
http://researchrepository.murdoch.edu.au/14828/

Copyright: © 2013 Elsevier B.V.

It is posted here for your personal use. No further distribution is permitted.
Fabrication of Fe-coordinated diamino-functionalized SBA-15 with hierarchical porosity for phosphate removal

Weiya Huang, Dan Li, Yi Zhu, Kai Xu, Jianqiang Li, Boping Han, Yuanming Zhang

PII: S0167-577X(13)00336-4
DOI: http://dx.doi.org/10.1016/j.matlet.2013.03.017
Reference: MLBLUE14998

To appear in: Materials Letters

Received date: 19 November 2012
Revised date: 9 February 2013
Accepted date: 6 March 2013

Cite this article as: Weiya Huang, Dan Li, Yi Zhu, Kai Xu, Jianqiang Li, Boping Han, Yuanming Zhang, Fabrication of Fe-coordinated diamino-functionalized SBA-15 with hierarchical porosity for phosphate removal, Materials Letters, http://dx.doi.org/10.1016/j.matlet.2013.03.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Fabrication of Fe-coordinated diamino-functionalized SBA-15 with hierarchical porosity for phosphate removal

Weiya Huang1,2, Dan Li3, Yi Zhu1, Kai Xu1, Jianqiang Li1, Boping Han4, Yuanming Zhang1,*

1Department of Chemistry, Jinan University, Guangzhou 510632, China

2Department of Materials Science and Engineering, Taizhou University, Linhai 317000, China

3Environmental Engineering, School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia 6150, Australia

4Institute of Hydrobiology, Jinan University, Guangzhou 510460, China

*Corresponding author: Email: tzhangym@jnu.edu.cn; Fax/Tel: +86-20-85221264.

Abstract: Hierarchically macroporous–mesoporous SBA-15 phosphate adsorbent was synthesized via a dual-templating approach, followed by diamino-functionalization and Fe(III) impregnation. The resulting Fe(III)-coordinated diamino-functionalized macroporous-mesoporous adsorbent possessed well-defined and interconnecting macroporous and mesoporous networks. Its maximum adsorption was 12.7 mg/g, which was 86.8% greater than that of Fe(III)-coordinated amino-functionalized mesoporous SBA-15. In the kinetic study of macroporous-mesoporous adsorbent, 92.5% of the final adsorption capacity reached in the first 1 min; and the adsorption followed the pseudo-second-order equation well, suggesting the presence of chemisorption. The pH ranging from 3.0 to 6.0 favored the high phosphate adsorption of hierarchically porous adsorbent; however, the coexistence of other anions, especially F-, retarded the adsorption.

Keywords: Porous materials; Phosphate; Adsorption; diamino-functionalization; Fe(III) impregnation
1. Introduction

To date, the increasing discharge of nutrients, especially phosphate, into aquatic environment contributes to eutrophication, leading to a serious world-wide environmental problem – algal bloom. Therefore, there is a need to reduce the phosphate levels in wastewater before its release to the environment. Several methods have been utilized, in which the adsorption-based process is considered as one of the most efficient routes [1].

Ordered mesoporous silicas have attracted considerable attention owing to attractive features, i.e. ultrahigh surface area, a highly ordered and tunable pore structure. However, most of as-prepared ordered mesoporous silicas show a very limited phosphate adsorption. Functionalization of mesoporous silicas and subsequent metal-impregnation can effectively generate specific binding sites for phosphate anions, thus forming phosphate adsorbents with a superior adsorption capacity and a fast adsorption rate [2,3]. For instance, the Fe(III)-coordinated diamino-functionalized SBA-15 exhibited the maximum phosphate capture capacity of 20.7 mg P/g and reached almost 90% of the final adsorption capacity in 10 min [4].

By utilizing such strategy to fabricate phosphate adsorbents, the reduction of mesopore sizes caused by the attachment of functional groups is noticed, which limits the diffusivity through those confined channels [5]. Despite some attempts to tailor SBA-15 which possesses relatively large pores in the class of mesoporous silicas, its long and isolated parallel channels still cause a slow in-pore diffusion and turnover [6]. As compared with single-sized mesoporous materials, the hierarchically macroporous-mesoporous materials have been proven to offer an improved diffusion characteristic and a high specific surface area on the level of fine pore systems [3,7].

The objective of our work is to fabricate and utilize Fe(III)-coordinated diamino-functionalized macroporous-mesoporous SBA-15 for phosphate removal; which, to the best of our knowledge, is reported for the first time. The macropores existing within SBA-15 are
expected to work as the rapid transport conduits for phosphate to the Fe\(^{3+}\)-diamino sites, which in turn reduce the transport obstacles, thus improving adsorption capacity.

2. **Materials and methods**

2.1 Synthesis of Fe(III)-coordinated diamino-functionalized macroporous–mesoporous adsorbents

Macroporous–mesoporous SBA-15 was firstly synthesized via a dual-templating approach by using P123 and monodisperse polystyrene beads (PS) (Fig. S1) as templates [8]. The products were prepared with the mass ratios of P123 : PS : tetraethoxysilane (TEOS) at 1.00 : 0 : 2.15 and 1.00 : 8.60 : 2.15, respectively. By utilizing the post-grafting method, 1.0 g of the afore-prepared silica was added into the mixture consisting of 30.0 mL of toluene and 1.0 mL of N-(2-aminoethyl)-3-aminopropyltrimethoxysilane, which was refluxed at 130 °C for 24 h. The resulting diamino-functionalized samples were washed with ethanol and mixed in 0.10 M FeCl\(_3\) solution. Fe(III)-coordinated diamino-functionalized adsorbents were denoted as SBA-NN-Fe-0 and SBA-NN-Fe-8.6, corresponding to their parent SBA-15 silicas which were fabricated with the mass ratios of P123 : PS : TEOS = 1.00 : 0 : 2.15 and 1.00 : 8.60 : 2.15, respectively.

2.2 Characterization and phosphate adsorption

SEM and TEM images were taken by JSM-7401F and JEM2010-HR (JEOL). XRD patterns were recorded on a Bruker D8 Advance diffractometer. FT-IR measurements were performed by using Shimadzu IR Prestige-21 instrument. Nitrogen adsorption-desorption isotherms were measured at 77 K using ASAP 2010 (Micromeritics Inc.). Details of phosphate adsorption analysis were provided in the supporting document.
3. Results and discussion

Fig.1 shows SEM (a) and TEM (b) images of SBA-NN-Fe-0 and SBA-NN-Fe-8.6. SBA-NN-Fe-0 exhibits the typical SBA-15 ropelike shape [9]. The addition of polystyrene beads modifies the SBA-15-like morphology and the SBA-NN-Fe-8.6 shows a more uniform macroporous network. In Fig.1b, SBA-NN-Fe-0 shows a 2D periodically hexagonal mesostructure of SBA-15, which is retained in SBA-NN-Fe-8.6; however, the introduction of macropores breaks up the extended mesoporous channels. In SBA-NN-Fe-8.6, the highly-organized concentric mesoporous channels with high curvature solely locate in the walls of macroporous framework. This is formed after the self-assembly of templated mesoporous channels around polystyrene beads which is promoted by the electrostatic and hydrogen-bonding interactions among beads, P123 and silica precursor [8].

Fig.2 shows XRD patterns (a), FT-IR spectra (b), N$_2$ adsorption–desorption isotherms (c) and BJH pore size distribution plots (d) of SBA-NN-Fe-0 and SBA-NN-Fe-8.6. In Fig.2a, three SBA-15 characteristic diffraction peaks (100), (110) and (200) are distinguishable, suggesting a well-ordered hexagonal arrangement of mesoporous silica framework [9]. However, a decrease in the intensities of peaks was observed for the sample SBA-NN-Fe-8.6 synthesized with the addition of PS. This may be caused by the introduction of macropores which breaks up the long-range order of mesoporous channels [10]. In Fig.2b, the peaks at 1081, 803, and 466 cm$^{-1}$, which are attributed to the vibrations of condensed silica network, and the peak at 961 cm$^{-1}$, which is ascribed to the Si-OH groups, are observed for both of SBA-NN-Fe-0 and SBA-NN-Fe-8.6 samples [11]. In particular, in the FTIR spectra of SBA-NN-Fe-0 and SBA-NN-Fe-8.6, the band appearing at 1408 cm$^{-1}$ corresponds to the NH$_2$ vibration [11], thus confirming the successful functionalization of mesoporous and macroporous-mesoporous silicas via the post-grafting method. Both of the N$_2$ adsorption–desorption isotherms (Fig.2c) exhibit a type IV model with a H1 hysteresis loop, suggesting the samples with uniform and even mesopores [12].
However, the loop size of isotherm decreases with increasing macropore character, which is attributed to the limited gas diffusion caused by the disruption of extended mesopore networks [8]. The pore diameters of SBA-NN-Fe-8.6 (Fig.2d) are slightly smaller than that of SBA-NN-Fe-0, which may be caused by the high curvature of mesoporous channels, as shown in Fig.1b. The specific surface areas for SBA-NN-Fe-0 and SBA-NN-Fe-8.6 are 247.40 m²/g and 233.68 m²/g, respectively.

In Table 1, both of Langmuir and Freundlich equations can satisfactorily describe the experimental data (R² > 0.93). In particular, q₀ of SBA-NN-Fe-8.6, 12.7 mg P/g, is significantly greater than that of SBA-NN-Fe-0, proving the presence of macropores can promote the diffusion of phosphate into the active sites and in turn improve the adsorption efficiency. Fig.3 further examines the adsorption behaviors of SBA-NN-Fe-8.6. The fitted pseudo-second-order kinetic model with a high correlation coefficient (Fig.3a) reveals that the adsorption is chemisorption. 92.5% of the adsorption capacity reaches in the first 1 min (Fig.3b). In Fig.3c, the highest adsorption of SBA-NN-Fe-8.6 is about 9.0 mg P/g in the pH from 3.0 to 6.0, indicating the Fe³⁺– diamino complex provides a great affinity to the main species of phosphate H₂PO₄⁻ [13]. The adsorption capacity dramatically decreases at pH ≥ 7.0; which is ascribed to the competitive adsorption between OH⁻ and the predominant species of phosphate HPO₄²⁻, as well as the precipitation of Fe³⁺ out of Fe³⁺– diamino complex [4]. The presence of open and interconnected macroporous-mesoporous framework in SBA-NN-Fe-8.6 may promote the diffusion of relatively smaller ions. Therefore, in comparison to HCO₃⁻, its phosphate adsorption capacity seems much easier to be affected by the existence of F⁻, Cl⁻ or NO₃⁻ (Fig.3d).

4. Conclusion

Fe-coordinated diamino-functionalized SBA-15 with hierarchical porosity was synthesized and used to remove phosphate for the first time. SBA-NN-Fe-8.6 possessed a
uniform macroporous network with highly-organized concentric mesopores, which contributed to the high phosphate adsorption capacity and rate. Therefore, our study offers a simple and scalable approach to fabricate adsorbents with improved phosphate adsorption performance by tailoring their porous structure.

Acknowledgements

This work was supported by Natural Science Foundation of Guangdong (No. S2011040001667) and Key Laboratory of Mineralogy and Metallogeny Cooperation Foundation (No. KLMM20110204).

References and Notes

Figure captions:

Fig.1. (a) SEM and (b) TEM images of SBA-NN-Fe-0 and SBA-NN-Fe-8.6.

Fig.2. (a) XRD patterns, (b) FT-IR spectra, (c) N\textsubscript{2} adsorption-desorption isotherms and (d) BJH pore size distributions of SBA-NN-Fe-0 and SBA-NN-Fe-8.6.

Fig.3. (a) Pseudo-second-order plot for the phosphate adsorption; (b) effect of contact time, (c) pH, and (d) co-existing anions on the phosphate adsorption capacity of SBA-NN-Fe-8.6.
Tables

Table 1. Langmuir and Freundlich isotherm parameters in the phosphate adsorption of SBA-NN-Fe-0 and SBA-NN-Fe-8.6. (Dosage: 0.1 g/100 mL; pH=5.0; reaction time: 2h)

<table>
<thead>
<tr>
<th>Samples</th>
<th>Langmuir</th>
<th>Freundlich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>q_0 (mg/g)</td>
<td>K_L (L/mg)</td>
</tr>
<tr>
<td>SBA-NN-Fe-0</td>
<td>6.8</td>
<td>0.755</td>
</tr>
<tr>
<td>SBA-NN-Fe-8.6</td>
<td>12.7</td>
<td>0.405</td>
</tr>
</tbody>
</table>

Highlights

► Fe-coordinated functionalized macro-mesoporous SBA-15 was used to remove phosphate. ► The P adsorption of SBA-NN-Fe-8.6 was 86.8% higher than the mesoporous SBA-NN-Fe-0. ► 92.5% of the adsorption capacity of SBA-NN-Fe-8.6 reached within the first 1 min. ► High phosphate adsorption of SBA-NN-Fe-8.6 was recorded from pH 3.0 to 6.0. ► The coexistence of anions retarded the phosphate adsorption of SBA-NN-Fe-8.6.