Population dynamics and ecology of the spinner

(Stenella longirostris) and bottlenose (Tursiops

aduncus) dolphins of Mauritius

Imogen Webster BSc (Hons)

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University,

2011
“It is helpful to be reminded of the teaching of anthropologist Margaret Mead: “Never doubt that a small group of thoughtful, committed citizens can change the world: indeed, it’s the only thing that ever has.” Most of the time, success stories in marine conservation come from painstaking, long-term commitment by individuals or groups who do not allow themselves to be overcome by frustration.”

Giovanni Bearzi – *Marine Conservation on Paper* – page 2

T51 (‘Mother’) and the first newborn bottlenose dolphin recorded -January 2009, neither were seen again during the study.

Spinner dolphin off Morne.
I declare that this thesis is my own account of my research and contains as its main content work, which has not been submitted for a degree at any tertiary education institution.

...

Imogen Webster
Abstract

No detailed study has ever been conducted on the spinner (*Stenella longirostris*) and Indo-Pacific bottlenose dolphins (*Tursiops aduncus*) that inhabit the waters around Mauritius. The general lack of knowledge regarding local cetaceans and concerns regarding the potential impacts of numerous anthropogenic activities in the area, in particular the dolphin watching, prompted this study. The extensive development seen along the west coast over the last two decades and the rapid growth of the dolphin watching activity since 2000 are cause for concern for the sustainability of these populations. Photo-identification data were collected between April 2008 and June 2010 along a 30km length of coast on the south west of the island where a dolphin watching industry is concentrated. Data were used to obtain the first estimates of abundance, site fidelity and residency patterns for these species, along with social structure and genetic information. Collectively these are to be used to make recommendations for conservation and management which are needed urgently to limit impacts of the high levels of human activity along this area of coast.

Bottlenose dolphins were encountered at a rate of 0.53 groups h⁻¹ (0.07 s.e.) and sightings occurred in mean conditions of 13.3m (0.8 s.e.) water clarity, 26.1°C (0.3 s.e.) sea surface temperature (SST) and 20.6 meters depth (1.6 s.e.). Thirty five bottlenose dolphins were identified as distinctively marked individuals (DMI). Three newborn bottlenose dolphins were recorded during the study and the overall percentage of calves in the population was calculated at 20%. Population estimates found that less than 100 individuals used this area of coast. Sightings of bottlenose dolphins occurred along the entire 30km length of coast included in the study and displayed high levels of site fidelity.
as indicated by high long-term re-sighting frequencies. Comparisons of site use found that the highest sighting rates were observed at Morne in the south while the lowest was in Black River Bay. The 50% kernel contours covered the area between Tamarin Bay and Black River Bay and also Morne, occupying an area of 20.0km2 while the home range covered 69.5km2.

Average group size for bottlenose dolphins was 5.5 (0.3 s.e.) but a significant reduction in average group size was observed during the second year of the study (t-test, p<0.01). The mean group size was significantly larger at Morne compared to the other sites (Welch test: F=5.29, df=31.65, p<<0.01). Investigation of social structure revealed low mean levels of association 0.14 (0.05 s.e.) but some degree of preferred associations was found between identified individuals. Temporal analysis of associations resulted in the population being described as having two levels of casual acquaintances. This model suggested that 9% of identified individuals were casual acquaintances staying together for a few days, while 5% of associations lasted at least the length of the study period. Analysis looking for community division within the population determined that all animals seen regularly were part of a single community. The bottlenose dolphins had low levels of genetic diversity (H_e: 34%) and displayed high levels of relatededness from shared mtDNA, though these results were based on a small number of samples. There was no evidence of a recent bottleneck but the bottlenose dolphins displayed a mode-shift indicating a loss of rare alleles.

Habitat features for spinner dolphin sightings were very similar to those of the bottlenose dolphins at 14.5m (0.5 s.e.) clarity, 25.9°C (0.2 s.e.) SST and 20.4m (1.0 s.e.) depth but the encounter rate was higher at 0.94 groups h$^{-1}$ (0.12 s.e.). The percentage of marked
individuals in the population was determined to be 22% and 83 spinner dolphins were identified as distinctively marked individuals (DMI). Calves made up approximately 10% of the population and newborns were recorded throughout the year. Subsequent estimates indicated that less than 500 spinner dolphins used this area. High long-term re-sighting frequencies implied that the spinner dolphins displayed considerable site fidelity to the area of coast included in the study area. However, comparison of site use found that Point Moyenne Bay had the highest sighting rate and the lowest, Benitier. The 50% kernel contours for spinner dolphins were centred in the three bay areas and covered 9.1km2 while the area covered by the 95% kernel contours was 53.0km2.

Mean group size was 52.4 (1.9 s.e.) for spinner dolphins. No significant difference in group size was observed between the sites (Welch test: F=1.86, df=65.72, p=0.09). Investigation of social structure revealed low mean levels of association (mean ± s.e.: 0.14±0.05), however, as with the bottlenose dolphins, there were preferred associations between some identified individuals. The model that best fit the data for the temporal analysis described two levels of casual acquaintances. The short term associations were not a good representation of the data but long term parameters suggested that 3% of identified individuals associated for 19.57 years (16.12yr s.e.). Analysis looking for community division within the population determined that all animals seen regularly were part of a single community. The spinner dolphins had high levels of genetic diversity (H_e: 64%) similar to levels reported elsewhere, and were polymorphic at all 27 loci analysed. Levels of shared mtDNA were low with 12 haplotypes identified from 35 samples. There was no evidence of a recent bottleneck in the population with the distribution of allele classes displaying the typical L-shape graph.
The results calculated from a total 544.83 hours spent with 387 groups of spinner (n=250) and bottlenose dolphins (n=137) encountered over 229 days, revealed that both species were dependent on this area of coast for daily activities and had similar social structures. The direct sympatric relationship between these two species is possible due to differences in their behaviour and prey. Point Moyenne, Tamarin Bay and Morne appear to be particularly important areas for the daily activities of these species. Their use of these near-shore areas means both species are being impacted by high levels of interaction from dolphin watching boats and other anthropogenic activities. The long term continuation of the research is vital for monitoring these populations and also those in adjacent areas where dolphin watching is increasing. The small population size of the bottlenose dolphins, the low genetic diversity and their movement patterns suggest they are particularly vulnerable to localised extinction. As such the need for confirmation that anthropogenic activities, (e.g. dolphin watching), are impacting on these populations should not be an impediment in implementing conservation measures. Management strategies should be made with the input of local stakeholders to increase awareness, control existing human activities and minimise possible impacts with the view to maintaining viable population health and size for both species, thus ensuring the long-term sustainability of both the industry and the animals it relies on.
Table of Contents

ABSTRACT .. II

TABLE OF CONTENTS .. VI

LIST OF FIGURES .. IX

LIST OF TABLES .. XVI

ACKNOWLEDGEMENTS .. XVIII

1 GENERAL INTRODUCTION ... 1

1.1 INTRODUCTION .. 1

1.2 INDO-PACIFIC BOTTLENOSE DOLPHINS (TURSIOPS ADUNCUS) .. 2

1.2.1 Taxonomy .. 2

1.2.2 Description ... 3

1.2.3 Range and Distribution ... 3

1.2.4 Life History and Reproduction ... 6

1.2.5 Social organisation .. 7

1.2.6 Diet .. 9

1.2.7 Threats .. 10

1.3 SPINNER DOLPHINS (STENELLA LONGIROSTRIS LONGIROSTRIS) 11

1.3.1 Description ... 11

1.3.2 Taxonomy ... 11

1.3.3 Range and Distribution ... 12

1.3.4 Life History and Reproduction ... 14

1.3.5 Social Organisation .. 14

1.3.6 Diet .. 16

1.3.7 Threats .. 17

1.4 CETACEAN GENETICS .. 18

1.5 SOUTH WEST INDIAN OCEAN AND MAURITIUS .. 20

1.6 WHALE AND DOLPHIN WATCHING ... 22

1.7 DOLPHIN WATCHING IN MAURITIUS ... 24

1.8 THESIS OBJECTIVES AND STRUCTURE .. 25

2 STUDY AREA ... 27

2.1 LOCATION AND DESCRIPTION .. 27

2.2 HUMAN ACTIVITY ... 31

3 POPULATION SIZE, DENSITY AND TEMPORAL AND SPATIAL DISTRIBUTION OF BOTTLENOSE DOLPHINS .. 33

3.1 INTRODUCTION ... 33

3.2 METHODS .. 36

3.2.1 Field Surveys .. 36

3.2.2 Photo Identification and analysis ... 40

3.2.3 Mark Recapture Population Estimates .. 44

3.2.4 Encounter rates ... 49
List of Figures

Figure 1.1: Indo-Pacific Bottlenose dolphin (*Tursiops aduncus*) ... 3

Figure 1.2: Worldwide distribution of bottlenose dolphins, *Tursiops* spp 4

Figure 1.3: Worldwide distribution of Indo-Pacific bottlenose dolphins, *Tursiops aduncus*. 5

Figure 1.4: Hawaiian Spinner Dolphin (*Stenella longirostris*). .. 11

Figure 1.5: Worldwide distribution of spinner dolphins, *Stenella longirostris*. 13

Figure 1.6: The Limits of the Indian Ocean Sanctuary include the waters of the Northern Hemisphere from the coast of Africa to 100°E (including the Red and Arabian Seas and the Gulf of Oman) and those waters of the Southern Hemisphere between 20°E and 130°E from the equator to 55°S. (De Boer et al., 2002). Arrow indicates Mauritius. 21

Figure 2.1: Map of the Western Indian Ocean. The eastern boundary marked by the vertical line. Map of Mauritius with the box indicating the position of the study area. 28

Figure 2.2: The study area relative to coastal habitats and local communities. 30

Figure 3.1: White tracks give an example of the spatial coverage within the study area and out to approximately 1000m depth during 30 days of trips, including all trip types. 39

Figure 3.2: Examples of poor, good and excellent (left to right) photographs for identification... 42

Figure 3.3: Examples of fin classification A: Very distinctive fin (VDF), B: Very distinctive notch (VDN), C: Fin tip, D: 1notch, E: 2notch, F: 3notch, G: 3+notches and H: base notch. 43

Figure 3.4: Schematic diagram of Pollock’s Robust Design. In this example there were bimonthly primary sampling periods and monthly secondary sampling periods............. 47

Figure 3.5: Map of Mauritius indicating the study area (boxed) in relation to the area where three additional surveys were conducted between Pereybere and Port Louis in the north of the island. ... 55

Figure 3.6: Monthly distribution of time spent at sea (blue) compared to the number of hours spent with *T. aduncus* (red) between April 2008 and June 2010. 56

Figure 3.7: Mean monthly encounter rates (groups h⁻¹) of *T. aduncus* for the periods: A: April 2008 to March 2009. B: April 2009 to March 2010. C: Pooled for each month over the whole study period April 2008 to June 2010. ... 58

Figure 3.8: Monthly distribution of hours spent on the sea with *T. aduncus* during Normal surveys between April 2008 and June 2010... 59
Figure 3.9: Comparison of discovery curves for the periods April 2008 to June 2010 (dots), April 2008 to March 2009 (black) and April 2009 to June 2010 (grey) for the identification of new *T. aduncus* by the number of photographs taken during Focal follow trips (see Section 3.2.1). The arrow indicates end of the second year at March 2010.

Figure 3.10: Frequency distribution of the number of times individual *T. aduncus* were identified from Normal trips between April 2008 and June 2010.

Figure 3.11: \(N_{\text{total}} \) Population estimates of *T. aduncus* from Focal follow trips (see Section 3.2.1) using bimonthly primary occasions calculated on the model of best fit \(\phi(t) \gamma''=\gamma'(t)p=c(t) \) representing Random temporary emigration \(0.94e-013 \) and an apparent survival of 0.99. Vertical bars display standard errors for each bimonthly estimate.

Figure 3.12: \(N_{\text{total}} \) population estimates of *T. aduncus* from All trips using bimonthly primary occasions calculated from the model of best fit \(\phi(t) \gamma''=\gamma'(t)p=c(t) \) representing Random temporary emigration \(0.14e-014 \) and apparent survival of 0.98. Vertical bars display standard errors for each bimonthly estimate.

Figure 3.13: Frequency distribution of the number of months distinctively marked individuals (DMI) of *T. aduncus* were sighted out of a possible 23 months when Focal follow trips were conducted between April 2008 and June 2010.

Figure 3.14: Frequency distribution of six monthly sighting rates for all distinctively marked individuals (DMI) of *T. aduncus* out of 5 possible six monthly periods when Focal follow trips (Section 3.2.1) were conducted. April 2008 to June 2010.

Figure 3.15: Frequency distribution of yearly sighting rates for all distinctively marked individuals (DMI) of *T. aduncus* out of a possible 3 yearly periods when Focal follow trips (Section 3.2.1) were conducted. April 2008 to June 2010.

Figure 3.16: Lagged identification rates for all DMI of *T. aduncus* with the expected lagged identification rates and with vertical lines indicating jackknifed error bars.

Figure 3.17: Lagged identification rates for all distinctively marked individuals of *T. aduncus* for movement within and between sites of the study area with the expected lagged identification rates and estimated standard errors (bars). The best-fit curve (blue line) represents the Fully Mixed model fitted to the data using maximum likelihood.

Figure 3.18: Sighting rates for the number of groups of *T. aduncus* recorded at each site of the study area for the period A: April 2008 to June 2010.

Figure 3.19: Comparison of sighting rates for the number of groups of *T. aduncus* recorded at each site of the study area for the periods April 08 to March 09 (blue) and April 09 to March 10 (red).
Figure 3.20: Sighting rates for the number of groups of *T. aduncus* recorded at each zone of the study area. A: April 2008 to June 2010 and B: Comparison of Year 1 (Blue: April 2008 to March 2009) to Year 2 (Red: April 2009 to March 2010). ... 81

Figure 3.21: Seasonal comparison of sighting rates of *T. aduncus* for each site between summer (blue) and winter (red) for the period April 2008 to June 2010. 82

Figure 3.22: Seasonal comparison of sighting rates of *T. aduncus* for each zone between summer (blue) and winter (red) for the period April 2008 to June 2010. 83

Figure 3.23: Distribution of group sightings for *T. aduncus*. Area usage is displaying 50% utilisation distributions in red, and 95% in orange. Pale pink indicates the study area out to the 100m depth contour... 85

Figure 3.24: Ranges of 14 individual *T. aduncus* seen on nine of more occasions A: 95% utilisation distribution and B: 50% utilisation distribution. Each colour represents a different individual. ... 86

Figure 3.25: Position of addition sightings of *T. aduncus* (stars) in the north in relation to the study area (box). Red star indicates recapture of known individuals. 87

Figure 4.1: Distribution of group sizes for 132 groups of *T. aduncus* between April 2008 and June 2010.. 116

Figure 4.2: Distribution of group sizes for *T. aduncus* for the periods April 2008 to March 2009 (Blue) and April 2009 to March 2010 (Red). ... 117

Figure 4.3: Distribution of group size estimates of *T. aduncus* for each month pooled between April 2008 and June 2010. Internal line is the median, the box depicts the 25-75% quartiles and extended lines show the minimum and maximum values............. 118

Figure 4.4: Monthly distribution of *T. aduncus* groups containing calves as a proportion of the 63 groups recorded between April 2008 and June 2010... 124

Figure 4.5: The sighting rates of the 63 *T. aduncus* groups containing calves at each site during the study period April 2008 to June 2010... 125

Figure 4.6: The sighting rates of the 63 *T. aduncus* groups containing calves at each zone during the study period April 2008 to June 2010... 126

Figure 4.7: Distribution of values of the half-weight association rates for 28 *T. aduncus* identified five or more times between April 2008 and June 2010.. 127

Figure 4.8: Dendogram produced from cluster analysis of associations between 28 *T. aduncus* identified on five or more occasions. The dashed line indicates division of four clusters. .. 129
Figure 4.9: Network of associations of 28 *Tursiops aduncus* identified on five or more occasions. ... 131

Figure 4.10: Standardised lagged association rate for all (n=35) identified *T. aduncus* with jackknifed estimates of precision. ... 134

Figure 4.11: The relationship between 7 individuals of *T. aduncus* from Mauritius. 135

Figure 4.12: Distribution of allele classes for *T. aduncus* ... 139

Figure 4.13: T16 (Hook) with a crescent shape scar on the peduncle believed to be from a shark bite. B: T12 (Kersley) with a healing wound of unknown origin behind the head and C: T46 (Ewa) with a similar fresh wound. ... 147

Figure 5.1: Monthly distribution of time spent at sea (blue) compared to the number of hours spent with *S. longirostris* (red) between April 2008 and June 2010 166

Figure 5.2: Relationship between depth and clarity at *S. longirostris* sightings 167

Figure 5.3: Mean monthly encounter rates (groupsh⁻¹) of *S. longirostris* over the study period, April 2008 and June 2010. Arrows indicate the end of 12 month periods 168

Figure 5.4: Mean monthly encounter rate (groupsh⁻¹) of *S. longirostris* when pooled across the total study period April 2008 to June 2010. ... 169

Figure 5.5: Monthly distribution of hours spent on the sea with *S. longirostris* during Normal surveys between April 2008 and June 2010.. 170

Figure 5.6: Comparison of the discovery curves for the periods April 2008 to June 2010 (dots), April 2008 to March 2009 (black) and April 2009 to June 2010 (grey) for the identification of new distinctively marked individuals of *S. longirostris* by the number of photographs taken during Focal follow trips (see Section 3.2.1). The arrow indicates end of the second year at March 2010. ... 172

Figure 5.7: Frequency distribution of the number of times individual *S. longirostris* were identified from Focal follow trips between April 2008 and June 2010......................... 173

Figure 5.8: Population estimates (*N*Total) of *S. longirostris* from Focal follow trips using monthly primary occasions calculated on the model of best fit (phi(.)*y "(.)*y '(t)p=c(t)) representing Markovian temporary emigration (0.13) and apparent survival of 0.99. Bars display standard errors for each monthly estimate ... 178

Figure 5.9: Population estimates (*N*Total) of *S. longirostris* from Focal follow trips using bimonthly primary occasions and calculated on the model of best fit (phi(.)*y "(.)*y '(t)p=c(t)) representing Markovian temporary emigration (0.18) and apparent survival of 0.98. Bars display standard errors for each bimonthly estimate ... 179
Figure 5.10: Frequency distribution of the number of months distinctively marked individuals of *S. longirostris* were sighted out of a possible 27 months. April 2008 to June 2010. ... 180

Figure 5.11: Frequency distribution of six monthly sighting rates for all distinctively marked individuals (DMI) of *S. longirostris* out of 5 possible six monthly periods when Focal follow trips (Section 3.2.1) were conducted. April 2008 to June 2010. 181

Figure 5.12: Frequency distribution of yearly sighting rates for all distinctively marked individuals (DMI) of *S. longirostris* out of a possible 3 yearly periods when Focal follow trips (Section 3.2.1) were conducted. April 2008 to June 2010. ... 181

Figure 5.13: Lagged identification rates for all identified *S. longirostris* with the expected lagged identification rates and with vertical lines indicating jackknifed error bars. The best-fit curve (blue) based on maximum likelihood, represents a population with Emigration, Re-immigration and Mortality \((\text{Exp}(-a4*td)/a1)*((1/a3)+(1/a2)*\text{exp}(-(1/a3+1/a2)*td))/(1/a3+1/a2))\). ... 184

Figure 5.14: Lagged identification rates for all identified *S. longirostris* for movement within and between sites of the study area with the expected lagged identification rates and estimated standard errors (bars). The best-fit curve represents the Fully Mixed model \((1/a1)\) fitted to the data (blue line) using maximum likelihood. ... 187

Figure 5.15: Sighting rates for the number of groups of *S. longirostris* recorded at each site of the study area for the period April 2008 to June 2010. .. 189

Figure 5.16: Comparison of sighting rates for the number of groups of *S. longirostris* recorded at each site of the study are for the periods April 2008 to March 2009 (blue) and April 2009 to March 2010 (red). ... 189

Figure 5.17: Sighting rates for the number of groups of *S. longirostris* recorded at each zone of the study area for the period April 2008 to June 2010. ... 190

Figure 5.18: Comparison of sighting rates for the number of groups of *S. longirostris* recorded at each zone between April 2008 to March 2009 (Blue) and April 2009 to March 2010 (Red). .. 191

Figure 5.19: Seasonal comparison of sighting rates of *S. longirostris* for each site between summer (blue) and winter (red) for the period April 2008 to June 2010. ... 192

Figure 5.20: Seasonal comparison of sighting rates of *S. longirostris* for each zone between summer (blue) and winter (red) for the period April 2008 to June 2010........ 193

Figure 5.21: Distribution of group sightings for *S. longirostris*. .. 194

Figure 5.22: Ranges of 33 individual *S. longirostris* seen on ten or more occasions A: 95% utilisation distribution and B: 50% utilisation distribution. Each colour represents a different individual. .. 195
Figure 5.23: Position of addition sightings of *S. longirostris* (stars) in the north in relation to the study area. Red star indicates recapture of known individuals. 196

Figure 6.1: Distribution of group sizes for *S. longirostris* between April 2008 and June 2010. ... 215

Figure 6.2: Distribution of group sizes for *S. longirostris* for the periods April 2008 to March 2009 (blue), April 2009 to March 2010 (red). .. 216

Figure 6.3: Distribution of group size estimates for each month when pooled between April 2008 and June 2010. .. 217

Figure 6.4: Monthly distribution of *S. longirostris* groups containing calves as a proportion of the 167 groups recorded between April 2008 and June 2010. .. 222

Figure 6.5: Seasonal comparison of the proportion of *S. longirostris* groups for each Category by percentage of calves; where summer is blue and winter is red. April 2008 to June 2010.. 222

Figure 6.6: Proportion of *S. longirostris* groups for each Category by percentage of calves between April 2008 and June 2010. Categories are 0% calves, 0-10%, 10-20% and 20-30%. ... 223

Figure 6.7: Proportion of *S. longirostris* groups for each Category by percentage of calves compared between April 2008 and March 2009 (blue) and April 2009 and March 2010 (red). Categories are 0% calves, 0-10%, 10-20% and 20-30%. .. 224

Figure 6.8: Comparison of sighting rates for groups with calves for *S. longirostris* between each site for the period April 2008 to June 2010. .. 225

Figure 6.9: Between year comparison of sighting rates for groups with calves for *S. longirostris* between each zone for the periods April 2008 to March 2009 (Blue) and April 2009 to March 2010. .. 225

Figure 6.10: Comparison of sighting rates for groups with calves for *S. longirostris* between each zone for the period April 2008 to June 2010................................. 226

Figure 6.11: Distribution of values of half-weight association indices for 55 *S. longirostris* identified on five or more occasions between April 2008 and June 2010........... 228

Figure 6.12: Network of associations of 55 distinctively marked individuals of *S. longirostris* identified on five or more occasions... 230

Figure 6.13: Standardised lagged association rate for all (n=83) distinctively marked individuals of *S. longirostris* with jackknifed estimates of precision. 233

Figure 6.14: Distribution of haplotypes from mtDNA analysis of 35 *Stenella longirostris* samples .. 234
Figure 6.15: The relationships between 35 individuals of *S. longirostris* from Mauritius.

Figure 6.16: Distribution of allele classes for *S. longirostris*.

Figure 6.17: Circular wounds believed to be from the cookiecutter shark (*Isistius* sp) on *S. longirostris*.

Figure 6.18: S34 (Lucky) with fresh shark bite wounds on the dorsal fin, left flank and over the peduncle.

Figure 7.1: Comparison of area use for groups of *S. longirostris* and *T. aduncus*.
List of Tables

Table 3.1: Model selection for marked population estimates (N) from POPAN. 64

Table 3.2: Population estimates for the top ranking models, adjusted to include non-marked animals and calves. ... 65

Table 3.3: Model selection for marked population estimates (N) from Robust Design. 68

Table 3.4: Comparison of the possible models of lagged identification rates for movement in and out of the whole study area based on Quasi Akaike Information Criterion (QAIC). 74

Table 3.5: Comparison of the possible models of lagged identification rates for movement within and between sites of the study area based on Quasi Akaike Information Criterion (QAIC) ... 76

Table 4.1: Characteristics of the 27 microsatellite loci amplified in Tursiops aduncus 113

Table 4.2: Mean group size estimates of T. aduncus for each of the sites from Point Moyenne at the northern end of the study area to Morne in the south 120

Table 4.3: Mean group size estimates for T. aduncus for each zone 121

Table 4.4: Comparison of mean group size estimates between years for T. aduncus at each site ... 122

Table 4.5: Comparison of mean group size estimates between years for T. aduncus at each of the zones ... 122

Table 4.6: Model selection for standardised lagged association rates T. aduncus. 133

Table 4.7: Measures of genetic variability for T. aduncus for the 27 polymorphic microsatellite markers chosen for this study ... 137

Table 4.8: Measures of genetic variability for six T. aduncus populations 138

Table 4.9: Estimates of effective population size (N_e) and bottlenecking from 27 microsatellite loci for six populations. ... 139

Table 5.1: Model selection for marked population estimates (\bar{N}) from POPAN. 175

Table 5.2: Population estimates (N_{Total}) of S. longirostris for the top ranking models, adjusted to include non-marked animals and calves .. 176

Table 5.3: Model selection for marked population estimates (\bar{N}) from Robust Design. 177

Table 5.4: Comparison of the possible models of lagged identification rates for movement in and out of the whole study area based on Quasi Akaike Information Criterion (QAIC). 183
Table 5.5: Comparison of the possible models of lagged identification rates for movement within and between sites of the study area based on Quasi Akaike Information Criterion (QAIC).. 186

Table 6.1: The characteristics of the 27 microsatellite loci amplified in *S. longirostris*.... 214

Table 6.2: Mean group size estimates of *S. longirostris* for each of the sites from Point Moyenne at the northern end of the study area to Morne in the south. 219

Table 6.3: Mean group size estimates of *S. longirostris* for each zone. 219

Table 6.4: Between year comparison of mean group size estimates of *S. longirostris* at each site... 220

Table 6.5: Between year comparison of mean group size estimates of *S. longirostris* at each zone... 221

Table 6.6: Model selection for standardised lagged association rates................................. 232

Table 6.7: Measures of genetic variability for *S. longirostris* for the 27 polymorphic microsatellite markers chosen for this study. .. 237

Table 7.1: Comparison of the biology and ecology of *S. longirostris* and *T. aduncus*. 258
Acknowledgements

This has been an extremely large project, and many people helped me over the past years. I owe a huge debt to all of those who were kind enough to devote their time to the different aspects of this study and subsequent thesis and those that offered support in so many ways. The number, nationality and backgrounds of the people involved with the project have been diverse. Trying to work between three different time zones and several languages has certainly added to the challenge of completing this work and would not have been possible without flexibility, patience and considerable organization from all involved.

First and foremost my gratitude and thanks to my supervisors Vic Cockcroft (Centre for Dolphin Studies, South Africa) and Peter Spencer (Murdoch University). Your guidance and suggestions during the planning and realization of the thesis were invaluable and greatly improved my critical thinking and scientific writing. I am particularly grateful to Vic for remembering me more than a year after our conversations about a PhD in South Africa and trusting in my abilities to cope with not only the project itself but the huge step of packing up my life and moving to such a different country and culture. To Peter also, for taking on a student when you had no idea of the project. For your patience when giving me a genetics refresher course - stuffing my head with a semesters worth of learning in 2 hours, but mostly for the friendly and relaxed attitude that helped hugely during the chaotic last weeks.

I thank Foundation Total for the funding provided by to Mauritius Marine Conservation Society (MMCS) that made this project possible. In addition, thanks goes to the Government of Mauritius and Albion Fisheries for supporting the research and providing the necessary permits. I hope this thesis will provide an impetus for the continuation of marine research, environmental awareness and conservation in Mauritius.
Huge thanks must go to the MMCS committee, especially Jacqueline and Philippe, for putting your trust in some Aussie chick you had never seen before and offering me the opportunity which has culminated in this thesis and contributed so many new experiences, people and memories to my life. It was a very steep learning curve for all of us and I hope you will be able to continue the work with many more students.

Bruno and Adele there isn’t enough space here to say Thank you/Merci Beaucoup for all that needs to be voiced. For the hundreds of hours we spent on the sea together and the long hours in the office, the laughs, tears, frustrations, ‘working music’ and amazing sights and experiences we have had together. The French, Creole and English lessons and the time spent working out what was what when we got ‘lost in translation’. It wouldn’t have been the same experience and certainly wouldn’t have happened without you.

This work would not have been accomplished without the help of all the volunteers. Erika and Karen who gave up their time to help on many very early mornings; and the international collection of MMCS volunteers who helped with the boat trips and the monotonous tasks of data entry and fin cutting. Many thanks also to Celine and Emilie for all the mapping work and general comments especially when we were nearing the end of the ‘Dolphin Project’.

Several dolphin watching operators assisted and supported the research in a variety of ways. Alain, Jean-Noel, Eric and all the ‘Dolswim’ crew for the help with all the logistics when we didn’t have a boat or car, and for helping with everything from taking sightings and giving places on boats to making the biopsy darts. Especially for being the first on the scene to help when the boat mysteriously sank and I was well and truly initiated into the local ways. In the north, Ben and the ‘Babacool’ crew for your
enthusiasm and generosity in taking volunteers and collecting sightings data and many unforgettable trips to Flat Island.

There were numerous people who contributed in many small but vital ways: At Murdoch University Dave Macey for the encouragement and support in helping me find a supervisor, Mike Calver and Ken Pollock for being the lifebuoy when I felt like I was drowning in a sea of statistics and MARK output, and Halina Kobryn for the crash course in ArcMap. Hal Whitehead (Dalhousie University) for fielding the numerous questions on SOCPROG and its mysterious ways. Much appreciation to Michael Krützen and Coco at the University of Zurich for the genetic work. Everyone in the Cetacean Research Unit at Murdoch especially Krista, Delphine and Julian for the many hours spent in discussions over whales and dolphins, SOCPROG dilemmas and MARK mayhem.

Violaine Dulau-Drouot (GLOBICE-Reunion Island) and David Rowat (Marine Conservation Society, Seychelles) on your respective rocks in the Indian Ocean. Thank you for the numerous comments, suggestions and contributions to the project and my thesis, in all the forms they came and the many entertaining evenings at workshops and conferences.

A special mention must go to Gwen Penry for the long hours on Skype between Mauritius, Scotland, South Africa and Australia learning about MARK and general discussions on the trials and tribulations of trying to complete a PhD on cetaceans, being away from home and life in general.

For too much tea, random conversation and distraction, thanks must go to Carl Jones (Durrell/ Mauritian Wildlife Foundation). Your enthusiasm and interest in nature and
its conservation is an inspiration. Thank you for providing the spinner dolphin sample and various comments and suggestions on the writing.

Many thanks goes to the Mauritian Wildlife Foundation staff and volunteers who came and went with the seasons but with whom I was lucky enough to become friends. Special mention must go to Ewa, Julie, Gwen, Tom and Rich who helped with various boat trips and sightings. Especially those who became the ‘Old Boys’ Rich D, Rich B, Andy, and Simon; I will always be grateful to you for welcoming an Aussie into a very English ‘lads’ group and providing a much needed escape. You filled the roles of sounding boards, protectors and drinking buddies but were mainly just good mates!

With the help of all the G+T’s, Phoenix, camp trips, sunsets (and occasional sunrise), Seama nights, hugs, great food and fantastic company you kept me sane and helped me continue when I needed it most. Hopefully I repaid you in some measure by providing an Aussie to harass (especially when the cricket and rugby was on), another accent to play with and cheesecake! You will always be responsible for my ‘confused’ accent.

Finally to a small but special group who helped make Mauritius home; Annelise, Alice, Dom, Liz, Gavin and Phil; Thank you for the friendship and support over the years. Hugs to ‘Orca’ who I had to leave behind, my constant companion for the time in Mauritius.

Most importantly, I am eternally grateful to my family for your unwavering love and never failing to support, encourage and believe in me even though it meant vast distances, irregular contact and you were never really sure what I was actually doing. Thank you, Gran for passing on your love of travel, without which I would never have met the people that led to this opportunity and so many unforgettable experiences.