. 93
Figure 4-5 Screening PCR, gel electrophoresis .. 95
Figure 4-6 Colony morphology of 1mutant and wild-type strains.................... 98
Figure 4-7 Whole plant spray disease scores .. 100
Figure 4-8 Detached leaf assays ... 101
Figure 4-9 Detached leaf assays – average necrotic lesion sizes 102
Figure 4-10 Spore counts *in vitro* and *in planta* for individual strains......... 103
Figure 5-1 The “Omics” cascade... 112
Figure 5-2 Principle steps in SPE .. 112
Figure 5-3 Principle of Electrospray Ionisation.. 117
Figure 5-4 Schematic of an Agilent LC-MSD Ion Trap MS 117
Figure 5-5 Schematic of solid substrate culture sampling 122
Figure 5-6 Data processing – sample chromatogram............................ 128
Figure 5-7 Chromatograms for YMG medium M1 131
Figure 5-8 Chromatograms for V8PDA medium M1 132
Figure 5-9 Chromatograms for CYA medium M1 133
Figure 5-10 Chromatograms for minimal medium M1 134
Figure 5-11 Chromatograms for YMG medium M2 139
Figure 5-12 Chromatograms for V8PDA medium M2 140
Figure 5-13 Chromatograms for CYA medium M2 141
Figure 5-14 Chromatograms for minimal medium M2 142
Figure 5-15 Chromatograms for minimal medium mycelial extract 146
Figure 5-16 Chromatograms for minimal medium culture filtrate 147
Figure 5-17 Ion chromatograms for liquid minimal media samples 148
Figure 5-18 Comparison of pooled SN15 MM samples obtained from different methods.. 149
Figure 5-19 Differences detected between KO and WT samples 155
Figure 5-20 Compound 110 is present in both sample sets 156
Figure 5-21 Principal Component Analysis I .. 158
Figure 5-22 Principal Component Analysis II 159
Figure 5-23 Biosynthesis of Ochratoxin A .. 167
LIST OF TABLES

Table 1-1 Impact of fungal wheat pathogens in Australia.................................4
Table 2-1 List of names and sequences of PCR primers used in this study47
Table 3-1 Polyketide Synthase genes in S. nodorum56
Table 3-2 Orthologs of selected S. nodorum PKSs (following pages)56
Table 3-3 blastp analysis of the putative SMS1 gene cluster64
Table 3-4 blastp analysis of the putative PKS10 gene cluster65
Table 3-5 blastp analysis of the putative MEL1 gene cluster65
Table 3-6 tblastn analysis of the C. nicotianae cercosporin gene cluster66
Table 3-7 Number of putative PKS genes in different fungi68
Table 4-1 Schematic of the 96well microtitre plate layout for growth assays ...87
Table 5-1 Compounds resolved per medium M1 ..135
Table 5-2 compounds resolved per medium for M2143
Table 5-3 Compounds resolved using the flask method150
Table 5-4 Compounds resolved in liquid minimal medium culture filtrate of SN15 and Sms1 ...153
LIST OF APPENDICES

Appendix I Orthologs of the *S. nodorum* PKSs (following pages) 205
Appendix II Phylogenetic trees for *S. nodorum* PKSs and orthologs 229
Appendix III Putative SM gene clusters as predicted by SMURF (following pages) .. 241
Appendix IV Microarray data for *in planta* expressed PKS genes 272
Appendix V Gene expression data as determined by qRT-PCR 272
Appendix VI Comparison of microarray and qRT-PCR data.......................... 272
Appendix VII Growth assay results for *individual* knockout mutants 273
Appendix VIII Tukey-Kramer analysis of growth assays............................... 276
Appendix IX Disease scores .. 279
Appendix X Detached leaf assays – necrotic lesion sizes 280
Appendix XI Spore counts in vitro and *in planta* for *individual* strains 282
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>US/AU$</td>
<td>US/Australian Dollar</td>
</tr>
<tr>
<td>(g/c)DNA</td>
<td>(genomic/copy) Desoxyribonucleic acid</td>
</tr>
<tr>
<td>(m)RNA</td>
<td>(messenger) Ribonucleic acid</td>
</tr>
<tr>
<td>(q)PCR</td>
<td>(quantitative) Polymerase Chain Reaction</td>
</tr>
<tr>
<td>[M+H/Na]$^+$</td>
<td>Proton/Sodium adduct ion</td>
</tr>
<tr>
<td>ACN</td>
<td>Acetonitrile</td>
</tr>
<tr>
<td>ACP</td>
<td>Acyl Carrier Protein (domain)</td>
</tr>
<tr>
<td>AME</td>
<td>Alternariol Monemethylether</td>
</tr>
<tr>
<td>AMU</td>
<td>Atomic Mass Unit</td>
</tr>
<tr>
<td>ANE</td>
<td>Altenuene</td>
</tr>
<tr>
<td>AOH</td>
<td>Alternariol</td>
</tr>
<tr>
<td>AT</td>
<td>Acetyltransferase (domain)</td>
</tr>
<tr>
<td>bp</td>
<td>base pair(s)</td>
</tr>
<tr>
<td>BC</td>
<td>Before Christ</td>
</tr>
<tr>
<td>℃</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>C/RP18</td>
<td>Octadecyl-</td>
</tr>
<tr>
<td>CoA</td>
<td>Coenzyme A</td>
</tr>
<tr>
<td>CID</td>
<td>Collision Induced Dissociation</td>
</tr>
<tr>
<td>CS</td>
<td>Complete Supplement</td>
</tr>
<tr>
<td>cv</td>
<td>cultivar</td>
</tr>
<tr>
<td>CYA</td>
<td>Czapek Yeast Extract Agar</td>
</tr>
<tr>
<td>Cyc</td>
<td>Cyclase (domain)</td>
</tr>
<tr>
<td>CZ</td>
<td>Czapek-Dox</td>
</tr>
<tr>
<td>d</td>
<td>day(s)</td>
</tr>
<tr>
<td>Da</td>
<td>Dalton</td>
</tr>
<tr>
<td>DEPC</td>
<td>diethylpyrocarbonate</td>
</tr>
<tr>
<td>DH</td>
<td>Dehydrogenase (domain)</td>
</tr>
<tr>
<td>di H$_2$O</td>
<td>deionised Water</td>
</tr>
<tr>
<td>DLA</td>
<td>Detached Leaf Assay</td>
</tr>
<tr>
<td>dpi</td>
<td>days post inoculation</td>
</tr>
<tr>
<td>ER</td>
<td>Enoylreductase (domain)</td>
</tr>
<tr>
<td>ESI</td>
<td>atmospheric pressure electrospray ionisation</td>
</tr>
<tr>
<td>EtOH</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Symbol</td>
<td>Term</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
</tr>
<tr>
<td>FA</td>
<td>Formic Acid</td>
</tr>
<tr>
<td>FB1</td>
<td>Fumonisin B1</td>
</tr>
<tr>
<td>f.sp.</td>
<td>forma specialis</td>
</tr>
<tr>
<td>g, g</td>
<td>gram, gravitational constant</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>Gris</td>
<td>griseofulvin</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>H⁺</td>
<td>proton</td>
</tr>
<tr>
<td>H₂O</td>
<td>water</td>
</tr>
<tr>
<td>HEX</td>
<td>hexane</td>
</tr>
<tr>
<td>IT</td>
<td>ion trap</td>
</tr>
<tr>
<td>KO</td>
<td>targeted gene disruption (Knock Out)</td>
</tr>
<tr>
<td>KR</td>
<td>Ketoreductase (domain)</td>
</tr>
<tr>
<td>KS</td>
<td>Ketosynthase (domain)</td>
</tr>
<tr>
<td>I</td>
<td>liter</td>
</tr>
<tr>
<td>LC</td>
<td>liquid chromatography</td>
</tr>
<tr>
<td>(l)N₂</td>
<td>(liquid) Nitrogen</td>
</tr>
<tr>
<td>LPA</td>
<td>Latent Period Assay</td>
</tr>
<tr>
<td>m</td>
<td>Milli-</td>
</tr>
<tr>
<td>M</td>
<td>molar, also: Mega-, Molecular Ion</td>
</tr>
<tr>
<td>m/z</td>
<td>mass per charge ratio</td>
</tr>
<tr>
<td>MAPK</td>
<td>Mitogen Activated Protein Kinase</td>
</tr>
<tr>
<td>MeOH</td>
<td>Methanol</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mQ H₂O</td>
<td>double distilled (MilliQ®) Water</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>6-MSA</td>
<td>6-methylsalicylic acid</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>n</td>
<td>Nano-</td>
</tr>
<tr>
<td>NRPS</td>
<td>Non-ribosomal peptide synthase</td>
</tr>
<tr>
<td>p.a.</td>
<td>per year (per annum)</td>
</tr>
<tr>
<td>PAMP</td>
<td>pathogen associated molecular pattern</td>
</tr>
<tr>
<td>PC(A)</td>
<td>Principal Component (Analysis)</td>
</tr>
<tr>
<td>PDA/B</td>
<td>Potato Dextrose Agar/Broth</td>
</tr>
<tr>
<td>PKS</td>
<td>Polyketide Synthase</td>
</tr>
</tbody>
</table>
phleo phleomycin
psi pounds per square inch
Rif Rifampicin
RBH reciprocal best hit
RP(18) Reverse Phase (octadecyl silica)
rpm rounds per minute
RT retention time, also: Reverse Transcriptase/Transcription, Room Temperature
s second(s)
SM secondary metabolite
SPE Solid Phase extraction
stdev standard deviation
TE Thioesterase (domain)
(q)TOF (quadrupole) Time-of-flight
V Volt
v/v volume per volume
V8 Campbell’s V8 Juice
WPS Whole Plant Spray
YMG Yeast Extract, Malt Extract, Glucose Medium