Utilisation of *Phytophthora cinnamomi* affected habitats by honey possums (*Tarsipes rostratus*) in the Cape Riche area, Western Australia.

This thesis is presented for the degree of Bachelor of Science Conservation and Wildlife Biology Honours Murdoch University, 2008.

Submitted by
Shannon Jean Dundas BSc.
Declaration

I declare that this thesis is my own account of my research and contains as its main content work which has not been previously submitted for a degree at any tertiary educational institution.

Shannon Jean Dundas

Date:
ABSTRACT

This study investigated how the presence of the plant pathogen *Phytophthora cinnamomi* in vegetation assemblages impacts on habitat utilisation by the honey possum (*Tarsipes rostratus*). The study took place in coastal heathlands at Cape Riche, Western Australia, between January 2007 and November 2007. Honey possums were radio tracked through an area affected with *P. cinnamomi* as well as healthy areas to determine the extent to which habitat utilisation is impacted on. This will then allow for a more robust prediction of how further spread of *P. cinnamomi* is likely to impact on honey possums in the future. The presence of *P. cinnamomi* was confirmed by plating samples of dying plants. The areas of *P. cinnamomi* at the study site are extensive but patchy with ‘islands’ of healthy vegetation assemblages still remaining. A comparison of microclimate at the study site showed that unaffected areas had a larger range of temperatures than affected areas which may be due to differences in wind which is restricted (having a buffering effect) due to dense vegetation in unaffected sites. In affected areas, a greater proportion of the time was recorded where temperature was below 5°C compared with unaffected areas. This could potentially impact on honey possums, which go into torpor during cool weather, and at temperatures below 5°C, have a higher metabolic rate to maintain their body temperature. This means they need to forage for more nectar and pollen during cooler weather in affected areas where foodplants are less abundant. The number of honey possums captured was correlated to season ($\chi^2=13.1, p<0.0005$) with the largest number of honey possums captured during the summer field trip when more plants were flowering.

Honey possum preferred foodplants were identified from pollen collected from captured honey possums. A total of 20 different pollen species were identified from samples, nine of which were identified as important honey possum preferred foodplants as they were found in more significant amounts. Based on pollen, *Banksia plumosa* subsp. *plumosa* was identified as the preferred foodplant at the Cape Riche study site followed by *Adenanthes cuneatus*. Both are common throughout the study area and flower all year.
Banksia plumosa subsp. *plumosa* is susceptible to *P. cinnamomi* and was only found in unaffected areas whereas *Adenanthos cuneatus* was found to less susceptible and was prevalent throughout *P. cinnamomi* affected areas. Honey possums fed on a diverse range of plant species (determined by pollen) during all seasons, except autumn when *B. plumosa* subsp. *plumosa* was the most prevalent pollen species collected from honey possums.

A total of 18 honey possums (body mass 5.9 – 16g) were radio tracked for up to 9 days using radio transmitters weighing 0.36g and 0.9g (Holohil Systems Ltd, Canada). Radio tracked honey possums demonstrated a particular preference for *Banksia plumosa* subsp. *plumosa* which they utilised for food, shelter and as a daytime refuge. Comparison of vegetation structure indicated that sites selected by radio tracked honey possums had significantly denser vegetation between 40-140 cm in height compared with randomly selected sites. Significant differences were identified between *Phytophthora cinnamomi* affected and unaffected locations with vegetation at affected locations being sparser and shorter than that at unaffected sites.

This study clearly showed that honey possums are influenced by the presence of *P. cinnamomi* affected vegetation at Cape Riche. The presence of *P. cinnamomi* at the study area results in large areas which are generally lacking in susceptible Proteaceous species such as *Banksia* and food resources tend to be sparse through these areas. Honey possums are capable of moving relatively large distances with estimated distances ranging from 4m to 1400m over a period of 30 minutes to 9 days. In areas affected with *P. cinnamomi* some honey possums fed on less susceptible plant species. Other honey possums moved long distances to healthy unaffected areas with higher densities of preferred foodplants. Further spread of *P. cinnamomi* is likely to have a serious impact on honey possums as healthy areas become affected and food resources become too limited to sustain honey possum populations.
Acknowledgements

Firstly I would like to thank my supervisors Dr Trish Fleming, Associate Professor Giles Hardy and Dr Bill Dunstan for their help and advice over the last two years. Trish thank you for the huge amount of support and advice you have given me - you made seemingly impossible things possible and I would not have been able to do this project without you. Giles, thank you for all of your advice and for reading through lots of editions of this thesis and providing lots of helpful suggestions in a very timely fashion. Thank you also for carrying out the *P. cinnamomi* testing at Cape Riche and for advising on *P. cinnamomi* coverage at the study site. Thank you Bill for you advice about the study site at Cape Riche and for the photos.

To my parents Pat and Craig Dundas – thank you for the huge amount of help you gave me in the field and for all of your support (and a special thanks to mum for the honey possum painting (frontispiece)) – I will get a job soon I promise! Thank you to my other helpful field assistants, Daina Tucker and Lyn Barber and also to Pattie Leighton, Penny and Mike Moir and the community at Cape Riche and Wellstead for their help and interest in this project. Thank you to Nicole Moore (Dieback conservation officer at DEC) who came out and helped me with dieback mapping and gave me lots of helpful suggestions and advice. Thank you to Colin Crane for providing details of plant susceptibility to *P. cinnamomi*. Thank you to the following people at Murdoch University who helped with me with a range of other bits and pieces associated with this project – I really appreciated your help! Janet Box, Gillian Bryant, Damien Cansilla, Sarah Comer (DEC Albany), Mike Craig, Amanda Hewison and Gordon Thomson.

This study was approved by the Murdoch University ethics committee (W2007/06). Relevant licences to take flora and fauna were obtained from the Department of Conservation and Land Management Licence to take fauna for scientific purposes (License SF5574 & SF006014) and Department of Conservation and Land Management Flora Licence for scientific or other prescribed purposes (Licence SW011486 & CE001689)

Field work was approved by Murdoch University ref 07/30
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Declaration</td>
<td>(ii)</td>
</tr>
<tr>
<td>Frontispiece</td>
<td>(iii)</td>
</tr>
<tr>
<td>Abstract</td>
<td>(iv)</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>(vi)</td>
</tr>
<tr>
<td>Table of contents</td>
<td>7</td>
</tr>
</tbody>
</table>

1 GENERAL INTRODUCTION AND LITERATURE REVIEW .. 13
 GENERAL INTRODUCTION .. 13
 LITERATURE REVIEW ... 14
 1.1 The pathogen - Phytophthora cinnamomi ... 14
 1.1.1 History ... 14
 1.1.2 Phytophthora cinnamomi biology .. 15
 1.1.3 Lifecycle ... 16
 1.1.4 Distribution and spread of the pathogen ... 16
 1.1.5 Management and Control .. 17
 1.1.6 Potential loss of pollinators .. 18
 1.1.7 Secondary impacts of Phytophthora cinnamomi on flora 21
 1.1.8 Loss of canopy species .. 22
 1.1.9 Secondary impacts of Phytophthora cinnamomi on fauna 23
 1.1.10 Symptoms of Phytophthora cinnamomi infestation in plants 24
 1.1.11 Current research focussing on fauna and Phytophthora cinnamomi infestation 25
 1.2 THE HONEY POSSUM (TARSIPES ROSTRATUS) .. 28
 1.2.1 Biology of the Honey possum ... 28
 1.2.2 Torpor in the honey possum ... 29
 1.2.3 Tarsipes rostratus as an indicator species ... 30
 1.3 Overall aim of this research project .. 31
 1.3.1 Research Objectives ... 32
 1.4 Overall aim of this research project .. 33

2 CHAPTER 2: STUDY SITE LOCATION AND SITE DESCRIPTIONS .. 36
 2.1 Introduction .. 36
 2.2 Methods and Materials ... 36
 2.2.1 Study site location .. 36
 2.2.2 Climate ... 37
 2.2.3 Soil and Geology ... 38
 2.2.4 Fire history ... 39
 2.2.5 Vegetation assemblages at the study site ... 40
 2.2.6 Site selection and descriptions ... 41
 2.2.7 Site 1 description ... 42
 2.2.8 Site 2 description ... 43
 2.2.9 Site 3 description ... 44
 2.2.10 Site 4 description .. 45
CHAPTER 4: RADIO TRACKING OF HONEY POSSUMS IN PHYTOPHTHORA CINNAMOMI AFFECTED AREAS TO DETERMINE HABITAT PREFERENCES

4.1 Introduction .. 102

4.2 Materials and Methods .. 103
 4.2.1 Experimental Design .. 103
 4.2.2 Transmitter attachment .. 104
 4.2.3 Radio tracking honey possums and transmitter ranges 105
 4.2.4 Vegetation analysis of honey possum selected and random locations 106
 4.2.5 Statistical analysis .. 107

4.3 Results .. 110
 4.3.1 Vegetation analysis of Phytophthora cinnamomi affected and unaffected areas .. 110
 4.3.2 Movements of radio tracked honey possums .. 119
 4.3.3 Honey possum preference for Banksia plumosa subsp. plumosa 124
 4.3.4 Resting/Nesting locations ... 126

4.4 Discussion ... 127
 4.4.1 Change in vegetation as a result of Phytophthora cinnamomi infestation and honey possum habitat selection ... 127
 4.4.2 Importance of Banksia plumosa subsp. plumosa used for refuge by honey possums at Cape Riche ... 128
 4.4.3 Distances travelled by radio tracked honey possums 129
 4.4.4 Distribution of Phytophthora cinnamomi at Cape Riche in relation to areas utilised by honey possums ... 131
LIST OF FIGURES

Figure 1.1:	Lifecycle of *Phytophthora cinnamomi* ..	15
Figure 1.2:	Map of confirmed *Phytophthora cinnamomi* infestations in South West Western Australia.	18
Figure 1.3:	*Phytophthora cinnamomi* affected area at Cape Riche (Site 2)	23
Figure 1.4:	Honey possum in torpor ..	31
Figure 1.5:	Flowchart of thesis structure ..	35
Figure 2.1:	Location of study site at Cape Riche ..	37
Figure 2.2:	Minimum and maximum mean temperatures for a) Mettler and b) Ongerup	38
Figure 2.3:	Mean rainfall and rainfall in 2007 for a) Mettler and b) Ongerup	39
Figure 2.4:	Seasonal photos at the Cape Riche study site in the *Phytophthora cinnamomi* unaffected area at Site 1. Blue arrows indicate dominant *Banksia Baxteri*.	43
Figure 2.5:	Seasonal photos at the Cape Riche study site in the *Phytophthora cinnamomi* affected area at Site 1 ..	44
Figure 2.6:	Seasonal photos at the Cape Riche study site in the *Phytophthora cinnamomi* unaffected area at Site 2 ..	46
Figure 2.7:	Seasonal photos at the Cape Riche study site in the *Phytophthora cinnamomi* affected area at Site 2 ..	47
Figure 2.8:	Seasonal photos at the Cape Riche study site in the *Phytophthora cinnamomi* unaffected area at Site 3 ..	49
Figure 2.9:	Seasonal photos at the Cape Riche study site in the *Phytophthora cinnamomi* affected area at Site 3 ..	50
Figure 2.10:	Aerial photo (obtained from Landgate, Midland) of study area at Cape Riche Western Australia with 100m trap lines at sites 1, 2 and 3 indicated ...	52
Figure 2.11:	HOBO® H8 Pro series field data loggers in the field with cardboard cover	54
Figure 2.12:	Setup of trap lines (not to scale) ..	55
Figure 2.13:	Trap line with 10m flywire drift fencing at site 2 in the *Phytophthora cinnamomi* affected area. ...	55
Figure 2.14:	Honey possum in pit trap ..	56
Figure 2.15:	Honey possum with identifying notch in right ear	57
Figure 2.16:	Honey possum drinking saturated sugar water solution from spoon	57
Figure 2.17 (a-d):	Average temperature data and standard deviations in *Phytophthora cinnamomi* affected and unaffected areas at the Cape Riche study site ..	60
Figure 2.18 (e & f):	Proportion of records <5°C (e) and >28°C (f) in *Phytophthora cinnamomi* affected and unaffected areas at the Cape Riche study site ..	61
Figure 2.19 (g-j):	Average relative humidity data and standard deviations in *Phytophthora cinnamomi* affected and unaffected areas over one year at the Cape Riche study site ..	62
Figure 2.20:	Percentage trapping success of honey possums in each of the four trapping sessions for adults (>7g bodyweight) and juveniles (<7g bodyweight) ..	66
Figure 3.1:	Reference photomicrographs used for pollen identification for the 18 observed foodplants used by honey possums during this study ..	78
Figure 3.2:	Percentage of pollen species collected from captured honey possums	81
Figure 3.3:	Mean (±1SD) Shannon’s Diversity Index for foodplant species identified from pollen grains collected from honey possums captured during each season ..	83
Figure 3.4:	*Banksia plumosa* subsp. *plumosa* shrub (left) and flower (right)	85
Figure 3.5:	*Adenanthera cuneata* shrub. Arrow indicates tiny pink flowers approximately 1cm in length ..	86
Figure 3.6:	*Eucalyptus angulosa* tree and flowers (approx. 2.5 - 3cm in length)	87
Figure 3.7:	*Beaufortia anisandra* flowers (approx. 2cm long)	88
Figure 3.8:	*Calothamnus gracilis.* (Photos courtesy of FloraBase 2008 online database). Flowers (left) are approx. 3cm long ..	89
Figure 3.9:	*Banksia nutans.* Flowers (left) are 4 - 7cm in length (George, 1996) and forms dense shrubs (right). Photos courtesy of Bill Dunstan ..	90
Figure 3.10:	*Banksia tenuis* (flower 4cm across) (Cavanagh & Pieroni, 2006)	91
Figure 3.11: *Banksia brunnea* plant (left) and flower (right) 3.5 – 4cm across (Cavanagh & Pieroni, 2006). ... 91
Figure 3.12: *Banksia Baxteri* in flower. ... 92
Figure 3.13: *Banksia coccinea*. ... 93
Figure 3.14: *Banksia attenuata*. (Flowers are 5-26cm long, 3.5-5cm wide (George, 1996)). ... 93
Figure 3.15: *Lambertia inermis*. Red arrow indicates flowers approx. 5cm long. .. 94
Figure 4.1: A 6.5g honey possum with 0.36g LB-2N Holohil Systems Ltd (Canada) transmitter attached. ... 105
Figure 4.2: Average (± 1 SD) number of vegetation touches at height classes 0 – 230cm.. 113
Figure 4.3: Non-metric Multi-Dimensional Scaling (MDS) graph representing a 2D visual representation of the rank order of *P. cinnamomi* affected and unaffected locations. .. 116
Figure 4.4: Non-metric Multi-Dimensional Scaling (MDS) graph representing a 2D visual representation of the rank order of honey possum selected locations and random locations. ... 116
Figure 4.5: Locations of individual honey possums as determined by radio tracking in relation to the study site. Red lines represent the trap lines at sites 1, 2 and 3.. 118
Figure 4.6: Healthy vegetation assemblage on spongelite ridge characterised by taller, thicker vegetation including *Banksia* species... 120
Figure 4.7: Healthy vegetation on the side of the spongelite ridge at site 1. ... 121
Figure 4.8: *Phytophthora cinnamomi* affected area at Cape Riche... 123
Figure 4.9: Healthy vegetation ‘island’ utilised by honey possums at site 3... 123
Figure 4.10: Torpid honey possum TR 76 (indicated by red arrow) with attached radio transmitter in a *Banksia plumosa* subsp. *plumosa*, sitting within a dried *Hakea cucullata* leaf. .. 125
Figure 4.11: Ground view of tunnel through *Banksia plumosa* subsp. *plumosa* to which a honey possum was radio tracked.. 125
Figure 4.12: Torpid honey possum TR 70 in dig out under *Calathamnus gracilis* shrub... 126
Figure 5.1: Flowchart of the potential impacts of the presence of *Phytophthora cinnamomi* in vegetation assemblages on honey possums. ... 138
Figure 7.1: (a) *Sminthopsis griseoventer* (grey bellied dunnart) and (b) *Pseudomys albocinereus* (ash grey mouse) ... 151
LIST OF TABLES

Table 1.1: Effects of vegetation and subsequent predicted effects on fauna25
Table 2.1: Significance values determined by a three way ANOVA for temperature data collected in *Phytophthora cinnamomi* affected and unaffected areas over one year at the Cape Riche study site. ...63
Table 2.2: Significance values determined by a three way ANOVA for relative humidity data collected in *Phytophthora cinnamomi* affected and unaffected areas over one year at the Cape Riche study site. ...64
Table 2.3: Capture data for honey possums over 4 trapping sessions between January 2007 – November 2007 at the Cape Riche study site.65
Table 3.1: Flowering phenology for 44 common plant species found at the Cape Riche study site. ..82
Table 3.2: Comparison of foodplants identified from pollen collected from captured honey possums at different study sites. ...95
Table 3.3: Comparison of major honey possum foodplants at Cape Riche97
Table 4.1: Comparison of average vegetation structure parameters for the four location categories ..114
Table 4.2: Individual honey possums radio tracked in during the study.117
Table 7.1: Mammals other than honey possums captured during pit fall trapping during four field trips between January 2007 – November 2007.152