Cardiovascular response to intermittent high intensity double- and single-legged cycling

Miss Nicole Gordon

2013
This thesis is submitted as partial fulfilment of the requirements for the degree of Bachelor of Exercise Physiology (Honours) at Murdoch University, Perth, Western Australia.

I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

(Miss Nicole Gordon)
I acknowledge that a copy of this thesis will be held at the Murdoch University Library.

I understand that, under the provisions of s51.2 of the Copyright Act 1968, all or part of this thesis may be copied without infringement of copyright where such a reproduction is for the purposes of study and research.

This statement does not signal any transfer of copyright away from the author.

Signed:

Full name of degree: Bachelors of Exercise Physiology with Honours

Thesis title: Cardiovascular response to intermittent high intensity double- and single-legged cycling.

Author: Miss Nicole Gordon

Year: 2013
Acknowledgements

Special thanks to my supervisor Dr Jeremiah Peiffer for his support, encouragement and patience throughout my honours year. Without him, this study would not be what it is today and I am eternally thankful. A special thanks to my co-supervisor Dr Chris Abbiss for his time and effort into helping me make the most out of my study. For the loan of the counter-weight device used during the single-legged cycling and his participation in the study.

To Emma Zadow, many thanks for her support and assistance throughout the entire year. Her help in the laboratory and keeping me focussed has made this year possible and couldn't imagine having done it any other way.

I would also like to thank the staff at Murdoch University for their ongoing support and participation in the study.

Finally, I would like to thank my friends and family for all their support and patience throughout this year. Their encouragement and understanding has been next to none and is greatly appreciated.
Table of Contents

TABLE OF FIGURES ... vii

TABLE OF TABLES ... viii

ABSTRACT ... 1

CHAPTER ONE: INTRODUCTION ... 4
 1.1 BACKGROUND TO STUDY .. 4
 1.2 PURPOSE STATEMENT .. 7
 1.3 RESEARCH QUESTIONS .. 7
 1.4 HYPOTHESES .. 8
 1.5 LIMITATIONS/DELIMITATIONS ... 8

CHAPTER TWO: CRITICAL REVIEW OF LITERATURE ... 10
 2.1 OVERVIEW .. 10
 2.2 CARDIOVASCULAR DISEASE AND PHYSICAL ACTIVITY 11
 2.3 MODERATE-INTENSITY CONTINUOUS EXERCISE .. 13
 2.3.1 American College of Sports Medicine exercise guidelines 13
 2.3.3 Physiological adaptations to moderate-intensity exercise 13
 2.3.4 Changes in cardiovascular disease risk factors associated with moderate- intensity exercise .. 17
 2.4 HIGH-INTENSITY INTERVAL TRAINING ... 18
 2.4.1 Immerging use of high-intensity interval training ... 18
 2.4.2 Changes in VO$_2$max associated with high-intensity exercise 18
 2.4.3 Physiological adaptations to high-intensity interval training 19
 2.4.4 Influence of interval training on cardiovascular risk factors 24
 2.4.5 Cardiac stress associated with interval training .. 25
 2.5 SINGLE-LEGGED CYCLE TRAINING .. 26
 2.5.1 Changes in VO$_2$max associated with single-legged cycling 27
TABLE OF FIGURES

Figure 1. An outline of the study experimental design.. 36

Figure 2. Power output measured during the double- (■) and single-legged (▲) cycling conditions... 40

Figure 3. Mean VO\textsubscript{2} (top), ventilation (middle) and RR (bottom) measured pre-exercise and during each interval in double- (■) and single-legged (▲) cycling conditions.. 41

Figure 4. Heart rate measured pre-exercise and during each interval in double- (■) and single-legged (▲) cycling conditions. ... 43

Figure 5. Systolic (top), diastolic (middle) and mean arterial pressure (bottom) measured pre-exercise, following each interval and 10 minutes post-exercise in the double- (■) and single-legged (▲) cycling conditions. ... 45
TABLE OF TABLES
Table 1. Literature examining cardio-respiratory adaptations resulting from moderate-intensity continuous training in non-elite, healthy and unhealthy individuals... 15
Table 2. Literature examining cardio-respiratory adaptations resulting from high-intensity interval training in non-elite, healthy and unhealthy individuals.................. 21
Table 3. Literature examining cardio-respiratory adaptations resulting from single-legged training in non-elite, healthy and unhealthy individuals. 29
Table 4. Brain natriuertic peptide (BNP) and left ventricular ejection fraction (%) measured pre-exercise and post-exercise in the double- and single-legged cycling conditions. ... 44
Table 5. Ratings of perceived exertion, pain and effort measured following each interval in double- and single-legged cycling conditions. ... 47
ABSTRACT

Although the benefits of high-intensity interval training can be similar or superior to moderate- or low-intensity continuous training, it is possible that not all individuals should undertake such exercise. While high-intensity interval training is currently accepted practice within the cardiovascular rehabilitation setting, some individuals may not be suited to this type of exercise due to their decreased exercise tolerance and diminished cardiovascular function. The use of smaller muscle mass training (e.g. single-legged cycling) can allow localised high-intensity muscle training but avoid cardiac limitations associated with high blood flow demands when training using a large muscle mass. **Purpose:** To examine the differences in cardiovascular stress imposed by double- and single-legged high-intensity interval cycling in order to better understand the physiological responses of such exercise and assist in future training prescription. **Methods:** In a randomised crossover design, ten young, healthy individuals (23 ± 5 years of age, 180 ± 7 cm height, 74 ± 13 kg body weight, 51 ± 9 mL.kg⁻¹.min⁻¹) performed six 1-minute double-legged 'all out' efforts interspersed with 1-minute active recovery and twelve 1-minute single-legged (six with each leg) 'all out' efforts interspersed with 1-minute active recovery in two experimental sessions. Power output, oxygen consumption and heart rate were measured throughout the interval sessions. Blood pressure, oxygen saturation, ratings of perceived exertion, pain in the quadriceps and effort were measured at baseline and immediately following each interval. All self-perceived measures were taken on a 0 - 10 scale, with 0 = no perception and 10 = maximum perception. While brain natriuretic peptide (BNP) and left ventricular function were measured pre- and post-exercise. **Results:** Significantly greater power
output (trial average: 340 ± 77 versus 301 ± 101 W, p<0.01) and workload (trial average: 916 ± 73 versus 743 ± 122 kJ, p<0.01) was observed during combined right and left single-legged cycling, when compared with double-legged cycling. Double-legged cycling resulted in greater physiological stress compared with single-legged cycling as shown by increased oxygen consumption (2.81 ± 0.69 versus 1.84 ± 0.43 L.min⁻¹, respectively; p<0.01). Additionally, greater cardiac stress was observed during and resulting from double-legged cycling when compared with single-legged cycling as shown by increased inter-interval heart rate (161 ± 7 versus 142 ± 7 bpm, respectively, p<0.01) and systolic blood pressure (180 ± 17 versus 166 ± 21 mmHg, respectively, p<0.01) as well as lower end-session left ventricular ejection fraction (pre-post change: 11.5 ± 1.8 versus 2.6 ± 1.3 %, respectively; p<0.05). BNP increased pre- to post-exercise (24 ± 8 versus 27 ± 8 pg.mL⁻¹), however, no differences were observed between conditions. Overall sessional perceived exertion was lower during single-legged, compared with double-legged cycling (7.2 ± 1.8 and 8.9 ± 0.7 units, respectively; p<0.02), even though inter-interval perceptions of exertion, pain and effort were similar between conditions. **Conclusion:** Single-legged cycling allows individuals to exercise at a greater overall power output; however, under reduced cardiovascular and physiological stress when compared with traditional double-legged cycling. Furthermore, single-legged cycling is perceived as easier, which could benefit compliance if used as a training stimulus. With increased attention placed on the use of high-intensity interval training in diseased populations, results of the present study indicate that single-legged cycling could provide an alternative approach to normal double-legged cycling giving
practitioners a method to quickly enhance metabolic function while allowing individual to exercise with less risk of experiencing an adverse cardiac event.