DEVELOPMENT OF AN OPEN AFFECTIVE COMPUTING ENVIRONMENT

Nik Thompson BSc, MSc

This thesis is presented for the degree of Doctor of Philosophy of Murdoch University

2012
I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution.

............................
Nik Thompson
ABSTRACT

Affective computing facilitates more intuitive, natural computer interfaces by enabling the communication of the user’s emotional state. Despite rapid growth in recent years, affective computing is still an under-explored field, which holds promise to be a valuable direction for future software development. An area which may particularly benefit is e-learning. The fact that interaction with computers is often a fundamental part of study, coupled with the interaction between affective state and learning, makes this an ideal candidate for affective computing developments.

The overall aim of the research described in this thesis is to advance the field and promote the uptake of affective computing applications both within the domain of e-learning, as well as in other problem domains. This aim has been addressed with contributions in the areas of tools to infer affective state through physiology, an architecture of a re-usable component based model for affective application development and the construction and subsequent empirical evaluation of a tutoring system that responds to the learner’s affective state.

The first contribution put forward a solution that is able to infer the user’s affective state by measuring subtle physiological signals using relatively unobtrusive and low-cost equipment. An empirical study was conducted to evaluate the success of this solution. Results demonstrated that the physiological signals did respond to affective state, and that the platform and methodology was sufficiently robust to detect changes in affective state.
The second contribution addressed the ad-hoc and sometimes overly complex nature of affective application development, which may be hindering progress in the field. A conceptual model for affective software development called the Affective Stack Model was introduced. This model supports a logical separation and loose coupling of reusable functional components to ensure that they may be developed and refined independently of one another in an efficient and streamlined manner.

The third major contribution utilized the proposed Affective Stack Model, and the physiological sensing platform, to construct an e-learning tutor that was able to detect and respond to the learner’s affective state in real-time. This demonstrated the real-world applicability and success of the conceptual model, whilst also providing a proof of concept test-bed in which to evaluate the theorized learning gains that may be realized by affective tutoring strategies. An empirical study was conducted to assess the effectiveness of this tutoring system as compared to a non-affective version. Results confirmed that there were statistically significant differences whereby students who interacted with the affective tutor had greater levels of perceived learning than students who used the non-affective version.

This research has theoretical and practical implications for the development of affective computing applications. The findings confirmed that underlying affective state can be inferred with two physiological signals, paving the way for further evaluation and research into the applications of physiological computing. The Affective Stack Model has also provided a framework to support future affective software development. A significant aspect of this contribution is that this is the first such model
to be created which is compatible with the use of third-party, closed source software. This should make a considerable impact in the future as vast possibilities for future affective interfaces have been opened up. The development and subsequent evaluation of the affective tutor has substantial practical implications by demonstrating that the Affective Stack Model can be successfully applied to a real-world application to augment traditional learning materials with the capability for affect support. Furthermore, the empirical support that learning gains are attainable should spur new interest and growth in this area.
PUBLICATIONS ARISING FROM THIS RESEARCH

TABLE OF CONTENTS

Chapter 1. Introduction .. 1
 1.1 Background .. 1
 1.2 Importance of the research ... 5
 1.3 Research aims ... 7
 1.4 Methodology ... 9
 1.5 Delimitation of scope and key assumptions .. 11
 1.6 Organization of this thesis ... 11

Chapter 2. Literature review: Emotions .. 15
 2.1 Introduction ... 15
 2.2 Background ... 15
 2.3 Interaction between emotion and cognition ... 16
 2.3.1 Cognitive state influences affect ... 16
 2.3.2 Affective state influences cognitive events ... 18
 2.3.3 The role of affect in learning .. 20
 2.4 Discrete versus dimensional models of emotion ... 22
 2.5 Inferring and describing emotions .. 27
 2.5.1 Self-report ... 27
 2.5.2 Observation ... 30
 2.5.3 Psychophysiology ... 32
 2.6 Conclusion ... 34

Chapter 3. Literature review: Affective human-computer interaction .. 35
 3.1 Introduction ... 35
 3.2 Monitoring physiological processes .. 35
 3.2.1 The electroencephalogram ... 36
 3.2.2 The electromyogram .. 37
 3.2.3 Heart rate ... 39
 3.2.4 Electrodermal activity .. 42
6.4 Solution suggestion ... 107
6.5 Development of solution: The Affective Stack .. 108
 6.5.1 Third Party Software and Software Extensions ... 110
 6.5.2 Event Mapper ... 111
 6.5.3 Affective Platform ... 113
 6.5.4 Rule Set .. 114
6.6 Evaluation .. 118
 6.6.1 Application software independence ... 119
 6.6.2 User model independence .. 119
 6.6.3 Hardware independence ... 120
6.7 Conclusion ... 122

Chapter 7. An affective tutoring system .. 125
 7.1 Introduction .. 125
 7.2 Development of the affective application ... 125
 7.2.1 Third Party Software .. 126
 7.2.2 Software Extensions: The animated agent ... 130
 7.2.3 Event Mapper ... 133
 7.2.4 Affective Platform ... 133
 7.2.5 Rule Set ... 134
 7.3 Conclusion .. 145

Chapter 8. Evaluation of the affective tutoring system ... 147
 8.1 Introduction .. 147
 8.2 Research aims ... 147
 8.3 Method ... 150
 8.3.1 Development of measurement instruments ... 151
 8.3.2 Participants .. 154
 8.3.3 Data collection session ... 154
 8.3.4 Pilot .. 158
 8.4 Results and discussion ... 159
8.4.1 Do students who complete an e-learning lesson with affective enhancements retain more overall knowledge of the content? 160
8.4.2 Do students who complete an e-learning lesson with affective enhancements have greater perceived learning? ... 161
8.4.3 Do students who complete an e-learning lesson with affective enhancements find the experience more enjoyable? 162
8.5 Conclusion .. 164

Chapter 9. Conclusions.. 167

9.1 Introduction .. 167
9.2 Development of physiological platform for affective applications 168
9.3 The Affective Stack Model for affective application development 170
9.4 An affective tutoring system and empirical evaluation 172
9.5 Limitations and future research ... 173
9.6 Implications .. 175

Appendix A. Theories of emotion .. 179

A.1 James-Lange theory .. 179
A.2 Cannon-Bard theory .. 180
A.3 Appraisal theory ... 182
A.4 Schachter and Singer two-factor theory .. 183
A.5 Cognitive Mediational theory ... 184

Appendix B. IAPS Images .. 187

Appendix C. Study 1 Information letter .. 189

Appendix D. Ethics approval .. 191

Appendix E. Consent form .. 193

Appendix F. Alternative data acquisition methods... 195

F.1 PC Soundcard based data acquisition ... 195
F.2 Microprocessor based data acquisition ... 196

Appendix G. Study 2 Information letter .. 199

Appendix H. ATS Evaluation questionnaire ... 201

References .. 203
LIST OF TABLES

Table 2-1: Seven dimensions of emotional appraisal .. 17
Table 2-2: Three dimensions of affective experience ... 25
Table 4-1: Frequency domain measures of HRV ... 82
Table 5-1: Activities undertaken during affective platform evaluation session 92
Table 8-1: Summary quiz questions .. 152
Table 8-2: Perceived learning items .. 153
Table 8-3: Enjoyment items ... 153
Table 8-4: Activities undertaken during ATS evaluation session 156
Table 8-5: Breakdown of participants by age ... 159
Table 8-6: Content knowledge group statistics ... 161
Table 8-7: Perceived learning group statistics ... 161
Table 8-8: Enjoyment group statistics ... 163
Table B-1: IAPS Images ... 187
LIST OF FIGURES

Figure 1-1: The Yerkes-Dodson curve ... 3
Figure 2-1: Model relating phases of learning to emotions 21
Figure 2-2: Valence-arousal space ... 25
Figure 2-3: Emotion categories in the valence/arousal dimensions 26
Figure 4-1: Arrangement of Wheatstone bridge components 64
Figure 4-2: Block diagram of EDA sensor ... 65
Figure 4-3: EDA sensor software functional components 67
Figure 4-4: Sample EDA plot .. 68
Figure 4-5: Sample EDA log file .. 68
Figure 4-6: R peaks in a PPG output .. 71
Figure 4-7: Block diagram of PPG sensor ... 73
Figure 4-8: Sample PPG output .. 74
Figure 4-9: PPG software functional components .. 76
Figure 4-10: Frequency domain processing of HR .. 79
Figure 4-11: Interpolation of RR intervals ... 80
Figure 5-1: Short clerical test sample questions .. 91
Figure 5-2: EDA plot during image viewing task .. 98
Figure 6-1: Affective Stack Model ... 109
Figure 6-2: Dependencies of Affective Stack components 115
Figure 6-3: Example decision network containing 3 input nodes 117
Figure 7-1: Affective Stack Model ... 126
Figure 7-2: Morgan tutorial...127
Figure 7-3: HTA version of lesson ...129
Figure 7-4: "Becky": The affective tutor ...131
Figure 7-5: Affective Platform process structure.................................134
Figure 7-6: Rule Set process structure...135
Figure 7-7: Extrapolation of baseline EDA ..138
Figure 7-8: Extrapolation of baseline EDA with threshold......................139
Figure 7-9: Windowed baseline approach..141
Figure 7-10: Example decision network..143
Figure A-1: Internal processes in James-Lange theory..........................179
Figure A-2: Internal processes in Cannon-Bard theory..........................181
Figure A-3: Schachter and Singer two-factor theory.............................184
ACKNOWLEDGEMENTS

I would like to thank the people who have guided, encouraged and supported my academic endeavors over the last few years, and without whom this PhD would not have been possible. Firstly, I would like to thank my parents for their enthusiasm and commitment to my education and their steadfast confidence in my abilities.

My supervisors Tanya McGill and Terry Koziniec have been instrumental in my progress. Tanya has mentored me over the years and always been approachable and available. Terry’s can-do attitude and problem solving skill made light work of technical issues that puzzled others. Both of whom always have the answers to every question.

I would like to acknowledge the financial, academic and technical support of Murdoch University, Perth and the academic and professional staff. The award of a Research Studentship provided the necessary financial support for this research and this PhD would not have been undertaken were it not for this important aspect of support.

I would also like to acknowledge the help of my friends. In particular, Peter Cole for providing advice and encouragement over the years and for being the one to suggest to me that I undertake a PhD. David Murray motivated me by being the most hardworking person that I know. Finally, Yasmin Mah patiently listened to my thoughts on affective computing and education over the years and volunteered to be the first test subject for the physiological computing hardware experiments, whilst being extremely supportive and enthusiastic throughout.