Small Set Enumeration: The Subitizing Boundary, Laterality and Sex Differences.

By

Natalie Jackson

This thesis is presented in partial fulfilment of the requirements for the degree of Bachelor of Arts (Honours), Murdoch University.

2000
Copyright License/Restriction

Permission to copy all or parts of this thesis for study and research purposes is hereby:

Please tick

Grant

Not granted

Author's signature

Date

18/10/00

Title of Thesis

Small Set Enumeration: The Subitizing Boundary...

L laterality and Sex Differences...
I declare that this thesis is my own account of my research and contains as its main content work that has not previously been submitted for a degree at any tertiary educational institution.

..........................(97138C)..........................

Natalie Jackson
Abstract

Previously, the ability to subitize (i.e. to immediately quantify a small set of items without counting) was thought to occur for sets of up to seven items and was explained using a developmental canonical pattern recognition approach. Unfortunately, this approach was unable to account for the ability to subitize linear or random arrays of items, thereby, inspiring a pattern learning and recognition (through stimulus repetition and systematic variation of a base pattern) approach. The latter approach, however, suggests that subitizing is not an independent psychological process and simply occurs as the result of pattern recognition. Contrary to this view, a recent study by Dehaene and Cohen (1994), employing a condition that did not introduce a pattern recognition confound and using a simultanagnosic patient sample, provided sound evidence to suggest that subitizing is, in fact, a separable psychological process. In addition, and importantly for past research into the localisation of subitizing within the hemispheres (which has usually involved the testing of larger sets), a subitizing boundary of two and possibly three items, much lower than originally expected, was found. Furthermore, and in contrast to previous research, recent evidence from Butterworth (1999), drawn from acaulic patients, has suggested that subitizing is a left hemisphere process. This possibility, in light of possible sex differences in laterality and the previous use of the lack of a right hemisphere advantage to indicate abnormal perceptual asymmetry, suggests some cause for concern. The present study was, thus, carried out in order to determine a subitizing boundary and to investigate the possibility of hemispheric and sex differences in laterality. As such, it provided the first comprehensive
investigation into the ability to subitize using randomly generated and presented patterns, and a normal adult sample.

A divided visual field task, involving the enumeration of purely random sets of between 2 and 5 items, randomly presented to the left and right visual fields, was employed. Thirty-two undergraduate psychology students (ie. 16 male and 16 female subjects) volunteered to participate. Based on Dehaene and Cohen’s (1994) results it was hypothesised that the subitizing boundary would occur at two and possibly three items. Furthermore, in line with Butterworth’s hypothesis, the present study predicted that subitizing would show a left hemisphere advantage. Finally, based on previous research into performance on nonverbal visual tasks, a female subitizing advantage was expected.

The results supported the first hypothesis, indicating a subitizing boundary of two items, thereby, extending Dehaene and Cohen’s (1994) research using a normal sample. The second hypothesis, however, was not supported, with the results indicating a strong right hemisphere advantage for subitizing. Finally, the third hypothesis was not supported, with no sex differences found in the ability to subitize. These findings were considered both in the context of Butterworth’s hypothesis and in the formation of number systems within remote hunter-gatherer societies. Future research involving young children and a cross-cultural perspective, were suggested.
Acknowledgments

Firstly, I would like to acknowledge and sincerely thank my supervisor Dr Jeff Coney for his invaluable advice and encouragement throughout the production of this thesis.

Secondly, I would like to extend my appreciation to all of the undergraduate students who participated as subjects and made the production of this thesis possible.

Finally, a special thank you goes to both my husband, Matthew, and my parents, Daniel and Catherine Tenardi, for their constant love and support.
Table of Contents

ABSTRACT..i

ACKNOWLEDGMENTS...iii

TABLE OF CONTENTS...1

CHAPTER 1: INTRODUCTION...5

1.1 GENERAL OVERVIEW...5

1.2 RECOGNITION APPROACHES TO SUBITIZING..7

1.2.1 THE DEVELOPMENTAL APPROACH...7

1.2.1.1 CANONICAL PATTERN RECOGNITION THEORY...............................8

1.2.1.2 THE ENUMERATION OF NON-CANONICAL PATTERNS.........................9

1.2.2 THE GENERAL PATTERN LEARNING AND RECOGNITION APPROACH.....10

1.2.2.1 RECOGNITION OF SHAPE EQUIVALENCE...11

1.2.2.2 LEARNING OF RANDOM PATTERNS..12

1.2.2.3 SUMMARY OF RECOGNITION APPROACHES TO SUBITIZING................13

1.2.3 SUBITIZING AS A SEPARABLE PSYCHOLOGICAL PROCESS......................14

1.2.4 SUMMARY AND IMPLICATIONS..15

1.3 LATERALITY STUDIES..17

1.3.1 SUBITIZING AS A RIGHT HEMISPHERE PROCESS....................................17

1.3.1.1 EVIDENCE FROM PATIENT SAMPLES..17

1.3.1.2 EVIDENCE FROM NORMAL SAMPLES..19

1.3.1.3 SEX DIFFERENCES IN LATERALITY..20

1.3.1.3.1 EVIDENCE FROM DOT LOCALISATION AND DETECTION STUDIES......21
1.3.1.3.2 Evidence from Enumeration Research 22
1.3.1.4 Summary of the Right Hemisphere Hypothesis 23
1.3.2 Subitizing as a Left Hemisphere Process 23
1.3.2.1 The Mathematical Brain Hypothesis 24
1.3.2.2 Evidence for the Left Hemisphere Hypothesis 25
1.4 Rationale and Aims of the Present Study 26
1.5 Hypotheses of the Present Study ... 28

CHAPTER 2: METHODOLOGICAL CONSIDERATIONS 29

2.1 The Divided Visual Field Technique ... 29
2.1.1 Stimulus Exposure Duration .. 30
2.1.2 Retinal Eccentricity ... 30
2.1.3 Fixation Controls ... 31
2.2 Stimulus Arrays .. 33
2.2.1 Effect of Limited Exposure Duration 33
2.2.2 Selection of Stimulus Array Size Range 34
2.2.3 Stimulus Pattern Arrangement ... 35
2.3 Response Mode .. 36
2.4 Dependent Measures ... 37
2.5 Subject Variables .. 37
2.5.1 Handedness ... 38
2.5.2 Sex ... 38
2.5.3 Age ... 39
2.5.4 Vision .. 39

CHAPTER 3: METHOD .. 40
3.1 SUBJECTS:..40
3.2 APPARATUS: ...40
3.3 STIMULI: ..42
3.4 DESIGN: ..43
3.5 PROCEDURE: ...44

CHAPTER 4: RESULTS ..46
4.1 STATISTICAL ASSUMPTIONS ...46
4.2 REACTION TIME DATA ANALYSES ...48
4.3 ACCURACY DATA ANALYSES ..52
4.4 SUMMARY ...55

CHAPTER 5: DISCUSSION ..56
5.1 OVERVIEW ..56
5.2 DISCUSSION OF FINDINGS ..57
5.2.1 BOUNDARY OF TWO ITEMS ..57
5.2.2 RIGHT HEMISPHERE ADVANTAGE ..59
5.2.3 INFLUENCE OF SEX ..61
5.3 FUTURE RESEARCH ...61
5.4 SUMMARY ...63

REFERENCES ..66

APPENDICES ..70
Appendix A: The Edinburgh Handedness Inventory ...70
Appendix B: Laterality Quotients for The Edinburgh Handedness Inventory71
Appendix C: Participant Instructions ...72
Appendix D: Raw Reaction Time and Accuracy Data..........................73
Appendix E: Reaction Time Analysis of Variance Summary Tables.......75
Appendix F: Reaction Time T-Test Comparisons..................................80
Appendix G: Accuracy Analysis of Variance Summary Tables.................81
Appendix H: Accuracy T-Test Comparisons..86

TABLE OF FIGURES

Figure 1.1: Ideal Enumeration Latency Function.................................6
Figure 1.2: Random and Canonical Patterns.....................................8
Figure 1.3: General Affine Transformations.....................................12
Figure 1.4: Brodmann's Areas in the Left Lateral View of the Human Brain...25
Figure 2.1: How a Stimulus Presented in the Left Visual Field Projects to the Contralateral Hemisphere.................................29
Figure 2.2: The Retinal Eccentricity Used in the Present Study..........31
Figure 3.1: Dimensions of Response Panel....................................41
Figure 3.2: An Example of a Stimulus Array Generated by the Computer...43
Figure 3.3: A Trial Sequence..45
Figure 4.1: Mean Reaction Time for the Left and Right Hemispheres to the Different Array Sizes...49
Figure 4.2: The Right Hemisphere Advantage..................................50
Figure 4.3: Accuracy of the Left and Right Hemispheres in Responding to the Different Array Sizes.................................53