Catalog Home Page

Engineering a biocompatible scaffold with either micrometre or nanometre scale surface topography for promoting protein adsorption and cellular response

Le, X., Poinern, G.E.J., Ali, N., Berry, C.M. and Fawcett, D. (2013) Engineering a biocompatible scaffold with either micrometre or nanometre scale surface topography for promoting protein adsorption and cellular response. International Journal of Biomaterials, 2013 . pp. 1-16.

[img]
Preview
PDF - Published Version
Download (3MB)
Free to read: http://dx.doi.org/10.1155/2013/782549
*No subscription required

Abstract

Surface topographical features on biomaterials, both at the submicrometre and nanometre scales, are known to influence the physicochemical interactions between biological processes involving proteins and cells. The nanometre-structured surface features tend to resemble the extracellular matrix, the natural environment in which cells live, communicate, and work together. It is believed that by engineering a well-defined nanometre scale surface topography, it should be possible to induce appropriate surface signals that can be used to manipulate cell function in a similar manner to the extracellular matrix. Therefore, there is a need to investigate, understand, and ultimately have the ability to produce tailor-made nanometre scale surface topographies with suitable surface chemistry to promote favourable biological interactions similar to those of the extracellular matrix. Recent advances in nanoscience and nanotechnology have produced many new nanomaterials and numerous manufacturing techniques that have the potential to significantly improve several fields such as biological sensing, cell culture technology, surgical implants, and medical devices. For these fields to progress, there is a definite need to develop a detailed understanding of the interaction between biological systems and fabricated surface structures at both the micrometre and nanometre scales.

Publication Type: Journal Article
Murdoch Affiliation: School of Engineering and Information Technology
School of Veterinary and Life Sciences
Publisher: Hindawi Publishing Corporation
Copyright: © 2013 Xuan Le et al.
Notes: This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
URI: http://researchrepository.murdoch.edu.au/id/eprint/14390
Item Control Page Item Control Page

Downloads

Downloads per month over past year