Efficacy and mechanisms of action of EMDR as a treatment for PTSD.

Christopher Lee
B.Sc (Hons) M.Sc

Thesis submitted in fulfilment of requirements for the degree of Doctor of Philosophy

May 2006

School of Psychology – Murdoch University, Western Australia
Declaration

This thesis contains no material which has been accepted for the award of any other degree in any other university and, to the best of my knowledge or belief, contains no material previously published or written by another person, except when due reference is made in the text.

Christopher Lee

May 2006
Abstract

The first aim of this thesis was to describe the characteristics of Posttraumatic Stress Disorder (PTSD) and to elucidate its place as a symptom disorder that sometimes develops when people are exposed to a traumatic event. The current major theoretical approaches to account for why some people who are exposed to trauma develop PTSD and the mechanisms by which this occurs were described. Three classes of theories were reviewed: conditioning/learning approach; information processing theories with a particular focus on the meaning of the trauma event; and biological models with an emphasis on recent neurocircuitry and neurochemistry models.

Successful treatment approaches were then reviewed which indicated two major contenders for the most efficacious treatment for PTSD: traditional cognitive behaviour therapies (CBT) using either stress inoculation or prolonged exposure; and eye movement desensitisation and processing (EMDR). Prior to the first study (Lee, Gavriel, Drummond, Richards, & Greenwald, 2002), a review of the literature indicated equivalent effects for EMDR and CBT. There had been very few direct comparison studies and each had serious methodological flaws, particularly with respect to random assignment and treatment fidelity. Therefore, the first study ensured adequate attention to these areas and involved a direct comparison between the two procedures using a sample of 24 participants diagnosed with PTSD. EMDR and stress inoculation training with prolonged exposure were found to lead to similar symptom improvement at the end of treatment, apart from a slight advantage for EMDR on intrusion symptoms. Both treatments led to significantly greater symptom reduction than a wait list control condition. At follow-up, EMDR led to greater gains on both
self-report and observer rated measures of PTSD and self-report measures of depression. Overall, the findings were similar to those described in previously published studies, with a suggestion that EMDR was slightly more efficient than the standard CBT approach.

Given that the evidence suggested that EMDR was a more efficient treatment, it became critical to understand the underlying processes. A process study was undertaken that examined the responses of people with PTSD receiving EMDR treatment (Lee, Taylor, and Drummond, 2006). Guided by process studies of other treatments and theories that might account for why EMDR is effective, participants’ responses were examined to see which models better accounted for symptom improvement. The main analysis tested whether or not the responses were consistent with processes that occurred during traditional CBT treatment, which prior research had identified as reliving, or whether they were more consistent with Shapiro’s proposal that enhanced information processing occurs because there is a dual focus of attention (that is, the person simultaneously focuses on an external stimulus and on the traumatic memory) (Shapiro, 1995). The responses made by 44 participants were coded by an independent rater according to whether they were primarily reliving, distancing, affect or material other than the primary trauma. The coding system was found to have satisfactory inter-rater reliability. Greatest improvement occurred when the participant processed in a more detached or distant manner, whereas reliving responses were not associated with improvement. Cross-lagged panel correlations suggested that processing in a more detached manner was a consequence of the EMDR procedure rather than a measure that co-varied with improvement. The findings underscored a difference in the processes that underlie EMDR and traditional CBT.
The major question left unanswered from this second study was what causes this distancing process? Competing views were that it was facilitated by eye movement; alternatively, the therapist’s instructions to participants might have precipitated this distancing phenomenon. The third study tested these ideas by randomly assigning 48 participants to either an eye movement or a no eye movement condition under two types of therapist instructions (reliving or distancing). Participants recalled personal distressing memories, and measures of distress and vividness were taken after treatment and at follow up. Only the eye movements made a significant difference to people’s level of distress.

This conclusion appeared at odds with some of the previous literature that had tested the effects of eye movement on levels of distress. A meta-analysis of some of this research had suggested that there was no significant advantage of including eye movement in EMDR treatment unless the person had been diagnosed with PTSD. However, a close examination of this meta-analysis indicated some major methodological flaws in the computation; therefore, this was recalculated. The conclusion from this fourth study was consistent with study three in that EMDR with eye movement was found to lead to significantly greater improvement that EMDR without eye movement.

The results of these four studies were then discussed in terms of their implications for the theoretical models presented in Chapter 1. Aspects of learning theory that might account for EMDR efficiency were discussed as well as the failure of this model to account for treatment gains following EMDR. Information processing models were seen to better account for some of the phenomena observed in
EMDR and for the findings from the four studies. Some suggestions of how eye movements might facilitate improved information processing were presented.

Finally, the relative merits of EMDR and CBT treatments were discussed and suggestions made for when to combine approaches. The conclusions highlight the point that EMDR appears to be the most promising treatment for PTSD.
Refereed Articles

Articles Under Review

Lee, C. W., & Drummond, P. (under review). Does eye movement contribute to EMDR’s effect?: a randomized control study and a meta-analysis. *Journal of Consulting and Clinical Psychology.*

These articles are reproduced in the thesis in their full, original state (Chapters 2, 3 and 4). This accounts for the small degree of repetition and some minor inconsistencies in Anglo/American spelling throughout the thesis.
Acknowledgements

I would like to thank a number of people for their help which has enabled me to complete this thesis. Firstly to my supervisor, Peter Drummond – for his considerable input and support. It is not surprising that he was awarded a University prize for supervisory excellence. He has the perfect balance of challenging and supporting the development of supervisee ideas. Also I appreciated his advise into the subject matter of this thesis because the relevant literature is sometimes biased. Peter’s approach to the topic has been in the best traditions of science.

A special mention to Dr John Dunn who, throughout the years whenever I have had a problem with a complex statistical processes, he has had a unique ability to quickly discern the issue, recommend a process to alleviate the problem, and then explain it to me in a way that makes it seem really straight forward. Graham Taylor deserves a special mention for his generosity with time and for his friendship which I cherish.

Other colleagues who have also had considerable influence in my thinking or writing are Helen Gavriel, Helen Davis, Ricky Greenwald, and Robert Stickgold. Their conversations have been enlightening and have helped me to renew my enthusiasm for the project. I would like to mention my secretary, Debra McNamara whose typing skills, good humour and tea room chats help make work more enjoyable.

Finally I would like to acknowledge the people who feature in my personal life. My loving partner Gina Rogers who has remained supportive and understanding through a very difficult time and continues to encourage me to make the most of the things I
have. My ex-wife Georgie, for her support over many years. My children Rachael and Michelle who have been keen to hear about my updates and I have appreciated their interest.
Table of Contents

Abstracts iii

Publications vii

Acknowledgements viii

List of Tables xii

List of Figures xv

1.0 Introduction to PTSD

1.1 A historical perspective 1

1.2 Prevalence 5

1.3 PTSD psychopathology: learning theory 6

1.4 PTSD psychopathology: information processing models 8

1.5 PTSD psychopathology: biological perspectives 13

1.6 Psychological treatments of PTSD: review of the evidence 21

1.6.1 Comparison of stress inoculation and exposure treatments with other therapies 22

1.6.2 EMDR outcome studies 24

1.6.3 Conclusions from review of treatments for PTSD 27

1.7 Conclusions from chapter one 28

2.0 Treatment of PTSD: Stress Inoculation Training with Prolonged Exposure compared to EMDR

2.1 Preamble to study one 29

2.2 Study one 30

2.3 Update of studies post publication 77

2.3.1 Randomised outcome studies on CBT vs EMDR 77
2.3.2 EMDR vs treatment as usual

2.3.3 Analysing the research trends; meta-analysis and expert consensus guidelines

3.0 The active ingredient in EMDR; is it traditional exposure or dual focus of attention?

3.1 Preamble to study 2

3.2 Study 2

4.0 Does eye movement contribute to EMDR’s effect?: a randomized control study and a meta-analysis.

4.1 Preamble to studies 3 and 4

4.2 Studies 3 and 4

5.0 Conclusions

5.1 Summary of the four studies

5.2 EMDR is more effective than traditional CBT

5.3 EMDR effectiveness: conditioning explanation

5.4 EMDR effectiveness: information processing models explanation

5.5 EMDR effectiveness: biological models

5.6 Other factors in the treatment of choice for PTSD

Bibliography
List of Tables

Tables from Study 1

Table 1 Comparison of background variables in each treatment condition

Table 2 Mean Age and Time Between Trauma and Entering treatment for each Treatment Condition.

Table 3 Comparison of Changes in Scores During Wait List and Treatment

Table 4 Means and Standard Deviations for the Outcome Measures by Treatment Group.

Table 5 Pearson Correlations Between Measures

Table 6 Means and Standard Deviations for the Intrusion and Avoidance Measures of PTSD by Treatment Group

Table 7 Group Effect Size (Cohen’s D) of Treatment for the pre-treatment to Follow-Up Period Across Different Studies.
Tables from Study 2

Table 1 Type of participant responses as a percentage of his/her total responses and correlations between each of the primary process variables and the pre-treatment variables.

Table 2 Intercorrelations of process variables, correlations of participant responses with change in the IES scores (baseline minus final score), and the correlation with IES scores after partialling out potentially confounding variables.

Tables from Study 3 and Study 4

Table 1 The effects of eye movement and therapist instructions on measures of emotional distress and vividness.

Table 2 Mean percentage of distancing and reliving responses of a participant’s total responses in each of the therapist instruction conditions

Table 3 Previous studies investigating the effects of eye movement listed in order of their contribution to heterogeneity using: df × (Z – Z̄)^2

Tables from Chapter 5.0
Table 1 List of negative and associated positive beliefs frequently encountered in EMDR from Shapiro (1995)
List of Figures

Figures From Study 1

Figure 1 Effects of treatment condition on the outcome variables 69

Figures from Study 2

Figure 1 Correlations between IES scores and distancing at beginning and end of treatment. The diagonal values are the partial correlations after controlling for within-time associations. 114

Figure 2 Correlations between IES scores and reliving at beginning and end of treatment. The diagonal values are the partial correlations after controlling for within-time associations. 115

Figures from Study 3

Figure 1 Participant flow through the study. 147

Figure 2 Effects on distress of eye movement averaging across reliving and distancing conditions 148

Figure 3a Pre and post treatment vividness scores for therapist reliving instructions under eye movement and eye stationary conditions. 149

Figure 3b Pre and post treatment vividness scores for therapist distancing instructions under eye movement and eye stationary conditions. 149

Figure 4 Mean effect size and standard error of measurement for each of the studies investigating the significance of eye 150
movement in EMDR. The numbers on the horizontal axis correspond to study numbers cited in Table 3, except for 12 which is the mean after studies contributing the most to heterogeneity were removed (i.e., 1,2,3, & 4)