Selection for muscling affects carbohydrate and fatty acid metabolism in beef cattle

This thesis is presented for the degree of

Doctor of Philosophy of Murdoch University

by

Peter McGilchrist

B. Rur. Sc. (Hons1) (UNE)

April 2011
Declaration

I hereby declare that this thesis is my own account of my research and contains as its main content, work which has not previously been submitted for a degree at any tertiary education institution.

Signed ________________________________ Date ____________________________

Peter McGilchrist
Summary

Genetic selection to enhance muscularity in beef cattle is desirable to increase retail beef yield and the profitability of the beef industry. However it is unknown how selection for greater muscling will impact on intermediary and muscle energy metabolism which may influence certain attributes of meat quality. In order to assess these impacts of selection for greater muscling in cattle, the physiological mechanisms that underpin the increase in retail beef yield must be identified. This thesis examined the impact of selection for greater muscling on: retail beef yield; muscle glycogen; whole body insulin responsiveness; adrenaline responsiveness of muscle, adipose and liver tissue; and proportion of glycolytic and oxidative myofibres and enzyme activities.

This study used 11 high (High), 10 low (Low) and 3 high muscled steers with a myostatin mutation (HighHet) from an Angus herd which had been visually selected for divergence in muscling over 15 years.

The results of the yield test performed at bone-out showed that the HighHet and High muscled steers were the highest yielding with the lowest proportion of fat, while the Low muscling animals were the lowest yielding with the highest proportion of fat. Muscle glycogen and lactate concentration were analysed from four muscle biopsies, taken between 18 and 24 months of age, from the \textit{m. semimembranosus} (SM), \textit{m. semitendinosus} (ST) and \textit{m. longissimus thoracis et lumborum} (LTL) of each animal. The muscle glycogen concentrations which were 6.1\% higher in the High steers compared to the Low animals while the HighHet did not differ from either group.
The effect of selection for muscling on whole body insulin responsiveness was measured using the hyperinsulineamic-euglyceamic clamp technique. Insulin was constantly infused at 2 levels, glucose was concurrently infused to maintain euglyceamia, and the steady-state glucose infusion rate (SSGIR) indicated insulin responsiveness. At the low insulin infusion rate of 0.6 mU/kg/min, the SSGIR was 73% higher for the High muscling genotype animals when compared to the Low. At the high insulin infusion rate of 6.0 mU/kg/min, these differences were proportionately less with the High and the High$^{\text{Het}}$ genotypes having only 27% and 34% higher SSGIR than the Low muscled genotype. The High muscled cattle also had 30% higher plasma IGF-1 concentrations compared to the Low muscled cattle. The increased whole body insulin responsiveness in combination with higher IGF-1 concentrations in the High muscled steers is likely to initiate a greater level of protein synthesis, which may partially explain the increased muscle accretion in these animals. Increased insulin responsiveness in the High steers would also increase glycogenesis in the muscle, aligning with the glycogen results.

The effect of selection for muscling on adrenaline responsiveness was measured using 7 adrenaline challenges ranging between 0.2 to 3.0 µg/kg liveweight. Plasma was analysed for NEFA, lactate, glucose and growth hormone concentration and area under curve (AUC) over time was calculated to reflect the tissue responses to adrenaline. The High steers had 30% lower lactate AUC than the Low steers at challenges greater than 2 µg/kg live weight, indicating lower muscle responsiveness at the highest adrenaline doses causing less glycogenolysis. This result also aligns with these animals having more muscle glycogen, thus more muscular animals may reduce the incidence of dark, firm, dry meat that is caused by low levels of glycogen at slaughter. At all levels of
adrenaline challenge the High steers had at least 30% greater NEFA AUC, indicating that their adipose tissue was more responsive to adrenaline, resulting in greater lipolysis. In agreement with this response, the High steers had a higher plasma growth hormone concentration, which is likely to have contributed to the increased lipolysis evident in these animals in response to adrenaline. This difference in lipolysis may in part explain the reduced fatness of muscular cattle. There was no effect of selection for muscling on liver responsiveness to adrenaline.

Contrary to our initial hypotheses, the High steers had less glycolytic type IIX myofibres in the LTL and larger average cross-sectional area of myofibres in the SM and ST than their Low muscled counterparts. This suggests that myofibre hypertrophy may be a possible mechanism leading to greater muscle mass of these High muscled animals. This also indicates that breeding for more muscular cattle can actually maintain the oxidative capacity of the muscle, a finding supported by the enzymatic results showing that the High muscled steers had lower activity of lactate dehydrogenase and higher activity of citrate synthase and isocitrate dehydrogenase. The High muscled cattle also had a higher concentration of iron in the LTL, and selection for increased muscling had no impact on pH decline or retail colour stability, factors which both affect meat quality.

The aim of the second experiment was to determine if phenotypic measurements taken at the time of grading for Meat Standards Australia (MSA) could explain variance in ultimate pH (pH_u) of carcasses and the probability of a carcass complying with MSA standards for pH_u (≤ 5.7). Analyses of 204,072 carcass records collated by MSA at a Western Australian processor confirmed that more muscular cattle have a higher
compliance rate for pHu. An increase in eye muscle area from 40 to 80 cm², increased pHu compliance by approximately 14%. Therefore animals with greater muscularity had a lower incidence of dark, firm, dry beef supporting the results that High muscled cattle have increased insulin responsiveness, and reduced adrenaline responsiveness, leading to increased glycogen storage at slaughter. Thus, breeding more muscular cattle with eye muscle area greater than 70 cm² may help alleviate the problem of dark, firm, dry beef. As rib fat depth increased from 0 to 20mm, pHu compliance increased by around 10%. Heavier cattle also had higher compliance than lighter cattle, and younger cattle also had higher compliance rates. This highlights the importance of good nutrition and high muscle glycogen storage prior to slaughter to maximise compliance rates.

The final study examined 81 commercially managed High and Low muscled steers and showed that the effects of muscularity on muscle glycogen were variable as pasture quality and availability changed however there were no negative effects of selection for greater muscling on muscle glycogen, glycogenolysis pre-slaughter, or on the incidence of dark, firm and dry carcasses. Animal temperament assessed using crush score and flight speed measurements did however affect muscle glycogen with the more flighty animals having lower muscle glycogen concentrations.
Acknowledgements

This thesis would not have been at all possible without the amazing leadership of my academic supervisors. I cannot express strongly enough my sincere appreciation for the immense efforts of my principal supervisor, Dr Graham Gardner. I have been so fortunate and will be forever grateful for the mentoring, guidance and encouragement that Graham has given me since taking me on for honours in 2004. Your level of enthusiasm, knowledge, attention to detail for most things and your love of life and research has made this thesis task very palatable and immensely enjoyable. Thanks mate!

I would like to express a huge vote of thanks to Professor David Pethick. It has been very pleasurable working within your lab group and I have greatly appreciated your knowledge, leadership, encouragement and vision. Thanks for being a very positive influence, believing in me and working so hard to secure funding for my first real job. Many thanks also to Dr Paul Greenwood for your many and varied inputs towards the creation of this thesis. Paul was instrumental in getting this project which I was interested in off the ground and saw it through to the end. Thanks Paul for all the encouragement, direction and assistance you have given me. It’s been fantastic!

The experiment would not have been possible without the support from the Beef Genetic Technologies Cooperative Research Centre (CRC) and Murdoch University. Thank you so much for the opportunity to be involved with a beef CRC research project and making the effort to nurture the development of your research leaders of tomorrow.
It has been very rewarding experience and the skills learned throughout this PhD are invaluable for life.

The experiments conducted as part of my PhD would have not been achievable without the fantastic assistance of so many people for whom I am all truly thankful because without them, I would be still taking bloods on my first experiment. Massive thanks to Mal Boyce, Sarah Bonny, Andrew Williams, Ken Chong and Rini Margawani for long and arduous hours of work, keeping me organised, in line and trying to educate me on the fundamentals of research, biochemical method and statistical analysis. Thanks for all the laughs and comradery, you have made this PhD process very enjoyable. Many thanks also to Barbara Waldoch, Amy Tay, Kelly Stanger, Nicola Fargher, Colette Sims, William Powell, Jennifer Clulow and Jim McMahon for all your technical assistance in the lab and out in the field. It was a pleasure working with you all as part of the big team and thank you all very much for your valuable contributions.

My animals were always so well cared for both at Murdoch University farm, Glen Innes Research station and at North Kotupna. Many thanks to Kim Thomas, Don Hook, Peter Kamphorst, Peter Newman, Matt McKiernan and David Lean for managing the herds so well.

I am very appreciative of Taron Brearley’s amazing algebraic skills. Thanks for your assistance with developing the plasma response function, because without that function, I would be still analysing the data, so thank you very much. I also owe many thanks to Clair Alston for here incredible bio-magician talent. Your assistance with analysis of the MSA data was greatly appreciated. You achieved a feat that many failed!
I am very grateful for the opportunity to collaborate with Linda Cafe, Kirstie Thomson and Robin Jacobs on the temperament and MSA data analysis chapters of this thesis. Your guidance, thoughts and assistance is much appreciated. Thanks also to the team of great people in VBS 2.044, Cameron Jose, Sarah Wickham, Mal Boyce, Michael Laurence and Catherine Stockman. Your friendship along with all the laughs we had, ‘other projects’ we took part in and encouragement we gave each other has been awesome.

Thanks to all my family, especially mum and dad, for all your love, encouragement and support that I always receive. It is greatly appreciated! I would also like to really thank our Perth friends for constantly distracting me, providing me with entertainment, excuses and procrastination. Your ability to make me laugh never ceases – thanks for all the good times over the past 3 years.

Most importantly, I owe massive heartfelt thanks to my gorgeous fiancée Kia who has always given me so much inspiration, endless love and full support over the last few years. Your sense of humour, smile and easy going character have made the journey of this PhD very pleasurable. I am so thankful that you moved to WA to enjoy life in the sunny state.
Publications

Journal publications:

Journal publications submitted:

Conference proceedings:

Abbreviations

ADP Adenosine diphosphate
AMP Adenosine monophosphate
ATGL Adipose triglyceride lipase
ATP Adenosine triphosphate
AUC Area under curve
Ca\(^{2+}\) Calcium
cAMP 3\(^{-}\),5\(^{+}\)-Cyclic adenosine monophosphate
CO\(_2\) Carbon Dioxide
CoA Co-enzyme A
COOH Carboxyl group
CT Computed tomography
DEXA Dual x-ray absorptiometry
DFD Dark, Firm and Dry
EBV Estimated Breeding Value
EDTA Ethylenediamine tetra acetic acid disodium salt
EMA Eye muscle area
FADH\(_2\) Flavin adenine dinucleotide
G 1-P Glucose 1-phosphate
G 6-P Glucose 6-phosphate
GLUT Glucose transporter
HCO\(_3\) Hydrogen carbonate
HIEG Hyperinsulinaemic euglycaemic clamp
H\(_2\)O Dihydrogen Oxide (water)
HSCW Hot standard carcass weight
HSL Hormone sensitive lipase
IGF Insulin like growth factor
IIR Insulin infusion rate
IMF Intramuscular fat
IMP inosine monophosphate
LTL longissimus thoracis et lumborum
MLA Meat & Livestock Australia
mM milli molar
MRI Magnetic resonance imaging
mRNA messenger ribonucleic acid
MSA Meat Standards Australia
NAD+ Nicotinamide Adenine Dinucleotide
NADH Reduced Nicotinamide Adenine Dinucleotide
NADP Nicotinamide Adenine Dinucleotide Phosphate
NADPH Nicotinamide Adenine Dinucleotide Phosphate (reduced)
NEFA Non-Esterified Fatty Acid
NH₂ Amine
PFK-1 Phosphofructo kinase-1
pHₙ Ultimate pH
RBY Retail beef yield
SM semimembranosus
SSGIR Steady state glucose infusion rate
ST semitendinosus
TGF-β Transforming growth factor beta
TCA Citric Acid Cycle
UDP Uridine diphosphate
USDA United Stated Department of Agriculture
VFA Volatile Fatty Acid
VIA Video image analysis
<table>
<thead>
<tr>
<th>Enzymes</th>
<th>EC Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetyl Co A carboxylase</td>
<td>6.4.1.2</td>
</tr>
<tr>
<td>Adenylate cyclase</td>
<td>4.6.1.1</td>
</tr>
<tr>
<td>Adipose triglyceride lipase</td>
<td>3.1.1.3</td>
</tr>
<tr>
<td>Amylo-α-1,6-glucosidase</td>
<td>3.2.1.33</td>
</tr>
<tr>
<td>Aldolase</td>
<td>4.1.2.13</td>
</tr>
<tr>
<td>ATP citrate lyase</td>
<td>2.3.3.8</td>
</tr>
<tr>
<td>Calpain-1</td>
<td>3.4.22.52</td>
</tr>
<tr>
<td>Calpain-2</td>
<td>3.4.22.53</td>
</tr>
<tr>
<td>cAMP dependant protein kinase</td>
<td>2.7.1.37</td>
</tr>
<tr>
<td>Citrate synthase</td>
<td>2.3.3.1</td>
</tr>
<tr>
<td>Enolase</td>
<td>4.2.1.11</td>
</tr>
<tr>
<td>Fatty acid synthase</td>
<td>2.3.1.85</td>
</tr>
<tr>
<td>Fructose 1,6-bisphosphatase</td>
<td>3.1.3.11</td>
</tr>
<tr>
<td>Fructose 2,6-bisphosphatase</td>
<td>3.1.3.46</td>
</tr>
<tr>
<td>Glucokinase</td>
<td>2.7.1.2</td>
</tr>
<tr>
<td>Glucose 6-Phosphatase</td>
<td>3.1.3.9</td>
</tr>
<tr>
<td>Glyceraldehyde 3-phosphate dehydrogenase</td>
<td>1.2.1.12</td>
</tr>
<tr>
<td>Glycogen Phosphorylase</td>
<td>2.4.1.1</td>
</tr>
<tr>
<td>Glycogen Synthase</td>
<td>2.4.1.11</td>
</tr>
<tr>
<td>Hexokinase</td>
<td>2.7.1.1</td>
</tr>
<tr>
<td>Hormone Sensitive Lipase</td>
<td>3.1.1.3</td>
</tr>
<tr>
<td>Isocitrate dehydrogenase</td>
<td>1.1.1.41</td>
</tr>
<tr>
<td>Lactate Dehydrogenase</td>
<td>1.1.1.27</td>
</tr>
<tr>
<td>NADP-Isocitrate Dehydrogenase</td>
<td>1.1.1.41</td>
</tr>
<tr>
<td>Oligo-1,4,1,4-glucan transferase</td>
<td>2.4.1.18</td>
</tr>
<tr>
<td>Phosphatidyl inositol kinase-3</td>
<td>2.7.1.137</td>
</tr>
<tr>
<td>Phosphodiesterase</td>
<td>3.1.4.17</td>
</tr>
<tr>
<td>Phosphofructokinase 1</td>
<td>2.7.1.11</td>
</tr>
<tr>
<td>Enzyme Name</td>
<td>EC Number</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>Phosphofructokinase 2</td>
<td>2.7.1.105</td>
</tr>
<tr>
<td>Phosphoglucomutase</td>
<td>5.4.2.2</td>
</tr>
<tr>
<td>Phosphoglycerate kinase</td>
<td>2.7.2.3</td>
</tr>
<tr>
<td>Phosphoglucose isomerase</td>
<td>2.7.1.38</td>
</tr>
<tr>
<td>Phosphorylase kinase</td>
<td>2.7.11.19</td>
</tr>
<tr>
<td>Phosphopentolpyruvate Carboxykinase</td>
<td>4.1.1.49</td>
</tr>
<tr>
<td>Protein kinase A</td>
<td>2.7.11.1</td>
</tr>
<tr>
<td>Protein Phosphatase-1</td>
<td>3.1.3.16</td>
</tr>
<tr>
<td>Pyruvate Carboxylase</td>
<td>6.4.1.1</td>
</tr>
<tr>
<td>Pyruvate Dehydrogenase</td>
<td>1.2.4.1</td>
</tr>
<tr>
<td>Pyruvate kinase</td>
<td>2.7.1.40</td>
</tr>
<tr>
<td>Sarcoplastic reticulum ATPase</td>
<td>3.6.3.8</td>
</tr>
<tr>
<td>Serine kinase</td>
<td>2.7.11.1</td>
</tr>
<tr>
<td>Triose phosphate isomerase</td>
<td>5.3.1.1</td>
</tr>
<tr>
<td>Tyrosine kinase</td>
<td>2.7.10.2</td>
</tr>
</tbody>
</table>
Table of Contents

DECLARATION ... II

SUMMARY .. III

ACKNOWLEDGEMENTS ... VII

PUBLICATIONS ... X

ABBREVIATIONS ... XIII

ENZYMES .. XV

TABLE OF CONTENTS .. XVII

LIST OF FIGURES .. XXII

LIST OF TABLES .. XXV

LIST OF EQUATIONS ... XXVII

LIST OF PLATES ... XXVII

CHAPTER 1. INTRODUCTION .. 1

CHAPTER 2. LITERATURE REVIEW .. 4

 2.1 DARK CUTTING .. 4

 2.1.1 Impact of dark cutting on meat quality .. 5

 2.1.2 Incidence of dark cutting ... 7

 2.1.3 Cost of dark cutting to beef industry ... 9

 2.1.4 Cause of dark cutting ... 10

 2.2 SELECTION FOR MUSCLING .. 11

 2.2.1 Selection tools .. 12

 2.2.1.1 Visual selection .. 12

 2.2.1.2 Cross breeding ... 13

 2.2.1.3 Genetic selection .. 14

 2.2.1.4 Myostatin gene markers ... 16

 2.2.2 Effect on carcass composition and yield .. 17

 2.2.2.1 Determining retail beef yield ... 18

 2.3 RUMINANT DIGESTION ... 20

 2.3.1 Products of digestion ... 21

 2.3.2 Volatile fatty acid metabolism ... 22

 2.3.2.1 Acetate ... 22

 2.3.2.2 Butyrate ... 23

 2.3.2.3 Propionate .. 24

 2.4 INTERMEDIARY METABOLISM ... 24

 2.4.1 Glucose metabolism ... 26

 2.4.1.1 Glycolysis .. 27

 2.4.1.2 Gluconeogenesis .. 31

 2.4.2 Glycogen metabolism .. 32

 2.4.2.1 Glycogen structure .. 33

 2.4.2.2 Glycogenolysis ... 34

 2.4.2.3 Glycogenesis ... 36

 2.4.2.4 Glucose transport ... 37

 2.4.3 Fatty Acid Metabolism .. 38

 2.4.3.1 Lipolysis ... 38

 2.4.3.2 Lipogenesis ... 41

 2.5 HORMONAL REGULATION OF INTERMEDIARY METABOLISM .. 42

 2.5.1 Insulin ... 42

 2.5.1.1 Effect on glycogenesis and glycogenolysis ... 43

 2.5.1.2 Effect on glycolysis and gluconeogenesis .. 44
7.2.3 pH declines and data adjustment ... 162
7.2.4 Retail colour stability .. 164
7.2.5 Muscle immunocytochemistry, myofibre classification and morphometry 166
7.2.6 Muscle enzymatic assays ... 170
7.2.7 Muscle myoglobin determination ... 171
7.2.8 Mineral determination .. 171
7.2.9 Statistical Analysis ... 171
7.3 RESULTS ... 172
7.3.1 Myofibre characteristics – effect of genotype ... 172
7.3.2 Enzymatics, protein and myoglobin - Muscling genotype effects 175
7.3.3 Enzymatics and protein – Effects of age ... 176
7.3.4 Muscle mineral content .. 179
7.3.5 Retail colour stability .. 180
7.3.6 Ultimate pH and pH declines .. 181
7.4 DISCUSSION ... 182
7.4.1 Myofibre and enzymatic characteristics ... 182
7.4.3 Minerals ... 184
7.4.4 pH declines .. 185
7.4.5 Meat colour and stability .. 186
7.4.6 Effect of age on enzyme activity ... 186
7.5 CONCLUSIONS ... 187

CHAPTER 8. INCREASED EYE MUSCLE AREA, LOWER OSSIFICATION SCORE AND IMPROVED NUTRITION ARE ASSOCIATED WITH REDUCED ULTIMATE pH IN CATTLE .. 188

8.1 INTRODUCTION ... 188
8.2 MATERIALS AND METHODS ... 190
 8.2.1 Producer and processor requirements ... 190
 8.2.2 Carcass measurements .. 191
 8.2.3 Data analysed .. 193
 8.2.4 Statistical analysis .. 195
 8.2.5 Results interpretation .. 199
8.3 RESULTS ... 200
 8.3.1 Season, sex and nutrition effects on pHu .. 200
 8.3.2 Animal phenotype effects on pHu ... 203
 8.3.3 Tropical breed content, lot size and loin temperature effects on pHu 207
8.4 DISCUSSION ... 210
 8.4.1 Effect of muscling .. 210
 8.4.2 Effect of rib fat depth and carcass weight ... 211
 8.4.3 Effect of ossification .. 212
 8.4.4 Other effects on pHu compliance ... 213
8.5 CONCLUSION .. 215

CHAPTER 9. THE EFFECT OF ANIMAL TEMPERAMENT AND MUSCLING GENOTYPE ON MUSCLE GLYCOGEN CONCENTRATION IN GROWING ANGUS STEERS ... 216

9.1 INTRODUCTION ... 216
9.2 MATERIALS AND METHODS ... 218
 9.2.1 Animals .. 219
 9.2.2 Live animal measurements and samples .. 220
 9.2.3 Temperament Assessments .. 221
 9.2.4 Pasture Availability and Quality ... 222
 9.2.5 Muscle glycogen sampling and analysis .. 224
 9.2.6 Plasma sampling and analysis .. 225
 9.2.7 Carcass and yield measurement ... 226
 9.2.8 Statistical analyses .. 227
CHAPTER 10

9.3 RESULTS .. 228
9.3.1 Live animal and slaughter measurements .. 228
9.3.2 Effects of animal temperament .. 231
9.3.3 Effects of muscling genotype .. 234
9.3.4 Effects of nutrition ... 235
9.3.5 Effects of more oxidative (SM) and more glycolytic (ST) muscles 236
9.4 DISCUSSION ... 236
9.4.1 Effects of temperament ... 236
9.4.2 Effects of muscling .. 238
9.4.3 Effects of nutrition .. 239
9.4.4 Effect of muscle type ... 240
9.5 CONCLUSION ... 240

CHAPTER 10. GENERAL DISCUSSION .. 242

10.1 SELECTION FOR MUSCLING - BENEFITS TO INDUSTRY 242
10.2 PREDICTING RETAIL BEEF YIELD USING COMPUTERISED TOMOGRAPHY SCANS .. 243
10.3 RESPONSIVENESS TO INSULIN ... 245
10.3.1 Glucose transport .. 246
10.3.2 Adipose responsiveness .. 247
10.3.3 Glucose tolerance test ... 247
10.4 ADRENALINE RESPONSIVENESS ... 248
10.4.1 Muscle responsiveness ... 248
10.4.2 Adipose tissue responsiveness ... 250
10.4.3 Effect of muscling on intramuscular fat ... 251
10.5 FIBRE TYPE AND ENZYME ACTIVITIES ... 252
10.6 INFLUENCE OF SELECTION FOR MUSCLING ON GLYCOCEN 254
10.6.1 Effect of myostatin mutation on glycogen ... 255
10.6.2 Effects of muscling genotype and nutrition in grass finished cattle 256
10.7 MEAT STANDARDS AUSTRALIA (MSA) DATA MINING STUDY CONFIRMED THE BENEFITS OF MORE MUSCLE 257
10.7.1 Effect of fat depth on pHu .. 258
10.8 ANIMAL TEMPERAMENT EFFECTS GLYCOGENOLYSIS 258

REFERENCES ... 260
List of Figures

Figure 2-1: Glycolytic Pathway (adapted from Stryer, 1988) ... 30
Figure 2-2: Gluconeogenic Pathway .. 32
Figure 2-3: The Whelan model of glycogen structure (Whelan, 1971). Each line represents an α-1,4-linked glucosyl chain, and arrows represent α-1,6-linkages. Chains designated A carry no other chains; chains designated B do carry other chains; and the chain designated C is either attached to glycogenin or has a free reducing group (both termed Ø). ... 34
Figure 2-4: Glycogenolysis and glycogenesis pathways .. 36
Figure 2-5: β-oxidation and fatty acid synthesis ... 40
Figure 3-1: Histogram of pixel values for a restricted range of Hounsfield units (Hu), for fat and muscle tissues of 24 hindlimbs of beef cattle at 24 months of age. Each line is the frequency of the corresponding Hu units of an individual animal ... 72
Figure 3-2: The relationship between CT lean percentage of hindlimb and bone-out retail beef yield as a percentage of cold carcass weight. Round circles are individual animal measurements and solid line represents linear relationship. .. 77
Figure 3-3: The relationship between fat percentage of a hindlimb as determined by CT scan and fat trim as a percentage of a cold carcass weight. Round circles are individual animal measurements and solid line represents linear relationship. .. 78
Figure 3-4: The relationship between bone percentage of a hindlimb as determined by CT scan and the percentage of bone from a beef carcass. Round circles are individual animal measurements and solid line represents linear relationship .. 78
Figure 3-5: The relationship between intramuscular fat percentage of the median section of a complete striploin (LTL) as determined by CT scan and the intramuscular fat percentage of the LTL from the 13th rib section of the striploin as determined by chemical analysis. Round circles are individual animal measurements and solid line represents linear relationship .. 79
Figure 4-1: The response curve for plasma lactate over time following an exogenous adrenaline challenge administered at time 0 .. 97
Figure 4-2: The response curve for plasma glucose over time following an exogenous adrenaline challenge administered at time 0 .. 98
Figure 4-3: The response curve for plasma NEFA over time following an exogenous adrenaline challenge administered at time 0 .. 98
Figure 4-4: The response curve for plasma glucose over time following a 200mg/kg liveweight glucose challenge administered at time 0 .. 99
Figure 4-5: The response curve for insulin over time following a 200mg/kg liveweight glucose challenge administered at time 0 .. 99
Figure 4-6: The response curve for plasma glucose over time following a 2mU/kg liveweight insulin challenge administered at time 0 .. 100
Figure 4-7: Glucose residual errors (A) between modelled and raw concentrations for all animals, at all time points during 7 adrenaline challenges and (b) frequency distribution of these residuals .. 102
Figure 4-8: Lactate residual errors (A) between modelled and raw concentrations for all animals, at all time points during 7 adrenaline challenges and (b) frequency distribution of these residuals .. 103
Figure 4-9: NEFA residual errors (A) between modelled and raw concentrations for all animals, at all time points during 7 adrenaline challenges and (b) frequency distribution of these residuals .. 103
Figure 4-10: Glucose residual errors (A) between modelled and raw data for all animals, at all time points during 200mg/kg liveweight glucose challenge and (b) frequency distribution of these residuals .. 104
Figure 4-11: Insulin residual errors (A) between modelled and raw data for all animals, at all time points during 200mg/kg liveweight glucose challenge, and (b) frequency distribution of these residuals .. 104

XXII
Figure 4-12: Glucose residual errors (A) between modelled and raw data for all animals, at all time points during insulin challenges 0.5 and 2 μg/kg live weight and (B) frequency distribution of these residuals. ...105

Figure 4-13: NEFA residual errors (A) between modelled and raw data for all animals, at all time points during insulin challenges 0.5 and 2 μg/kg live weight and (B) frequency distribution of these residuals. ...105

Figure 5-1: The effect of muscling genotype on steady state glucose infusion rate (SSGIR; 50% glucose solution) at insulin infusion rates (IIR) of 0.6 and 6.0 μU/kg.min. Values are means ± s.e. ...121

Figure 5-2: The effect of live weight on steady state glucose infusion rate (SSGIR; 50% glucose solution) with predicted means ± s.e. at insulin infusion rates of 0.6 (grey line, open circles) and 6.0 μU/kg.min (black line, closed circles) across all muscling genotype ...122

Figure 5-3: The effect of basal insulin concentration on peak insulin concentration following an intravenous glucose-tolerance test (50% Glucose; 200 mg/kg live weight) with predicted means (heavy line) ± s.e. (fine dotted lines) across all muscling genotypes. Round symbols are raw data and each represents an experiment on a single animal. ...124

Figure 6-1: An example of the actual lactate concentration and fitted lactate response curve over time following administration of 3.0 μg/kg live weight of adrenaline at time 0. ...142

Figure 6-2: Lactate concentration area under curve (±S.E.) between 0 and 20 minutes (LAC AUC20) relative to adrenaline challenge in Angus steers of low, high and high heterozygous myostatin (HighHET) muscling genotypes. ...146

Figure 6-3: NEFA concentration area under curve (±S.E.) between 0 and 10 minutes (AUC10) relative to adrenaline challenge in Angus steers of low, high and high heterozygous myostatin (HighHET) muscling genotypes. ...149

Figure 6-4: (A) Muscle glycogen concentration (±S.E.) from 4 muscle biopsies taken from the semimembranosus, semitendinosus and longissimus thoracis et lumborum and (B) muscle lactate concentration (±S.E.) of semimembranosus, semitendinosus and longissimus thoracis et lumborum from muscle biopsy #1 in Angus steers of low, high and high heterozygous myostatin (HighHET) muscling genotypes. ...147

Figure 6-5: Average plasma growth hormone concentration (±S.E.) in Angus steers of low, high and high heterozygous myostatin (HighHET) muscling genotypes. ...148

Figure 7-1: Immunocytochemical staining of myosin heavy chains in myofibres in beef longissimus thoracis et lumborum muscle. Representative myofibres are indicated: s, type I (slow oxidative); α, type 2A (fast oxidatively glycolytic); x, type 2X (fast glycolytic); αx, type 2AX (= type 2A-type 2X intermediate); c, type 2C (= type 1-type 2A intermediate). Classification of type 2C myofibres was based on positive or intermediate staining for all three antibodies. Classification of type 2AX myofibres was based on positive staining for the type 2 MHC antibody, intermediate staining for the type 1, 2B and 2X MHC antibody, and negative staining for the type 1 MHC antibody. ...169

Figure 8-1: Representation of the prior distribution densities for G, B, R. ...197

Figure 8-2: Probability of non-compliance is given by the back transform of the logit function used in the generalised linear model analysis. ...199

Figure 8-3: Estimated mean (solid line) and standard deviation (dashed lines) for the effect of hot standard carcass weight on the probability of pH2 being greater than 5.7. Mean estimated probabilities of each raw data point is included to show the range of the data. The dotted line is the mean pH compliance rate of all carcasses. ...203

Figure 8-4: Estimated mean (solid line) and standard error (dashed lines) for the effect of eye muscle area pH2, compliance in carcasses <350kg and >350kg (B). Mean estimated probabilities of each raw data point are included to show the range of the data. ...204

Figure 8-5: Estimated mean (solid line) and standard errors (dashed lines) for the effect of rib fat depth on the probability of pH2 being greater than 5.7. Mean estimated probabilities of each raw data point are... XXIII
INCLUDED TO SHOW THE RANGE OF THE DATA. THE DOTTED LINE IS THE MEAN pH COMPLIANCE RATE OF ALL CARCASSES. ...206

Figure 8-6: ESTIMATED MEANS (SOLID LINE) AND STANDARD ERRORS (DASHED LINES) FOR THE EFFECT OF OSSIFICATION ON pH, COMPLIANCE IN LIGHT CARCASSES <350KG (A) AND IN HEAVY CARCASSES >350KG (B). MEAN ESTIMATED PROBABILITIES OF EACH RAW DATA POINT ARE INCLUDED TO SHOW THE RANGE OF THE DATA. ..207

Figure 8-7: ESTIMATED MEANS (SOLID LINE) AND STANDARD ERRORS (DASHED LINES) FOR THE EFFECT OF TROPICAL BREED CONTENT ON THE PROBABILITY OF pH, BEING GREATER THAN 5.7. MEAN ESTIMATED PROBABILITIES OF EACH RAW DATA POINT ARE INCLUDED TO SHOW THE RANGE OF THE DATA. THE DOTTED LINE IS THE MEAN pH COMPLIANCE RATE OF ALL CARCASSES. ...208

Figure 8-8: ESTIMATED MEANS (SOLID LINE) AND STANDARD ERRORS (DASHED LINES) FOR THE EFFECT OF LOT SIZE ON THE PROBABILITY OF pH, BEING GREATER THAN 5.7. MEAN ESTIMATED PROBABILITIES OF EACH RAW DATA POINT ARE INCLUDED TO SHOW THE RANGE OF THE DATA. THE DOTTED LINE IS THE MEAN pH COMPLIANCE RATE OF ALL CARCASSES. ...209

Figure 8-9: ESTIMATED MEANS (SOLID LINE) AND STANDARD ERRORS (DASHED LINES) FOR THE EFFECT OF LOIN TEMPERATURE ON THE PROBABILITY OF pH, BEING GREATER THAN 5.7. MEAN ESTIMATED PROBABILITIES OF EACH RAW DATA POINT ARE INCLUDED TO SHOW THE RANGE OF THE DATA. THE DOTTED LINE IS THE MEAN pH COMPLIANCE RATE OF ALL CARCASSES. ...209

Figure 9-1: THE AVERAGE GROWTH PATH OF THE ANGUS STEERS INDICATING WHEN WEIGHT MEASUREMENTS AND MUSCLE BIOPSIES WERE TAKEN ..221

Figure 9-2: THE EFFECT OF FLIGHT SPEED ON MUSCLE GLYCOGEN CONCENTRATION AND MUSCLE LACTATE CONCENTRATION WITH PREDICTED MEANS FOR GLYCOGEN (SOLID LINE) AND LACTATE (DOTTED LINE) ± S.E.M. (FINE DOTTED LINES) ACROSS ALL MUSCLING GENOTYPES ..232

Figure 9-3: THE EFFECT OF CRUSH SCORE ON MUSCLE GLYCOGEN CONCENTRATION AND MUSCLE LACTATE CONCENTRATION IN THE SM AND ST MUSCLES WITH PREDICTED MEANS FOR GLYCOGEN (SOLID LINE) AND LACTATE IN THE SM (DOTTED LINE) AND ST (DASHED LINE) ± S.E.M. (FINE DOTTED LINES) ACROSS ALL MUSCLING GENOTYPES ..233
List of Tables

Table 2-1: The percentage of carcasses classified as a dark cutter (pH, > 5.7) by Meat Standards Australia from 2005 to 2009 (Adopted from MSA Feedback and Benchmarking System, 2010) .. 8

Table 2-2: Enzyme activities for carbohydrate metabolism in rat skeletal muscle Adapted from (Saltin and Gollnick, 1983) ... 56

Table 3-1: Least square mean ± S.E.M. for muscle scores and carcass measurements for Low, High and HighHet muscling genotype Angus steers .. 75

Table 3-2: Least square means ± S.E.M. for bone-out percentages of retail yield, fat trim, and bone from a whole carcass and CT scan percentages of lean, fat and bone from a hindlimb for Low, High and HighHet muscling genotype Angus steers .. 76

Table 3-3: F-values for algorithms based on different combinations of CT results and carcass measurements to predict retail beef yield derived from bone-out data.. 80

Table 4-1: The mean residual error (±STD DEV.), 95% confidence interval (95% CI), Kolmogorov-Smirnov (D) and Shapiro-Wilk (W) test of normality and the White test of heteroskedasticity for metabolites and insulin measured during adrenaline, glucose and insulin challenges .. 106

Table 5-1: Mean live weights and fat measurements at time of insulin challenge and carcass weight (HSCW), eye muscle area (EMA) and P8 fat measurements at slaughter for low, high and high myostatin heterozygote (HighHet) muscling genotype Angus steers. Values are least square means ± S.E. .. 120

Table 5-2: Predicted means (± S.E.) of glucose area under curve (AUC60), peak insulin concentration, insulin area under curve (AUC20) and time to peak response following an intravenous glucose-tolerance test (50% glucose; 200 mg/kg liveweight) and basal blood glucose and insulin measurements ± standard error for low, high and high myostatin heterozygote (HighHet) muscling genotype Angus steers ... 123

Table 6-1: Live weights and fat measurements at the time of adrenaline challenge and eye muscle area (EMA), and fat measurements at slaughter for low, high and high heterozygous myostatin (HighHet) muscling genotype Angus steers. Values are least square means ± S.E.. 144

Table 6-2: Least square means (± S.E.) for basal plasma lactate, non-esterified fatty acids (NEFA) and glucose concentration (mM) in Angus steers of low, high and high heterozygous myostatin (HighHet) muscling genotypes ... 145

Table 6-3: F-values for the effect of muscling genotype & adrenaline challenge plus significant interactions on lactate area under curve for 20 minutes post adrenaline challenge (AUC20) and non-esterified fatty acid (NEFA) area under curve for 10 minutes post adrenaline challenge (AUC10) ... 146

Table 7-1: Predicted means of myofibre characteristics in the Longissimus thoracis et lumbarum (LTL), M. semimembranosus (SM) and M. semitendinosus (ST) of High, Low and HighHet muscling genotypes in Angus steers. Type I, type I myosin heavy chain (MHC) slow oxidative; type IIA, type IIA MHC=fast oxidative-glycolytic; type IIX, type IIX MHC=fast glycolytic; type IIA, type IIA-Type 2 intermediate; type IIC, type I-type IIA intermediate; ratio glycolytic: oxidative (GLY:CoxI), ratio more glycolytic cells (type IIX): more oxidative cells (types I+IIC+IIA+IIA); Values are mean ± S.E.. 174

Table 7-2: Protein concentration (mg/g) from enzyme supernatant, lactate dehydrogenase (LDH), phosphofructokinase (PFK), isocitrate dehydrogenase (ICDH) and citrate synthase (CS) activities (mmol/min.g muscle tissue) and Myoglobin concentration (mg/g) for High, Low and HighHet muscling genotype Angus steers. Values are least-squares means ± S.E.M. .. 176

Table 7-3: Protein concentration (mg/g), lactate dehydrogenase (LDH), phosphofructokinase (PFK), isocitrate dehydrogenase (ICDH) and citrate synthase (CS) activities (mmol/min.g muscle tissue) for the Longissimus thoracis et lumbarum (LTL), M. semimembranosus (SM) and M. semitendinosus (ST) at each biopsy and at slaughter. Values are least-squares means ± S.E.M... 178
TABLE 7-4: Iron (Fe) concentration within the high, low and highHt muscling genotypes, Zinc (Zn) and Copper (Cu) concentration averaged across the Longissimus thoracis et lumborum (LTL), \textit{M. semimembranosus} (SM) and \textit{M. semitendinosus} (ST). Values are least-squares means ± s.e.m. .. 180

TABLE 7-5: Non-adjusted pH decline constant, temperature and pH at 2 hours post mortem, temperature and time at pH 6 in the Longissimus thoracis et lumborum (LTL), \textit{M. semimembranosus} (SM) and \textit{M. semitendinosus} (ST). Values are least-squares means ± s.e.m. .. 181

TABLE 8-1: Within year descriptive statistics for the number of carcasses graded and means ± standard deviations for hot standard carcass weight (HSCW), eye muscle area (EMA), ossification (Oss), rib fat and MSA marbling (MSAMarB) with minimum and maximum values in brackets .. 194

TABLE 8-2: Descriptive statistics of raw data for number of carcasses graded, mean pH\textsubscript{15}, standard deviation, minimum pH\textsubscript{15}, maximum pH\textsubscript{15}, and percentage of carcasses with pH\textsubscript{15} ≥ 5.7 for each year, month, gender and finishing system. .. 202

TABLE 8-3: Co-efficient estimates for the mean, 95% credible interval (CI) and p-values for fixed effects in the linear model of mean pH\textsubscript{15} and generalised linear model of pH\textsubscript{15} compliance. p-values represent the proportion of MCMC estimates that support significance .. 205

TABLE 9-1: Average pasture quality measurements for dry matter (DM), metabolisable energy (ME), crude protein (CP), dry matter digestibility (DMD), neutral detergent fibre (NDF), acid detergent fibre (ADF), inorganic ash (IA) and organic matter (OM) for the month preceding each biopsy .. 224

TABLE 9-2: Average pasture availability, quantity of hay supplementation, paddock area grazed, average daily weight gain (ADG) in the month preceding each biopsy, average live weight and P8 fat depth at each biopsy .. 224

TABLE 9-3: Mean flight speed, crush score, live weights, and carcass characteristics (± s.e.m.) for low, high and highHt muscling genotype Angus steers ... 230

TABLE 9-4: Least square means ± s.e.m. for yield characteristics of low, high and highHt muscling genotype Angus steers ... 231

TABLE 9-5: The effect of muscling genotype on muscle glycogen concentration during different nutritional periods (biopsy number — see Table 9-1) and on glycogen depletion prior to slaughter. Values are least square means ± s.e.m. ... 235

XXVI
List of Equations

Equation 2-1: The general equation for glycolysis (Mathews and van Holde, 1996) ... 28

Equation 4-1: .. 91

Equation 4-2: .. 93

Equation 4-3: .. 94

Equation 4-4: .. 94

Equation 4-5: .. 94

Equation 4-6: .. 95

Equation 4-7: .. 96

List of Plates

Plate 1: The 96 flat well Microtest Plate used for the analysis of plasma NEFA concentration using a Microplate spectrophotometer ... 90

Plate 2: The dual channel infusion pump used to concurrently infuse a constant rate of insulin (small bag on left) and an adjustable rate of glucose (large bag on right) into one indwelling jugular catheter whilst blood was collected from the other catheter .. 115

Plate 3: The purpose-built, 12 V motorised biopsy drill used to collect muscle samples from the live animal. In this picture from the Longissimus thoracis et lumborum ... 136

Plate 4: The apparatus used to administer the adrenaline challenges and collect blood. On the bottom left is the jugular catheter fashioned from single lumen Teflon tubing, connected to a 3 way tap, a syringe and a S-Monovette Vacutainer® tube which collects the blood ... 138

Plate 5: The Hunter Lab Mini Scan XE Plus used to analyse the retail colour stability of the Longissimus thoracis et lumborum ... 165