GENETIC SCREENING FOR ABACAVIR HYPERSENSITIVITY (ABC-HSR) IN THE WESTERN AUSTRALIAN COHORT: PROSPECTIVE DATA AND NOVEL DIAGNOSTIC APPROACHES

Martin A1, Nolan D1, Rauch A1,2, Almeida C1, McKinnon E1, Mallal S1,3.

1Centre for Clinical Immunology and Biomedical Statistics, Royal Perth Hospital & Murdoch University, Perth Western Australia, 2Division of Infectious Diseases, University of Berne, Switzerland 3Department of Clinical Immunology and Biochemical Genetics, Royal Perth Hospital, WA

Background: Abacavir treatment is associated with drug hypersensitivity reactions in ~8% of Caucasians, and is highly predicted by the presence of HLA-B*5701 allele.

Objective: To determine the incidence of ABC-HSR after introduction of prospective HLA-B*5701 screening, and to develop new tests to rapidly screen and identify susceptible individuals.

Methods: Prospective study. All individuals prescribed abacavir after January 2002 were examined (n=138). ABC-HSR was diagnosed utilising standardised criteria. HLA results were obtained by sequence-based typing (SBT).

Diagnostic assay development. A multiplexed sequence specific primer (SSP) assay to identify HLA-B*5701 alleles, and a serological flow cytometry assay for HLA-B57 phenotyping using commercial B17 monoclonal antibodies and gating on the CD45+ lymphocyte population, were developed and validated.

Results: Prospective study. Three HLA-B*5701+ individuals developed classical ABC-HSR symptoms. In two cases HLA results were not reviewed, while one patient with limited treatment options made an informed choice based on the absence of other markers of the 57.1 ancestral haplotype. No definite cases of ABC-HSR were identified among the 135 HLA-B*5701-negative individuals, with no symptoms in 96% (n=131). Abacavir was discontinued within 6 weeks due to minor symptoms in one case (diarrhoea) or symptoms likely to be associated with an alternative drug in three cases (nevirapine = 2, zidovudine =1).

Diagnostic assay development. The PCR-SSP assay amplified all HLA-B*5701 alleles and was able to distinguish between HLA-B*5701 (n=10) and related alleles B*5702 (n=2), B*5703 (n=1), B*5704 (n=1); and non-HLA-B*57 alleles (n=61). Flow cytometry testing of whole blood samples from HLA-B57+ individuals were positive (n=7), while all HLA-B57-negative individuals (n=77) tested negative.

Conclusion: Testing and excluding individuals carrying the susceptibility locus HLA-B*5701 has decreased the incidence of abacavir HSR in the WA HIV cohort to 0% (95% CI 0.0-0.03) in HLA-B*5701+ individuals. The SSP diagnostic test for HLA-B*5701 detection is a rapid and accurate typing method with high specificity, sensitivity and reproducibility. The B17/CD45 dual staining was sufficient to discriminate between individuals carrying B57/B58 antigens and could be used as a rapid screen to identify and possibly exclude individuals with potential genetic susceptibility to abacavir. Confirmation of the HLA-B57 subtypes must be done using molecular methods.