THE PATHOLOGY OF DEVIL FACIAL TUMOUR DISEASE IN TASMANIAN DEVILS (*SARCOPHILUS HARRISII*).

Richmond Loh Cern-Wan
BSc
BVMS
MACVSc
Murdoch University
Western Australia

A dissertation submitted to Murdoch University for the degree of Master of Philosophy
2006
DECLARATION OF ORIGINALITY

The work described in this thesis is that of the author alone unless otherwise stated in the text. No part of this work has been submitted for any other qualification at this or any other university.

Richmond Loh
Murdoch University
Western Australia
2006
STATEMENT OF AUTHORITY OF ACCESS

This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968.

Richmond Loh
Murdoch University
Western Australia
2006
PREFACE

Give thanks to the creatures of the world for they bring beauty, joy and peace.

We mourn the loss of certain species and pray for the deliverance of endangered ones. Grant them shelter, food, water and fair weather.

Matthew 10:29

For only a few cents you can buy two sparrows, yet not one sparrow falls to the ground without your Father’s consent.

The study of things caused precedes the study of the cause of things.

Richmond Loh
Murdoch University
Western Australia
2006
CONTENTS

DECLARATION OF ORIGINALITY... I
STATEMENT OF AUTHORITY OF ACCESS.. II
PREFACE ... III
ABSTRACT ... VII
ACKNOWLEDGMENTS ... VIII
PUBLICATIONS ARISING FROM THIS WORK ... XI
ABBREVIATIONS .. XII
LIST OF FIGURES ... XIII
LIST OF TABLES .. XVIII

CHAPTER 1 .. 1
GENERAL INTRODUCTION.. 1
 1.1 TASMANIAN DEVIL BIOLOGY.. 1
 1.2 DISEASES IN TASMANIAN DEVILS... 2
 1.3 DISCOVERY OF DFTD.. 6
 1.4 RAMIFICATIONS OF DFTD... 8
 1.5 INVESTIGATION INTO DFTD... 8
 1.6 THE IMPORTANCE OF DISEASE DIAGNOSIS................................. 9
 1.7 DIFFERENTIAL DIAGNOSES FOR DFTD.. 11
 1.8 AIM... 15

CHAPTER 2
THE PATHOLOGY OF DEVIL FACIAL TUMOUR DISEASE (DFTD) IN
THE TASMANIAN DEVIL (SARCOPHILUS HARRISII).......................... 16
 2.1 INTRODUCTION.. 17
 2.2 MATERIALS & METHODS ... 18
 2.2.1 Animals and Sampling.. 18
 2.2.2 Aging Tasmanian Devils ... 21
 2.2.3 Gross Pathology... 22
 2.2.4 Cytology.. 22
 2.2.5 Histology... 23
 2.2.6 Transmission Electron Microscopy (TEM) 25
 2.3 RESULTS... 27
 2.3.1 Geographic and Demographic Distribution of DFTD...................... 27
 2.3.2 Gross Pathology Findings ... 31
 2.3.3 Cytology Results ... 35
 2.3.4 Histopathology Results ... 37
 2.3.5 Special Histological Stains Results ... 44
 2.3.6 TEM Results .. 52
 2.3.7 Other Neoplasms in Wild Tasmanian Devils 54
 2.4 DISCUSSION.. 56
CHAPTER 3

THE IMMUNOHISTOCHEMICAL CHARACTERISATION OF THE NEOPLASM IN DEVIL FACIAL TUMOUR DISEASE (DFTD) IN THE TASMANIAN DEVIL (SARCOPHILUS HARRISII) ..62

3.1 INTRODUCTION..63
3.2 MATERIALS AND METHODS..67
 3.2.1 Animals and sampling..68
 3.2.2 Histology and immunohistochemistry..68
 3.2.3 Antigen retrieval..70
 3.2.4 Primary antibody incubation..71
 3.2.5 Amplification and application of chromogens.....................................72
 3.2.6 Quantification of cells showing antigen expression............................73
 3.2.7 Photography...74
3.3 RESULTS..74
3.4 DISCUSSION...83

CHAPTER 4

GENERAL DISCUSSION, LIMITATIONS & FUTURE DIRECTIONS92

REFERENCES..97

APPENDIX 1: FIGURES AND TABLES...102
 1.1 CASES OF DFTD FOR THE PERIOD 1997 – 2004..........................102
 1.2 INCIDENCE OF METASTASES IN DFTD CASES..........................105
 1.3 THE OCCURRENCE OF NEOPLASIA IN OTHER SPECIES...............106
 1.4 CANINE TRANSMISSIBLE VENEREAL TUMOUR COMPARED WITH DEVIL FACIAL TUMOUR DISEASE...107
 1.5 GROSS SCORING OF DFTD...108
 1.6 HISTOLOGICAL SCORING OF DFTD...109

APPENDIX 2: COMPOSITION OF FIXATIVES..110
 2.1 NEUTRAL BUFFERED FORMALIN SOLUTION (NBF)......................110
 2.2 CACODYLATE BUFFER...110
 2.3 KARNOVSKY’S FIXATIVE..111
 2.4 PARAFORMALDEHYDE/FORMALDEHYDE 20%..............................111

APPENDIX 3: HISTOLOGICAL STAINS...112
 3.1 ALCIAN BLUE AT pH 2.5 FOR ACID MUCINS..................................113
 3.2 ALDEHYDE FUCHSIN (MODIFIED) FOR NEUROENDOCRINE CELLS...115
 3.3 CONGO RED (ALKALINE) METHOD (PUCHTLER, SWEAT AND LEVINE 1962)..117
 3.4 HAEMATOXYLIN & EOSIN ..119
 3.5 GORDON AND SWEET’S METHOD...122
 3.6 GRIMELIUS FOR ARGYROPHILIC ELEMENTS................................125
 3.7 MASSON-FONTANA METHOD FOR MELANIN GRANULES...........128
 3.8 MASSON’S TRICHROME STAIN...131
 3.9 METHYL GREEN PYRONIN FOR DNA/RNA......................................134
 3.10 PERIODIC ACID SCHIFF (PAS) REACTION (MCMANUS 1946).........137
 3.11 SINGH’S ARGENTAFFIN TECHNIQUE..140
 3.12 TOLUIDINE BLUE METHOD..142
 3.13 VAN GIESON STAIN..144
 3.14 VERHOEFF’S METHOD...147
APPENDIX 4: IMMUNOHISTOCHEMICAL SOLUTIONS & PROTOCOLS... 149

4.1 LIST OF IMMUNOHISTOCHEMICAL STAINS AND THEIR USE...... 149
4.2 SUMMARY TABLE OF IHC PROTOCOLS.. 151

4.3 SOLUTIONS ... 152
3,3’-Diaminobenzidine (DAB) ... 152
EDTA pH 8 (for antigen retrieval bath) .. 152
Hydrogen peroxide working solution (for quenching endogenous peroxidase) ... 152
0.02M Phosphate buffered saline, pH 7.6 (for washing slides) 152
Sorenson’s Phosphate Buffer ... 152
Sucrose citrate buffer, pH 6.5 (for antigen retrieval bath) 153
Tris Buffered Saline (TBS) pH 7.8 (for washing slides) 153
Tris buffer pH 9 (for antigen retrieval bath) 153
0.01M Tri-sodium-citrate buffer pH6.0 ... 153

4.4 IHC PROTOCOLS ... 154
IHC Protocol – SMA (labelled streptavidin biotin2 only) 154
IHC Protocol – CD16 (EDTA pH8, Steamer & Envision) 156
IHC PROTOCOL – EMA (PROTEINASE K/TRIS ANTIGEN RETRIEVAL) 158
IHC Protocol – GFAP (Proteinase K/Tris Antigen Retrieval) 160
IHC Protocol – CD57 (citric pH 6.5 retrieval) 162
IHC Protocol – Melan A, Desmin and vWF (Sucrose citric pH6.5, microwave & LSAB2) 164
IHC Protocol – CD3 (TES pH9, Microwave and Envision) 166
IHC Protocol using TES pH9, Microwave and LSAB2 168

4.5 PREPARATION OF TISSUE SECTIONS .. 170
FIXATION AND DEWAXING .. 170
COUNTER STAINING .. 170

APPENDIX 5: PRODUCT INFORMATION SHEETS (ENCLOSED CD). .. 171
CD 3 ... 171
CD16 .. 171
CD57 .. 171
CD79α .. 171
CHROMOGRAINAN A .. 171
CYTokeratin .. 171
DESMIN .. 171
EPITHELIAL MEMBRANE ANTIGEN .. 171
GLIAL FIBRILLARY ACID PROTEIN ... 171
MELAN A .. 171
NEURON SPECIFIC ENOLASE .. 172
S-100 .. 172
SMOOTH MUSCLE ACTIN ... 172
SYNAPTOPHYSIN ... 172
VIMENTIN ... 172
VON WILLEBRAND FACTOR ... 172
ANTIBODY DILUENT .. 172
PROTEINASE K .. 173
PROTEIN BLOCK .. 173
LSAB 2 SYSTEM – HRP .. 173
ENVISION SYSTEM – HRP LABELLED POLYMER 173
APAAP SYSTEM .. 173
ABSTRACT

The pathology of a disfiguring and debilitating fatal disease affecting a high proportion of the wild population of Tasmanian Devils (*Sarcophilus harrisii*) that was discovered is described. The disease, named devil facial tumour disease (DFTD), has been identified in devils found across 60% of the Tasmanian landscape. The prevalence of this disease was extremely variable, possibly reflecting seasonal trapping success. Between 2001 and 2004, 91 DFTD cases were obtained for pathological description. Grossly, the tumours presented as large, solid, soft tissue masses usually with flattened, centrally ulcerated and exudative surfaces. They were typically multi-centric, appearing first in the oral, face or neck regions. Histologically, the tumours were composed of circumscribed to infiltrative nodular aggregates of round to spindle-shaped cells often within a pseudocapsule and divided into lobules by delicate fibrous septae. They were locally aggressive and metastasised in 65% of cases. There was minimal cytological differentiation amongst the tumour cell population under light and electron microscopy. The diagnostic values of a number of immunohistochemical stains were employed to further characterise up to 50 representative cases. They were negative for cytokeratin, epithelial membrane antigen, von Willebrand factor, desmin, glial fibrillary acid protein, CD16, CD57, CD3 and LSP1. DFTD cells were positive for vimentin, S-100, melan A, neuron specific enolase, chromogranin A and synaptophysin. In conclusion, the morphological and immunohistochemical characteristics together with the primary distribution of the neoplasms indicate that DFTD is an undifferentiated neoplasm of neuroendocrine histogenesis.
ACKNOWLEDGMENTS

This project was funded by the Department of Primary Industries & Water and also by the Commonwealth Research Training Scheme, and has been supported by the Australian Wildlife Health Network.

I am deeply indebted to Margaret Williams, my manager at DPIW, for giving me this opportunity to do the work and study.

I wish to thank my academic supervisors, Shane Raidal and Amanda O’Hara for their constant support, enthusiasm and encouragement during the course of this project and for many valuable insights into the work described in this thesis. They deserve my immense gratitude.

It has been a collaborative effort and many bodies and minds have contributed to my effort.

Stephen Pyecroft, my work-place supervisor, has generously shared his time and knowledge to produce publishable manuscripts and has been a great mentor in issues surrounding work, social and life in general.

I would like to thank Dane Hayes especially for all his untiring work in churning out countless histological slides and preparing the samples for electron microscopy. He is a machine!

Jemma Bergfeld and Robyn Sharpe helped collect samples from the field trips to add statistical weight to the pathology investigation (and doing some sight-seeing at the same time).

I would like to thank Ashkan Mahjoor who assisted with the tabulation of histological data and for helping with the selection of relevant immunostains.
I am greatly indebted to Michael Slaven and Gerard Spoelstra for their help and advice on the immunostaining. It was an information mine-field and they helped me develop IHC protocols for the various antibodies and with trouble-shooting.

I also owe my gratitude to the many private veterinary clinicians at clinics in Launceston, Montrose, Kingston, Smithton, Penguin, Devonport and Longford as well as the wildlife parks that have provided samples and cases for examination.

Testing was performed in the Animal Health Laboratories of DPIW Tasmania; Murdoch University, WA; University of Sydney, NSW; AAHL, Victoria and at Royal Hobart Hospital, Tasmania.

Many thanks also go to Catherine Marshall, Alex Hyatt, Jamie Chapman, Andrew Parker, and Peter Fallon for their assistance with histological and electron microscopic examination and interpretations.

Thanks are due to Judy Rainbird, Kathryn Medlock, David Pemberton at Queen Victoria Museum and the Tasmanian Museum and Art Gallery for allowing me to examine the archived materials.

I would like to thank Phillip Clark for his advice on the cytology section.

My heartfelt thanks to Phil Ladds, Brad Chadwick, Roy Mason, Majid Ghoddusi, Karrie Rose, Bruce Rideout, Ray Lowenthal, Tony Ross, Paul Canfield, Jane Sammons, Bruce Jackson, David Obendorf, Paul Tucker, Susan Hemsley, Mark Krockenberger, Rupert Woods, Vanessa Di Giglio, Tim McManus, Philip Nicholls, Sandy Mclachlan, Jo Meers, Rachael Tarlinton, Jon Hanger, Jeff McKee, John Rasko, Chuck Bailey, Tim Holton, Kelly O’Sullivan and David Middleton for providing data and feedback on the results.
The project has also been strongly supported by my colleagues. I am particularly grateful to Nick Mooney, Clare Hawkins, Billie Lazenby, Menna Jones, Heather Hesterman and Jason Wiersma at the Resource Management Branch of DPIW for the collection of samples.

All this work could not have been accomplished without great technical support from Nolan Fox, Kate Swift, Leah Parker, Erin Noonan, Lisa Edwards, Denise Wells, Robyn Aylmer, Megan Barney, Kate Young, Bronwyn Gardner, Jim Talbot, Chris Emms, Anne-Lucaudo Wells, Margaret Quill, Anne-Marie Pearse, Peter Verwey, Karen Nutter, Bonnie Bealle, Jim Lentern, Pat Statham, Bruce Cullen, Glenn Maclaren, Margaret Sharp and Sofia Obradovich.

My parents, John and Agatha, have helped to do the proof reading and my brothers Des and Ray have provided me with a lot of sound advice and encouragement throughout my work.

I would also like to thank Amy for her patience with all my work.

I thank God for making it possible for me to complete this thesis and allowing me to meet so many wonderful people in the process.
PUBLICATIONS ARISING FROM THIS WORK

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARWH</td>
<td>Australian Registry of Wildlife Health</td>
</tr>
<tr>
<td>CD</td>
<td>cluster differentiation</td>
</tr>
<tr>
<td>CgA</td>
<td>chromogranin A</td>
</tr>
<tr>
<td>CK</td>
<td>cytokeratin</td>
</tr>
<tr>
<td>DAB</td>
<td>3,3'-diaminobenzidine</td>
</tr>
<tr>
<td>DFTD</td>
<td>Devil Facial Tumour Disease</td>
</tr>
<tr>
<td>DFTDH</td>
<td>DFTD Histology score</td>
</tr>
<tr>
<td>DFTHG</td>
<td>DFTD Gross score</td>
</tr>
<tr>
<td>DIW</td>
<td>deionised water</td>
</tr>
<tr>
<td>DPIW</td>
<td>Department of Primary Industries & Water</td>
</tr>
<tr>
<td>DPX</td>
<td>di-butyl-polystyrene-xylene</td>
</tr>
<tr>
<td>EDTA</td>
<td>(hydroxymethyl) aminomethane</td>
</tr>
<tr>
<td>EMA</td>
<td>ethylenediaminotetraacetic acid</td>
</tr>
<tr>
<td>ES</td>
<td>epithelial membrane antigen</td>
</tr>
<tr>
<td>ES</td>
<td>Ewing's sarcoma</td>
</tr>
<tr>
<td>FFPE</td>
<td>formalin-fixed paraffin-embedded</td>
</tr>
<tr>
<td>GFAP</td>
<td>glial fibrillary acidic protein</td>
</tr>
<tr>
<td>hpf</td>
<td>high power field (equivalent to 400x magnification)</td>
</tr>
<tr>
<td>IHC</td>
<td>immunohistochemistry</td>
</tr>
<tr>
<td>LSP1</td>
<td>leucocyte specific antigen</td>
</tr>
<tr>
<td>Mel A</td>
<td>melan A</td>
</tr>
<tr>
<td>MGP</td>
<td>methyl green pyronin</td>
</tr>
<tr>
<td>MVA</td>
<td>motor vehicle accident</td>
</tr>
<tr>
<td>NBF</td>
<td>10% neutral buffered formalin</td>
</tr>
<tr>
<td>NET</td>
<td>neuroendocrine tumour</td>
</tr>
<tr>
<td>NSE</td>
<td>neuron specific enolase</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>RMC</td>
<td>Resource Management Branch, DPIW</td>
</tr>
<tr>
<td>SMA</td>
<td>smooth muscle actin</td>
</tr>
<tr>
<td>TAHL</td>
<td>Tasmanian Animal Health Laboratory, DPIW</td>
</tr>
<tr>
<td>TBS</td>
<td>tris buffered saline</td>
</tr>
<tr>
<td>TEM</td>
<td>transmission electron microscopy</td>
</tr>
<tr>
<td>TVT</td>
<td>canine transmissible venereal tumour</td>
</tr>
<tr>
<td>vWF</td>
<td>von Willebrand factor</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Fig. 1.1</th>
<th>Healthy Tasmanian devils fighting over a carcass, Road-kill and injured animals make up a large proportion of their diet. Picture courtesy of Christo Baars, Netherlands.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig. 2.1</td>
<td>Polyurethane pipes with side slots for ventilation and a sliding trap door are favoured over the traditional metal traps which can cause traumatic injuries to the Tasmanian devils when they try to escape.</td>
</tr>
<tr>
<td>Fig. 2.2</td>
<td>General anaesthesia of Tasmanian devils allows quicker and safer sample collection and causes less stress to the animals so they can be released soon after the procedure.</td>
</tr>
<tr>
<td>Fig. 2.3</td>
<td>Upper canines and the ventral molars are reliable tools for aging Tasmanian devils. This cast was taken from a 2 year old Tasmanian devil.</td>
</tr>
<tr>
<td>Fig. 2.4a</td>
<td>Location and number of Tasmanian devils that have been sampled for histological examination for the period January 1991 to December 2004 (n = 459). For the period pre-2001, n = 11; in 2001, n = 4; in 2002, n = 5; in 2003, n = 64 and in 2004, n = 375.</td>
</tr>
<tr>
<td>Fig. 2.4b</td>
<td>Map showing the 41 locations where DFTD was confirmed by laboratory diagnosis in this study (n = 91), reflecting the extent of Devil Facial Tumour Disease (DFTD) for the period spanning 2001 and 2004. Bar = 50km.</td>
</tr>
<tr>
<td>Fig. 2.5</td>
<td>An early case of DFTD in an animal. A small nodule (arrow) located at the rostral part of the chin at the central midline.</td>
</tr>
<tr>
<td>Fig. 2.6</td>
<td>Multicentric tumours. DFTD lesions occurred subcutaneously and form circumscribed masses with a flat ulcerative surface.</td>
</tr>
<tr>
<td>Fig. 2.7</td>
<td>Extensive DFTD lesion affecting the lower jaw in this Tasmanian devil.</td>
</tr>
<tr>
<td>Fig. 2.8</td>
<td>The cut surface of the tumour showing a multifocal coalescing solid mass of glistening pale tissue, often with central necrosis. Bar = 4 cm.</td>
</tr>
</tbody>
</table>
Fig. 2.9 Cytological preparation of a fine needle aspirate of DFTD. All cells pictured are DFTD cells. They are large round cells and tended to clump. Diff quick. Bar = 25µm.

Fig. 2.10 Cytological preparation of a fine needle aspirate of DFTD showing anisocytosis. Diff quick. Bar = 25µm.

Fig. 2.11 DFTD in facial skin. The neoplasm occurs in the dermis and present as well circumscribed masses, compressing the surrounding connective tissue. E = epithelium, SC = stratum compactum, H = hair follicle, N = DFTD neoplasm. H&E, Mag x4. Bar = 300µm.

Fig. 2.12 Architectural variations of DFTD with most cells forming bundles (a) and some presenting as palisades (b), clumps (c), nests (d), or sheets (e). H&E, Mag x10. Bar = 100µm.

Fig. 2.13 Neoplastic cells in DFTD are essentially round to pleomorphic cells (left) with fibrillar cytoplasmic material and indistinct cytoplasmic borders (right). H&E, Mag x40 & x100 and Bar = 40µm & 15µm respectively.

Fig. 2.14 Necrosis usually appear to occur centrally at first (left) and then progresses peripherally (right). H&E, Mag x4.

Fig. 2.15 Metastatic locations of DFTD (asterisk): submandibular lymph node (a), lung (b), spleen (c), heart (d), ovary (e), rib serosa (f), kidney (g), mammary (h), adrenal (i) and pituitary gland (j). H&E Mag. x4.

Fig. 2.16 Positive reaction on a section of Tasmanian devil intestinal mucosa (inset) and negative reaction on a section of DFTD neoplasm using the Alcian blue technique for acid mucins. Mag. x40.

Fig. 2.17 Positive reaction on a section of Tasmanian devil pancreas (inset) and negative reaction on a section of DFTD neoplasm using the aldehyde fuchsin technique for insulin. Mag. x40.
Fig. 2.18 Positive reaction on a section of bovine metastatic melanoma to the liver (inset) and negative reaction on a section of DFTD neoplasm using the Masson’s Fontana technique. Mag. x40.

Fig. 2.19 Positive reaction on a section of Tasmanian devil skeletal muscle (inset) and negative reaction on a section of DFTD neoplasm using the Gordon and Sweet technique for reticulin. Mag. x40.

Fig. 2.20 Positive reaction on a section of Tasmanian devil intestine (inset) and negative reaction on a section of DFTD neoplasm using the PAS technique for carbohydrates. Mag. x40.

Fig. 2.21 Positive reaction on a section of Tasmanian devil skin (inset) and negative reaction on a section of DFTD neoplasm using toluidine blue technique for mast cell granules. Mag. x40.

Fig. 2.22 Positive reaction on a section of Tasmanian devil artery (inset) and negative reaction on a section of DFTD neoplasm using Verhoeff technique for elastin. Mag. x40.

Fig. 2.23 Tasmanian devil spleen was used for the positive (top, inset) and negative (bottom, inset) control tissue using the methyl green pyronin technique for RNA and DNA. DFTD stained positive (top) which was confirmed with the contrast in RNAse stained DFTD cells (bottom). Mag. x40.

Fig. 2.24 Positive reaction on a section of Tasmanian devil intestinal mucosa (inset) and negative reaction on a section of DFTD neoplasm using the Mason’s trichrome technique for connective tissue. Mag. x40.

Fig. 2.25 Positive reaction on a section of Tasmanian devil muscle (inset) and negative reaction on a section of DFTD neoplasm using the Van Gieson technique for collagen. Mag. x40.
Fig. 2.26 Transmission electron microscopic view of DFTD showing the close apposition of DFTD cells and relative sparseness of ultrastructural features. Bar = 10 µm. DFTD are characterised by vacuolated mitochondria (a, bar = 1 µm), occasional ribosome-lamellar complexes (b = 3 µm), myelin bodies (c, bar = 1 µm) and low numbers of desmosome-like junctions (d, bar = 500nm).

Fig. 2.27 Periosteal osteoblastoma. H&E Mag. x10.

Fig. 2.28 Cutaneous lymphosarcoma. H&E Mag. x4.

Fig. 3.1 Positive reaction on a section of duck liver (inset) but negative on a section of DFTD neoplasm using the Congo red technique for amyloid. Mag x40.

Fig. 3.2 Positive argentaffin reaction on a section of Tasmanian devil adrenal medulla (inset) and negative reaction on a section of DFTD neoplasm using the Singh’s silver technique. Mag x40.

Fig. 3.3 Positive argyrophilic reaction on a section of Tasmanian devil adrenal medulla (inset) but negative on a section of DFTD neoplasm using the Grimelius technique. Mag x40.

Fig. 3.4 Vimentin stain showing homogenous moderate to high intensity cytoplasmic staining in all DFTD cells (inset, positive control tissue: Tasmanian devil intestinal blood vessel endothelium). Mag x40.

Fig. 3.5 S-100 showing patchy homogenous moderate cytoplasmic staining of DFTD cells (inset, positive control tissue: Tasmanian devil lymph node). Mag x40.

Fig. 3.6 Melan A was positive in 28% of cases with an average of 51% of cells in each case being positive (inset, positive control tissue: Tasmanian devil hair follicle). Mag x40.

Fig. 3.7 Neuron specific enolase showed diffuse homogenous expression in DFTD cells (inset, positive control tissue: Tasmanian devil pancreatic islets). Mag x40.
Fig. 3.8 Chromogranin A was expressed as a low intensity scattered positivity in the cytoplasm of DFTD cells (inset, positive control tissue: Tasmanian devil adrenal medulla). Mag x40.

Fig. 3.9 Synaptophysin showing high intensity granular staining of DFTD cell cytoplasm for of DFTD was strong and homogenous (inset, positive control tissue: Tasmanian devil pancreatic islets). Mag x40.
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1.1</td>
<td>Demographics of neoplasia in captive Tasmanian devils at San Diego Zoo.</td>
<td>4</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>The frequency of diagnosing DFTD.</td>
<td>27</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Demographics of DFTD in wild Tasmanian devil populations.</td>
<td>30</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Colorimetric characteristics of DFTD cells using a suite of special histochemical stains.</td>
<td>45</td>
</tr>
<tr>
<td>Table 3.1</td>
<td>Tabulated results for primary antibody reactivities to DFTD.</td>
<td>77</td>
</tr>
<tr>
<td>Table 3.2</td>
<td>Differential diagnoses for DFTD based on IHC findings and published literature.</td>
<td>86</td>
</tr>
</tbody>
</table>