Distinct HIV-1 Escape Patterns Selected by Cytotoxic T Cells with Identical Epitope Specificity


Pol283–8-specific, HLA-B*51:01-restricted, cytotoxic T cells (CTLs) play a critical role in the long-term control of HIV-1 infection. However, these CTLs select for the reverse transcriptase (RT) I135X escape mutation, which may be accumulating in circulating HIV-1 sequences. We investigated the selection of the I135X mutation by CTLs specific for the same epitope but restricted by HLA-B*52:01. We found that Pol283–8-specific, HLA-B*52:01-restricted CTLs were elicited predominantly in chronically HIV-1-infected individuals. These CTLs had a strong ability to suppress the replication of wild-type HIV-1, though this ability was weaker than that of HLA-B*51:01-restricted CTLs. The crystal structure of the HLA-B*52:01-Pol283–8 peptide complex provided clear evidence that HLA-B*52:01 presents the peptide similarly to HLA-B*51:01, ensuring the cross-presentation of this epitope by both alleles. Population level analyses revealed a strong association of HLA-B*51:01 with the I135T mutant and a relatively weaker association of HLA-B*52:01 with several I135X mutants in both Japanese and predominantly Caucasian cohorts. An in vitro viral suppression assay revealed that the HLA-B*52:01-restricted CTLs failed to suppress the replication of the I135X mutant viruses, indicating the selection of these mutants by the CTLs. These results suggest that the different pattern of I135X mutant selection may have resulted from the difference between these two CTLs in the ability to suppress HIV-1 replication.

HIV-1-specific cytotoxic T cells (CTLs) play an important role in the control of HIV-1 replication (1–8); however, they also select immune escape mutations (9, 10). Population level adaptation of HIV to human leukocyte antigen (HLA) has been demonstrated (11–15), suggesting that HIV-1 can successfully adapt to immune responses previously effective against it.

It is well known that particular mutations can be selected by CTLs specific for a single HIV-1 epitope. On the other hand, studies on HLA-associated HIV-1 polymorphisms have revealed examples of particular mutations associated with multiple HLA class I alleles (16–21), suggesting that the same mutation can be selected by CTLs carrying different specificities in some cases. However, the selection of the same mutation by CTLs specific for different HIV-1 epitopes has rarely been reported. The change from Ala to Pro at residue 146 of Gag (A146P) is a well-analyzed case. A146P is an escape selected by not only HLA-B*57-restricted, ISW9-specific CTLs (22) but also by HLA-B*15:10-restricted and HLA-B*48:01-restricted CTLs (15, 23, 24), although the latter CTLs selected it by different mechanisms. The replacement of Thr with Asn at residue 242 (T242N) of Gag is another case. This mutant is selected by HLA-B*58:01-restricted and HLA-B*57-restricted CTLs specific for the TW10 epitope in HIV-1 clade B- and C-infected individuals (25–27).

The presence of Pol283–8(TAFTIPS1: T18)-specific, HLA-B*51:01-restricted CTLs is associated with low viral loads in HIV-1-infected Japanese hemophiliacs, supporting an important role in the long-term control of HIV-1 infection (28). We previously showed that the frequency of a mutation at position 135 (I135X) of reverse transcriptase (RT) is strongly correlated with the prevalence of HLA-B*51 among nine cohorts worldwide and that this mutation is selected by Pol283–8(TAFTIPS1: T18)-specific, HLA-

Received 20 September 2012 Accepted 26 November 2012
Published ahead of print 12 December 2012
Address correspondence to Masafumi Takiguchi, masafumi@kumamoto-u.ac.jp.
Y.Y., N.K., and K.K. contributed equally to this study.
Supplemental material for this article may be found at http://dx.doi.org/10.1128/JVI.02572-12.
Copyright © 2013, American Society for Microbiology. All Rights Reserved.
doi:10.1128/JVI.02572-12
lect I135X mutants and elucidated the crystal structure of the HLA-B*52:01-Pol283-8 peptide complex.

**MATERIALS AND METHODS**

**Patients.** Two hundred fifty-seven chronically HIV-1-infected, antiretroviral-naive Japanese individuals were recruited for the present study, which was approved by the ethics committees of Kumamoto University and the National Center for Global Health and Medicine, Japan. Written informed consent was obtained from all subjects according to the Declaration of Helsinki.

In addition, HLA-associated immune selection pressure at RT codon 135 was investigated in the International HIV Adaptation Collaborative (IHAC) cohort, comprising >1,200 chronically HIV-infected, antiretroviral-naive individuals from Canada, the United States, and Western Australia (19). The majority of the IHAC participants were Caucasian, and the HIV subtype distribution was >95% subtype B.

**HIV-1 clones.** An infectious proviral clone of HIV-1, pNL-432, and its mutant form pNL-M20A (containing a substitution of Ala for Met at residue 20 of NeF) were previously reported (29). Pol283-8 mutant viruses (Pol283-8L, -8T, -8V, and -8R) were previously generated on the basis of pNL-432 (15, 28).

**Generation of CTL clones.** Pol283-8-specific, HLA-B*52:01-restricted CTL clones were generated from HIV-1-specific, bulk-cultured T cells by limiting dilution in U-bottom 96-well microtiter plates (Nunc, Roskilde, Denmark). Each well contained 200 µl of the cloning mixture (about 1 x 10^6 irradiated allogeneic peripheral blood mononuclear cells (PBMCs) from healthy donors and 1 x 10^5 irradiated C1R-B*52:01 cells pre pulsed with the corresponding peptide at 1 µM in RPMI 1640 supplemented with 10% human plasma and 200 U/ml human recombinant interleukin-2).

**Intracellular cytokine staining (ICS) assay.** PBMCs from HIV-1-seropositive HLA-B*52:01+ individuals were cultured with each peptide (1 µM). Two weeks later, the cultured cells were stimulated with C1R-B*52:01 cells or those pre pulsed with Pol283-8 peptide (1 µM) for 60 min, and then they were washed twice with RPMI 1640 containing 10% fetal calf serum (RPMI 1640-10% FCS). Subsequently, brefeldin A (10 µg/ml) was added. After these cells had been incubated for 6 h, they were stained with an anti-CD8 monoclonal antibody (MAb; Dako Corporation, Flostrup, Denmark), fixed with 4% paraformaldehyde, and then permeabilized with permeabilization buffer. Thereafter, the cells were stained with an anti-gamma interferon (IFN-γ) MAb (BD Bioscience). The percentage of CD8+ cells positive for intracellular IFN-γ was analyzed by using a FACS-Cant II (BD Biosciences, San Jose, CA). All flow cytometric data were analyzed with FlowJo software (Tree Star, Inc., Ashland, OR).

**Identification of 11-mer peptide recognized by HLA-B*52:01-restricted CD8+ T cells.** We identified an 11-mer peptide recognized by HLA-B*52:01-restricted CD8+ T cells as follows. We stimulated PBMCs from a chronically HIV-1-infected HLA-B*52:01+ donor (KI-069) with a peptide cocktail including overlapping 17-mer peptides covering RT135 and cultured the cells for 14 days. The cells in bulk culture were assessed by performing an ICS assay for C1R-HLA-B*52:01 cells pre pulsed with each of these 17-mer peptides. The bulk-cultured cells recognized the target cells pre pulsed with two of the 17-mer peptides assessed, Pol17-47 (KDFRKYTAFTIPSINNE) and Pol17-48 (TAFTIPSI NNETPGIRT). Further analysis with 11-mer overlapping peptides covering the Pol17-48 sequence showed that these bulk-cultured cells recognized the target cells pre pulsed with Pol11-142 (TAFTIPSI NNENETPGIRT) but not those pre pulsed with Pol11-143 (FTIPSI NNENETPGIRT).

**Assay of cytotoxicity of CTL clones to target cells pre pulsed with the epitope peptide or infected with a vaccinia virus–HIV-1 recombinant.** The cytotoxicity of Pol283-8-specific, HLA-B*52:01-restricted CTL clones to C1R cells expressing HLA-B*52:01 (C1R-B*52:01), which were previously generated (30), and pre pulsed with peptide or infected with a vaccinia virus-HIV-1Gag/Pol recombinant was determined by the standard 51Cr release assay described previously (31). In brief, the infected cells were incubated with 150 µCi Na_2^51CrO_4_ in saline for 60 min and then washed three times with RPMI 1640 medium containing 10% newborn calf serum. Labeled target cells (2 x 10^3/well) were added to each well of a U-bottom 96-well microtiter plate (Nunc, Roskilde, Denmark) with the effector cells at an effector-to-target (E/T) cell ratio of 2:1. The cells were then incubated for 6 h at 37°C. The supernatants were collected and analyzed by a gamma counter. Spontaneous 51Cr release was determined by measuring the number of counts per minute (cpm) in supernatants from wells containing only target cells (cpm spn). Maximum 51Cr release was determined by measuring the cpm in supernatants from wells containing both target and effector cells.

**Enzyme-linked immunospot (ELISPOT) assay.** Cryopreserved PBMCs of chronically HIV-1-infected HLA-B*52:01+ individuals were plated in 96-well polystyrene plates (Millipore, Bedford, MA) that had been precoated with 5 µg/ml anti-IFN-γ MAb 1-DIK (Mabtech, Stockholm, Sweden). The appropriate amount of each peptide (100 or 10 nM) was added in a volume of 50 µl, and then PBMCs were added at 1 x 10^5 cells/well in a volume of 100 µl. The plates were incubated for 40 h at 37°C in 5% CO_2 and then washed with phosphate-buffered saline (PBS) before the addition of biotinylated anti-IFN-γ MAb (Mabtech) at 1 µg/ml. After the plates had been incubated at room temperature for 100 min and then washed with PBS, they were incubated with streptavidin-conjugated alkaline phosphatase (Mabtech) for 40 min at room temperature. Individual cytokine-producing cells were detected as dark spots after a 20-min reaction with 5-bromo-4-chloro-3-indolylphosphate and nitroblue tetrazolium by using an alkaline phosphatase-conjugate substrate (Bio-Rad, Richmond, CA). The spots were counted by an Eliphotop-Counter (Minerva Teck, Tokyo, Japan). PBMCs without peptide stimulation were used as a negative control. Positive responses were defined as those greater than the mean of the negative-control wells plus 2 standard deviations (SD) (the number of spots in wells without peptides).

**HIV-1 replication suppression assay.** The ability of HIV-1-specific CTLs to suppress HIV-1 replication was examined as previously described (32). CD4+ T cells isolated from PBMCs derived from an HIV-1-seronegative individual with HLA-B*52:01, HLA-B*51:01, or both were cultured. After the cells had been incubated with the desired HIV-1 clones for 4 h at 37°C, they were washed three times with RPMI 1640-10% FCS medium. The HIV-1-infected CD4+ T cells were then cocultured with Pol283-8-specific CTL clones. From day 3 to day 7 postinfection, culture supernatants were collected and the concentration of p24 antigen (Ag) in them was measured by use of an enzyme-linked immunosorbent assay kit (HIV-1 p24 Ag ELISA kit; ZeptoMetrix).

**HLA stabilization assay with RMA-S cells expressing HLA-B*52:01 or HLA-B*51:01.** The peptide-binding activity of HLA-B*52:01 or HLA-B*51:01 was assessed by performing an HLA stabilization assay with RMA-S cells expressing HLA-B*52:01 (RMA-S-B*52:01) or HLA-B*51:01 (RMA-S-B*51:01) as described previously (33). Briefly, RMA-S-B*51:01 and RMA-S-B*52:01 cells were cultured at 26°C for 16 to 24 h. The cells (2 x 10^5) in 50 µl of RPMI 1640 supplemented with 5% FCS (RPMI-5% FCS) were incubated at 26°C for 3 h with 50 µl of a solution of peptides at 10^-3 to 10^-2 M and then at 37°C for 3 h. After having been washed with RPMI-5% FCS, the cells were incubated for 30 min on ice with an appropriate dilution of TP25.99 MAb. After two washings with RPMI-5% FCS, they were incubated for 30 min on ice with an appropriate dilution of fluorescein isothiocyanate (FITC)-conjugated anti-mouse Ig antibodies. Finally, the cells were washed three times with RPMI-5% FCS and the fluorescence intensity of the cells was measured by the FACS-Cant II. Relative mean fluorescence intensity (MFI) was calculated by subtracting the MFI of cells not peptide pulsed from that of the peptide-pulsed ones.

**Sequencing of plasma RNA.** Viral RNA was extracted from the plasma of chronically HIV-1-infected Japanese individuals by using a QIAamp
Mini Elute Virus spin kit (Qiagen). DNA was synthesized from the RNA with Superscript II and random primer (Invitrogen). We amplified HIV RT and integrase sequences by nested PCR with RT-PCR specific primers 5′-CCCAATTGAACTGGCC-3′ and 5′-CCATCCAAAGGATGGAGG-3′ or 5′-CCCTGCCGCTTTGCTGTAT-3′ for the first-round PCR and 5′-AGTGAAGATACCAACCCCCC-3′ and 5′-GTAATCCCCACCTCAACCCACTAAG-3′ for the second-round PCR and integrase-specific primers 5′-ATCTAGGTCGAG-TATAGGAGG-3′ and 5′-CTTGAACCTGATGTTTGC-3′ or 5′-CCTGATCTCCTACTGCTTGC-3′ for the first-round PCR and 5′-AACAGTCCCTGAGG-3′ or 5′-TGGAGACAGAATGCTAATG-3′ and 5′-AGCTACCTTGCTCATCATGCCC-3′ for the second-round PCR. PCR products were sequenced directly or cloned with a TOPO TA cloning kit (Invitrogen) and then sequenced. Sequencing was done with a BigDye Terminator v1.1 cycle sequencing kit (Applied Biosystems) and analyzed by an ABI PRISM 310 Genetic Analyzer.

**Statistical analysis with phylogenetically corrected odds ratios.** Strength of selection was measured by using a phylogenetically corrected odds ratio as previously described (19). Briefly, the odds of observing a given amino acid (e.g., 135V) was modeled as \( P(1 - P) = \alpha (x + T) + c(x + Z) \), where \( P \) is the probability of observing 135V in a randomly selected individual, \( X \) is a binary (0/1) variable representing whether or not an individual expresses the HLA allele in question (e.g., B*52:01), and \( T \) equals 1 if the transmitted/founder virus for that individual carried 135V and 1 otherwise. Because the transmitted/founder virus is unknown, we averaged over all possibilities by using weights informed by a phylogeny that was constructed from the RT sequences of all of the individuals in the study. The parameters \( \alpha \) and \( b \) were determined by using iterative maximum-likelihood methods. The maximum-likelihood estimate of \( \alpha \) is an estimate of the natural logarithm of the odds ratio of observing 135V in individuals expressing X versus individuals not expressing X, conditioned on the individuals’ (unobserved) transmitted/founder virus. \( P \) values are estimated by using a likelihood ratio test that compares the above model to a null model in which \( \alpha = 0 \).

To compare the odds of selection between two cohorts, we modified the phylogenetically corrected logistic regression model to include a cohort term, \( Z = X \times Y \), where \( X \) is the HLA allele, and \( Y \) is a 0/1 variable that indicates cohort membership, yielding \( P(1 - P) = (x + T) + (c \times Z) \), as previously described (19, 34). A \( P \) value testing if the odds of escape are different in the two cohorts was estimated by using a likelihood ratio test that compared this model to a null model where \( c = 0 \).

**Generation of HLA class I tetramers.** HLA class I- peptide tetrameric complexes (tetramer) were synthesized as described previously (31, 35). The Pol283-8 peptide was used for the refolding of HLA-B*51:01 or HLA-B*52:01 molecules. Phycoerythrin (PE)-labeled streptavidin (Molecular Probes) was used for generation of the tetramers.

**Tetramer binding assay.** HLA-B*51:01-restricted and HLA-B*52:01-restricted CTL clones were stained at 37°C for 30 min with PE-conjugated HLA-B*51:01-tetramer and HLA-B*52:01-tetramer, respectively, at concentrations of 5 to 1,000 nM. After two washes with RPMI 1640 medium supplemented with 10% FCS (RPMI 1640/10% FCS), the cells were stained with FITC-conjugated anti-CD8 MAb at 4°C for 30 min, followed by 7-amino-actinomycin D at room temperature for 10 min. After two more washes with RPMI 1640/10% FCS, the cells were analyzed by the FACS-Cant II flow cytometer. The tetramer concentration that yielded the half-maximal MFI (the EC_{50}) was calculated by probit analysis.

**Crystallization, data collection, and structure determination.** Soluble HLA-B*52:01 (with beta-2 microglobulin and peptide TAFTIPSI) was prepared as described above. Prior to crystallization trials, HLA-B*52:01 was concentrated to a final concentration of 20 mg ml^{-1} in 20 mM Tris-HCl (pH 8.0) buffer containing 250 mM NaCl. This was done with a Millipore centrifugal filter device (Amicon Ultra-4, 10-kDa cutoff; Millipore). Screening for crystallization was performed with commercially available polyethylene glycol (PEG)-based screening kits, PEGs and PEGs II suites (Qiagen). Thin needle crystals were observed from PEGs II suite 23 (0.2 M sodium acetate, 0.1 M HEPES [pH 7.5], and 20% PEG 3000). Several conditions were further screened by the hanging-drop method with 24-well VDX plates (Hampton Research) by mixing 1.5 μl protein solution and 1.5 μl reservoir to be equilibrated against reservoir solution (0.5 ml) at 293 K. Best crystals were grown from macro seeding with the initial crystals obtained with 0.2 M sodium acetate, 0.1 M Bis Tris propane [pH 7.5], and 20% PEG 3350.

The data set was collected at beamline BL41XU of SPring-8 with Rayonix charge-coupled device detector MX225HE. Prior to diffraction data collection, crystals were cryoprotected by transfer to a solution containing 25% (vol/vol) glycerol and incubation in it for a few seconds, followed by flash cooling. The data sets were integrated with XDS (36) and then merged and scaled by using Scala (37). HLA-B*52:01 crystals belonged to space group P2_12_1, with unit cell parameters \( a = 69.0 \AA, b = 83.3 \AA, \) and \( c = 170.3 \AA \). Based on the values of the Matthews coefficient (\( V_M \)) (38), we estimated that there were two protomers in the asymmetric unit with a \( V_M \) value of 1.37 A^3/Da (Vsol = 10.5%). For details of the data collection and processing statistics, see Table S1 in the supplemental material.

The structure was solved by the molecular replacement method with MOLREP (39). The crystal structure of HLA-B*51:01 (PDB ID: 1E28) was used as a search model. Structure refinement was carried out by using Refmac5 (40) and phenix (41). The final model was refined to an Rfree factor of 34.7% and an R factor of 29.5% with a root mean square deviation of 0.014 Å in bond length and 1.48° in bond angle for all reflections between resolutions of 38.8 and 3.1 Å. Table S1 in the supplemental material also presents a summary of the statistics for structure refinement. The stereochemical properties of the structure were assessed by Procheck (42) and COOT (43) and showed no residues in the disallowed region of the Ramachandran plot.

**Protein structure accession number.** Atomic coordinates and structure factors for HLA-B*52:01 have been deposited in the Protein Data Bank under accession code 3W39.

**RESULTS**

Association of I135X variants with HLA-B*52:01. To clarify the possibility that CTLs restricted by other HLA alleles select the I135X mutation, we investigated the association between other HLA alleles and this mutation in 257 Japanese individuals chronically infected with HIV-1. We found an association of HLA-B*52:01 with the I135X variant, though this association was weaker than that with HLA-B*51:01 (phylogenetically corrected odds ratio \( \ln(OR) = 11.76 \) [\( P = 8.77 \times 10^{-3} \)] for B*52:01 versus an \( \ln(OR) \) of 40.0 \( P = 5.78 \times 10^{-12} \) for B*51:01, Table 1). We also analyzed the effects of HLA-B*52:01 and HLA-B*51:01 in chronically HIV-1-infected Japanese individuals, excluding HLA-B*51:01 and HLA-B*52:01 individuals, respectively, and found a significant association between HLA-B*51:01 and I135X variants among 200 HLA-B*51:01-negative individuals with chronic HIV-1 infection (\( P = 4.7 \times 10^{-4} \); see Fig. S1A in the supplemental material) and that of HLA-B*51:01 with the variants in 202 HLA-B*52:01-negative ones (\( P = 5.3 \times 10^{-8} \); see Fig. S1B in the supplemental material). These results together imply that HLA-B*52:01-restricted CTLs selected this mutation.

**Identification of HLA-B*52:01-restricted, Pol283-specific CTLs.** To identify the HLA-B*52:01-restricted HIV-1 epitope including RT135, we first investigated whether overlapping peptides covering RT135 could elicit CD8+ T cells specific for these peptides in chronically HIV-1-infected individuals. We identified CTLs recognizing the Pol11-142 (TAFTIPSIINNE) peptide in a chronically HIV-1-infected HLA-B*52:01+ donor, KI-069 (see Materials and Methods). Since the C terminus of HLA-B*52:01-binding peptides is known to be a hydrophobic residue (30, 44), we speculated that TAFTIPSI (Pol283-8) was the epitope peptide.

Downloaded from http://jvi.asm.org/ on April 23, 2013 by SUB NO.63745291
Indeed, bulk-cultured T cells that had been cultured for 2 weeks after stimulation with Pol17-48 recognized C1R-B*52:01 cells prepulsed with Pol283-8 peptide at a much lower concentration than those incubated with the Pol11-142 peptide (Fig. 1A), strongly suggesting that Pol283-8 is an epitope recognized by HLA-B*52:01-restricted CTLs. These findings were confirmed by ELISPOT assay with PBMCs from two HLA-B*52:01 individuals chronically infected with HIV-1 (Fig. 1B). To clarify whether this peptide was processed and presented by HLA-B*52:01, we investigated the killing activity of bulk-cultured T cells against HLA-B*52:01 target cells infected with a vaccinia virus–HIV-1 Gag/Pol recombinant. They killed target cells infected with this recombinant but not those infected with wild-type vaccinia virus (Fig. 1C), indicating that the Pol283-8 peptide was presented by

### Table 1: HLA-B*52:01 and HLA-B*51:01 association with variation at RT135 in Japanese and Caucasian cohorts

<table>
<thead>
<tr>
<th>HLA class I allele</th>
<th>RT135 target variable</th>
<th>PhyloLOR*</th>
<th>Within-cohort P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Japanese</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.66 × 10⁻⁶</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.464</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5.78 × 10⁻¹²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.77 × 10⁻⁴</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.884</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.076</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.038</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.894</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.034</td>
</tr>
</tbody>
</table>

*PhyloLOR, phylogenetically corrected lnOR.

**FIG 1** Identification of HLA-B*52:01-restricted Pol epitope. (A) Identification of the epitope peptide recognized by HLA-B*52:01-restricted CD8⁺ T cells. Bulk T cells were cultured for 2 weeks after stimulation with the Pol17-48 peptide, and then the recognition of CIR-HLA-B*52:01 cells prepulsed with Pol283-8 peptide at a much lower concentration than those incubated with the Pol11-142 peptide (Fig. 1A), strongly suggesting that Pol283-8 is an epitope recognized by HLA-B*52:01-restricted CTLs. These findings were confirmed by ELISPOT assay with PBMCs from two HLA-B*52:01 individuals chronically infected with HIV-1 (Fig. 1B). To clarify whether this peptide was processed and presented by HLA-B*52:01, we investigated the killing activity of bulk-cultured T cells against HLA-B*52:01 target cells infected with a vaccinia virus–HIV-1 Gag/Pol recombinant. They killed target cells infected with this recombinant but not those infected with wild-type vaccinia virus (Fig. 1C), indicating that the Pol283-8 peptide was presented by
HLA-B*52:01. We analyzed the binding of the Pol283-8 peptide to HLA-B*52:01 by using the HLA stabilization assay. The results demonstrated that this peptide bound to HLA-B*52:01 (Fig. 1D). These results together indicate that the Pol283-8 epitope can therefore be presented by both HLA-B*51:01 and HLA-B*52:01.

We investigated whether Pol283-8-specific CD8^+ T cells were elicited predominantly in chronically HIV-1-infected HLA-B*52:01^+ HLA-B*51:01^− individuals. PBMCs from 14 of these individuals were analyzed by ICS assay with Pol283-8 peptide-stimulated culture cells, as well as by ELISPOT assay. The results of the ICS assay showed that 7 of these 14 HLA-B*52:01^+ HLA-B*51:01^− patients had Pol283-specific CD8^+ T cells, whereas those of the ELISPOT assay with ex vivo PBMCs revealed that Pol283-specific CD8^+ T cells were detected in only four individuals (Table 2). These results together indicate that Pol283-8 was recognized as an HLA-B*52:01-restricted immunodominant epitope in the HLA-B*52:01^+ individuals and support the idea that the I135X mutation was selected by HLA-B*52:01-restricted, Pol283-8-specific CD8^+ T cells.

**Strong ability of HLA-B*52:01-restricted, Pol283-8-specific CD8^+ T cells to suppress HIV-1 replication.** A previous study showed that HLA-B*51:01-restricted, Pol283-8-specific T cells have a strong ability to kill HIV-1-infected target cells and to suppress HIV-1 replication (31). Therefore, we expected that the HLA-B*52:01-restricted T cells also would have this strong ability. We generated HLA-B*52:01-restricted, Pol283-8-specific T cell clones and investigated their ability to kill peptide-pulsed or HIV-1-infected target cells. Clone 1E1 effectively killed C1R-B*52:01 cells prepulsed with the Pol283-8 peptide (Fig. 2A) and NL-432-infected CD4^+ T cells from an HLA-B*52:01^+ individual (Fig. 2B). Additional T cell clones also showed strong killing activity against NL-432-infected HLA-B*52:01^+ CD4^+ T cells (data not shown). In addition, we investigated the ability of these CTL clones to suppress HIV-1 replication. CD4^+ T cells derived from an HLA-B*52:01^+ individual were infected with NL-432 or M20A mutant virus, the latter of which has an amino acid substitution at position 20 of Nef and lacks the ability to downregulate the surface expression of HLA-A and -B molecules (Fig. 2C). Representative data on the 1E1 clone and summary data on four clones are shown in Fig. 2D and E, respectively. These CTL clones strongly suppressed the replication of both the NL432 and M20A mutant viruses, indicating that the HLA-B*52:01-restricted CTLs had a strong ability to suppress HIV-1 replication, as was the case with the HLA-B*51:01-restricted ones.

**Recognition of I135X mutations by Pol283-8-specific, HLA-B*52:01-restricted CTLs.** Four mutations (8T, 8L, 8R, and 8V) have been selected by Pol283-8-specific, HLA-B*52:01-restricted CTLs to suppress the replication of these mutant viruses in vitro. The CTL clones failed to suppress the replication of the 8L, 8T, or 8R mutant, though they weakly suppressed that of the 8V virus at an E/T cell ratio of 1:1 (Fig. 4A). These results support the idea that these variants were escape mutations from the HLA-B*52:01-restricted CTLs. To clarify the mechanism by which the CTL clones failed to suppress the replication of these mutant viruses, we investigated the CTL clones for recognition of C1R-B*52:01^+ cells prepulsed with the mutant peptides. The CTL clones effectively recognized the 8V peptide at the same level as the wild-type peptide and the 8T and 8L peptides at less than that of the wild-type one, whereas they failed to recognize the 8R peptide (Fig. 4B). An ELISPOT assay with ex vivo PBMCs from KI-069 showed that Pol283-8-specific CTLs effectively recognized the 8I and 8V variants but not the other three mutant peptides (Fig. 4C), suggesting that Pol283-8-specific CTLs failed to recognize the 8T, 8L, and 8R peptides in vivo. The lack of recognition of these mutants by CTLs may be attributable to a failure of T cell receptor (TCR) recognition, the inability of the peptide to bind to HLA-B*52:01^+ and/or disruption of the processing of the epitope in HIV-1-infected cells.

**Different pattern of RT135 mutation selection by two HLA alleles.** As described above, HLA-B*51:01 and HLA-B*52:01 were associated with I135X in a Japanese population in which the prevalence of HLA-B*51:01 and B*52:01 alleles is relatively high (21.9 and 21.1%, respectively). In a Japanese cohort, out of the five
amino acid mutations that can be generated by a one-nucleotide mutation from Ile, the T mutation was strongly associated with the presence of HLA-B*51:01 (P = 4.66 × 10⁻⁴), whereas HLA-B*52:01 was associated not with any single amino acid substitu-

FIG 2 Abilities of HLA-B*52:01-restricted, Pol283-8-specific CD8⁺ T cell clones to kill HIV-1-infected CD4⁺ T cells and to suppress HIV-1 replication. (A) Killing activity of an HLA-B*52:01-restricted, Pol283-8-specific CD8⁺ T cell clone against C1R-B*52:01 cells prepuled with Pol283-8 peptides. The activity of an HLA-B*52:01-restricted, Pol283-8-specific CD8⁺ T clone, 1E1, to kill C1R-B*52:01 cells was measured by performing a 51Cr-release assay. (B) Killing activity of HLA-B*52:01-restricted, Pol283-8-specific CD8⁺ T cell clone 1E1 against CD4⁺ T cells infected with HIV-1. The activity of the clone to kill CD4⁺ T cells infected with NL-432 was measured by performing a 51Cr-release assay. (C) Downregulation of HLA-B*52:01 in HIV-1-infected CD4⁺ T cells derived from an HLA-B*52:01 donor (HLA-A*11:01/A*24:02, HLA-B*52:01/B*52:01, and HLA-C*12:02/C*14:02) were infected with NL-432 and then cultured for 4 days. The cultured CD4⁺ T cells were stained with anti-p24 Ag and TU109 anti-Bw4 MAbs. (D) Ability of an HLA-B*52:01-restricted, Pol283-8-specific CD8⁺ T cell clone to suppress the replication of NL-432 and M20A mutant viruses. Suppressing ability was measured at four different E/T cell ratios (1:1, 0.1:1, 0.01:1, and 0.001:1). HIV-1-infected HLA-B*52:01⁺ CD4⁺ T cell clones were cocultured with an HLA-B*52:01-restricted, Pol283-8-specific CTL clone or an HLA-mismatched CTL clone at various E/T cell ratios. HIV-1 p24 Ag levels in the supernatant were measured on day 6 postinfection. (E) Summary of the ability of HLA-B*52:01-restricted, Pol283-8-specific CD8⁺ T cell clones (n = 4) to suppress the replication of NL-432 and M20A mutant viruses at four different E/T cell ratios.

FIG 3 Amino acid variation at RT135 in Japanese individuals. (A) Frequency of the amino acid at RT135 in 51 HLA-B*51:01 HLA-B*52:01, 49 HLA-B*51:01 HLA-B*52:01, and 151 HLA-B*51:01 HLA-B*52:01 Japanese subjects. (B) Frequency of the amino acid at RT135 in 131 HLA-B*51:01 HLA-B*52:01, 26 HLA-B*51:01 HLA-B*52:01, and 1195 HLA-B*51:01 HLA-B*52:01 subjects in three predominantly Caucasian cohorts from Canada, the United States, and Western Australia (IHAC).

Yagita et al.

FIG 4 Ability of HLA-B*52:01-restricted, Pol283-8-specific CD8⁺ T cell clones to suppress the replication of four mutant viruses. (A) Ability of an HLA-B*52:01-restricted, Pol283-8-specific CD8⁺ T cell clone to suppress the replication of four (8L, 8T, 8R, and 8V) mutant viruses and NL-432. The abilities of an HLA-B*52:01-restricted, Pol283-8-specific CD8⁺ T cell clone and an HLA-A*1101-restricted Nef73-specific T cell clone to suppress the replication of these viruses were measured at an E/T cell ratio of 1:1 on days 3 to 6. W/O, without. (B) Recognition by an HLA-B*52:01-restricted, Pol283-8-specific CD8⁺ T cell clone and an HLA-A*1101-restricted Nef73-specific T cell clone to suppress the recognition of the Pol283-8 peptide (WT) or the mutant epitope peptide by PBMCs from KI-069 was analyzed by ELISPOT assay.
tion but only with the non-I mutation ($P = 8.77 \times 10^{-4}$, Table 1). The distribution of amino acid variations at RT135 in the HLA-B*51:01–HLA-B*52:01–Japanese subjects was different from that in the HLAB*51:01–HLA-B*52:01+ ones (Fig. 3). These results suggest that the HLAB*51:01-restricted CTLs strongly selected the 135T mutation but that the HLAB*52:01-restricted ones selected a variety of different amino acids at this position in Japanese individuals.

We also analyzed the association of I135X mutations with HLAB*52:01 and HLAB*51:01 in three predominantly Caucasian cohorts from Canada, the United States, and Western Australia (International HIV Adaptation Collaborative [IHAC]) (19) comprising >1,200 subjects (Table 1). HLAB*51:01 was very strongly associated with the I135X mutation ($lnOR = 5.71$, $P = 1.58 \times 10^{-31}$). Although only 2.1% of the IHAC cohort subjects expressed HLAB*52:01, this allele was also associated with I135X ($lnOR = 3.06$, $P = 2.95 \times 10^{-7}$). The T mutation was strongly associated with HLAB*51:01 ($P = 1.70 \times 10^{-35}$), whereas the T and V mutations were weakly associated with HLAB*52:01 ($0.0005 < P < 0.005$). Thus, these results showed a similar selection of RT135 mutations by HLAB*52:01 in the predominantly Caucasian cohort, despite a substantially lower frequency of HLAB*52:01. The magnitude of the strength of selection by HLAB*51:01 (0.0005 < $P < 0.005$).

Comparison of TCR affinity and abilities of HLAB*51:01-restricted and HLAB*52:01-restricted CTLs to suppress HIV-1 replication. We investigated the TCR affinity of HLAB*51:01-restricted and HLAB*52:01-restricted CTL clones by using tetramers of the HLAB*51:01-Pol283 peptide and the HLAB*52:01–Pol283 peptide complex (HLA-B*51:01 and HLA-B*52:01 tetramers, respectively). The TCR affinity of these CTL clones was compared in terms of $EC_{50}$. The $EC_{50}$ of the HLAB*51:01-restricted CTL clones was significantly lower than that of the HLAB*52:01-restricted CTL clones (Fig. 5A), suggesting that the former CTL clones had TCRs with a higher affinity for the ligand than those of the latter clones. These results imply that the HLAB*51:01-01-restricted CTL clones could recognize the HIV-1-infected targets more effectively than HLAB*52:01-restricted ones.

Since CD4+ T cells derived from an HLAB*52:01 homozygous individual were used in the experiment shown in Fig. 2D and E, the ability of the HLAB*52:01-restricted CTL clones to suppress the replication of NL432 may have been overestimated. To evaluate and compare the abilities of HLAB*51:01-restricted and HLAB*52:01-restricted CTL clones to suppress the replication of NL432, we used CD4+ T cells from individuals expressing HLAB*51:01/B*52:01−, HLAB*51:01/B*52:01+, or HLAB*51:01+/B*52:01+ (Fig. 5B). Two HLAB*51:01-restricted CTL clones strongly inhibited the replication of HIV-1 in cultures of NL432-infected HLAB*51:01+/B*52:01− CD4 + T cells but not in those of HLAB*51:01+/B*52:01− CD4 + T cells, whereas two HLAB*52:01-restricted CTL clones strongly inhibited the replication of HIV-1 in cultures of NL432-infected HLAB*51:01+/B*52:01+ CD4 + T cells but not in those of HLAB*51:01+/B*52:01− cells (Fig. 5B, left and middle). The ability of the HLAB*51:01-restricted CTL clones to suppress the replication of HIV-1 was greater than that of the HLAB*52:01-restricted CTL clones. This was confirmed by the experiment with HLAB*51:01+/B*52:01+ CD4+ T cells (Fig. 5B, right). Although both HLAB*51:01-restricted and HLAB*52:01-restricted CTL clones strongly inhibited the replication of HIV-1 in the cultures of NL432-infected HLAB*51:01+/B*52:01− CD4+ T cells, the former clones exhibited a greater ability to suppress the replication of HIV-1 than did the latter cells. These results indicate that the HLAB*51:01-restricted CTL clones had a stronger ability to suppress HIV-1 replication than the HLAB*52:01-restricted clones. Taken together, both our in vitro and our in vivo (population level HLA-association) data suggest that immune pressure on RT135 by HLAB*51:01-restricted T cells was stronger than that imposed by HLAB*52:01-restricted cells.

Structural basis of the difference in recognition between HLAB*52:01- and HLAB*51:01-restricted CTLs. In order to investigate the structural basis of the difference in recognition between HLAB*52:01- and HLAB*51:01-restricted CTLs, we performed a crystallographic study of the HLAB*52:01 molecule complexed with the Pol283-8 peptide. The recombinant HLAB*52:01 protein was crystallized, and by using the molecular replacement method, the three-dimensional structure of HLAB*52:01 complexed with the Pol283-8 peptide was successfully determined. The crystal and statistical data are summarized in Table S1 in the supplemental material. The overall structure and peptide-binding mode were similar to those of HLAB*51:01 complexed with the same Pol283-8 peptide (Fig. 6A and B), which...
we had previously reported (45). This finding explains the cross presentation of this peptide by both HLA alleles. On the other hand, there was a notable conformational difference in the N-terminal region of the peptide between the two alleles (Fig. 6C and D). The replacement of Phe67 of HLA-B*51:01 with Ser in HLA-B*52:01 makes a local space, causing the N-terminal region of the peptide (T1 and A2) to reside deeper in the peptide-binding groove. Furthermore, the Gln63Glu mutation in HLA-B*52:01 affords a new interaction with the T1 residue of the peptide. These changes would, to some extent, have hidden the side chains of T1 and A2 (flat surface) from the TCRs, which may have reduced their interactions with TCRs on the HLA-B*52:01-restricted CTLs. On the other hand, the conformation of the C-terminal region of the peptide complexed with HLA-B*51:01 or HLA-B*52:01 was similar, even though C-terminal Ile8 of the peptide exhibited shallower penetration of the hydrophobic groove in the case of HLA-B*52:01 than in that of HLA-B*51:01 (Fig. 6C and E). These results may indicate that the relatively flat surface of the N-terminal side of the peptide contributed to the lower affinity for TCRs in the case of HLA-B*52:01.

**DISCUSSION**

HLA-B*52:01 and HLA-B*51:01 differ by only two residues, at positions 63 and 67 (44). Substitutions at these residues affect the formation of the B pocket in the peptide-binding pocket (45), suggesting the possibility that HLA-B*52:01 has a peptide motif different from that of HLA-B*51:01. Indeed, HLA-B*52:01-binding peptides have P2 primary anchors that are different from HLA-B*51:01-binding ones (30, 46). Since the Pol283-8 epitope carries Ala at its second position and Ile at the C terminus of the peptide, it is likely that this peptide would effectively bind to HLA-B*51:01 but not to HLA-B*52:01. However, the results of the HLA stabilization assay demonstrated that the Pol283-8 peptide did effectively bind to HLA-B*52:01. Since the HLA-B*52:01-binding peptide is known to have Pro as its preferred P2 anchor residue, this peptide carrying Ala at position 2 may be capable of binding to HLA-B*52:01. A previous study showed cross-recognition of alloreactive T cells between HLA-B*51:01 and HLA-B*52:01 (47, 48), indicating that some self-peptides can be presented by both of these HLA class I molecules. The findings on the crystal structure
TABLE 3 Numbers and frequencies of individuals having I135X mutations in a Japanese cohort and a predominantly Caucasian cohort

<table>
<thead>
<tr>
<th>Cohort</th>
<th>B<em>51:01†-B</em>52:01−</th>
<th>B<em>51:01†-B</em>52:01−</th>
<th>B<em>51:01†-B</em>52:01−</th>
<th>B<em>51:01†-B</em>52:01−</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Japanese</td>
<td>51/51 (100)</td>
<td>42/49 (85.7)</td>
<td>5/5 (100)</td>
<td>88/151 (58.3)</td>
<td>186/256 (72.6)</td>
</tr>
<tr>
<td>Caucasian</td>
<td>125/131 (95.4)</td>
<td>17/26 (65.4)</td>
<td>0/0</td>
<td>331/1,198 (27.6)</td>
<td>473/1,355 (34.9)</td>
</tr>
</tbody>
</table>

of the HLA-B*52:01 molecule complexed with the Pol283-8 peptide clarified that HLA-B*52:01 could bind to the peptide in a fashion similar to but slightly different from that of HLA-B*51:01. These findings support the presentation of the Pol283-8 peptide by both HLA-B*52:01 and HLA-B*51:01.

Pol283-8-specific CD8+ T cells were detected in 7 of 14 HLA-B*52:01+ individuals chronically infected with HIV-1. A previous analysis showed that CD8+ T cells specific for this epitope are frequently detected in HLA-B*51:01+ individuals chronically infected with HIV-1 (49). These results, taken together, indicate that this epitope is immunodominant in both HLA-B*51:01+ and HLA-B*52:01+ individuals. The analysis of 257 Japanese individuals revealed an association between HLA-B*52:01 and a variety of nonconsensus residues at RT codon 135 (I135X). Specifically, variants 8T, 8L, 8R, and 8V predominated in HLA-B*52:01+ individuals, suggesting that these mutations had been selected by HLA-B*52:01-restricted CTLs. The viral suppression assay revealed that the HLA-B*52:01-restricted CTLs failed to suppress the replication of these mutant viruses. These results support the idea that the I135X mutation can be selected by immune pressure via Pol283-8-specific CTLs in HLA-B*52:01+ individuals. Our previous studies showed that the 8L, 8T, and 8R mutations affected the recognition by Pol283-8-specific, HLA-B*51:01-restricted CTL clones (15, 28). These studies, together with the present study, indicate that accumulation of 8L, 8T, and 8R mutations in the HIV-infected Japanese population may be due to immune pressure by both HLA-B*52:01-restricted and HLA-B*51:01-restricted CTLs. Our analysis of the crystal structure of the HLA-B*52:01-peptide complex demonstrated that position 8 of the Pol283-8 peptide was deeply packed into the hydrophobic groove. Whereas the 8L, 8T, and 8R substitutions likely had a relatively large effect on the structure of the complex, the 8V mutation, resulting in only the deletion of the small methyl group, caused only very limited changes. Thus, the structural analysis supports the idea that the 8L, 8T, and 8R mutations affected the TCR recognition of the peptide and/or its binding to HLA-B*52:01.

The present study confirmed previous studies of nine worldwide cohorts (15) and a Chinese cohort (50) that showed a strong association of I135X with HLA-B*51:01. The I135X mutation was found in 58.3 and 27.6% of HLA-B*51:01+ individuals, respectively (Table 3), supporting greater population level accumulation of this mutation in Japanese than in other cohorts. Since the Japanese cohort included twice as many HLA-B*51:01+ individuals as the IHAC cohort (21.9% of Japanese and 9.4% of Caucasians in IHAC), the difference in the I135X variant frequency between these two cohorts would be driven, to a large extent, by the higher HLA-B*51:01+ prevalence in the former than in the latter. The association of HLA-B*52:01 with this mutation was much weaker than that of HLA-B*51:01 in both cohorts but still highly statistically significant (an lnOR of 40.0 [P = 5.78 × 10−12] in the Japanese cohort and an lnOR of 3.06 [P = 2.95 × 10−5] versus an lnOR of 5.71 [P = 1.58 × 10−51] in IHAC). Because of the relatively low B*52:01+ frequency (~2%) in IHAC, the effect of HLA-B*52:01 on the overall prevalence of I135X was relatively low in this cohort. In contrast, in the Japanese cohort, where the HLA-B*52:01+ prevalence was relatively high (>20%), this allele represents a major driving force behind 135X selection in this cohort. Thus, selection pressure from both HLA-B*51:01 and HLA-B*52:01 likely contributed to the observed population level accumulation of I135X mutations in the Japanese population.

Previous studies showed that HLA-B*51:01-restricted, Pol283-8-specific CTLs have a strong ability to suppress HIV-1 replication in vitro (28) and that they suppressed the replication of the 8V mutant virus but failed to suppress that of the 8T, 8L, and 8R mutant viruses (15). The frequency of the Pol283-8-specific CTLs was inversely correlated with the plasma viral load in HLA-B*51:01+ hemophiliacs infected with HIV-1 approximately 30 years ago (28). The 8T, 8L, and 8R mutations did not affect replication capacity, whereas the 8V mutation conferred a modest fitness cost (15). These findings support the suppression of the wild-type or 8V mutant virus by Pol283-8-specific CTLs as a major mechanism of slow progression to AIDS in Japanese hemophiliacs. This CTL response was also elicited in Chinese HLA-B*51:01+ individuals infected with the 8V mutant virus; furthermore, a low viral load and a high CD4 count were significantly associated with the presence of at least one of three HLA-B*51:01-restricted CTL responses, including a Pol283-8-specific one (50). Thus, these findings support the idea that Pol283-8-specific CTLs play an important role in the control of HIV-1 infection.

The present study demonstrated that HLA-B*52:01-restricted, Pol283-8-specific CTLs also had a strong ability to suppress HIV-1 replication in vitro (80% suppression at an E/T cell ratio of 0.3:1). However, the ability of HLA-B*52:01-restricted CTLs to suppress the replication of HIV-1 was weaker than that of HLA-B*51:01-restricted CTLs (Fig. 5B). Inspection of the crystal structures of both HLA molecules complexed with the Pol283-8 peptide suggests that the relatively shallow penetration of the hydrophobic groove of HLA-B*52:01 by the C-terminal side of the peptide, in contrast to the tightly packed binding with HLA-B*51:01, may have resulted in an unstable conformation of the complex. Furthermore, Ser67 of HLA-B*52:01 would have provided more space and loose interactions with the peptide than in the case of the Phe of HLA-B*51:01. Interestingly, the Pol283-8 peptide would have displayed only side chains of Thr1 and Ser7, and some part of the main chains, to CTLs. Therefore, these results suggest that the unstable backbone conformation and side chain positions in the case of HLA-B*52:01 largely contributed to the lower TCR affinity than that afforded by HLA-B*51:01. These results support that selection pressure in vivo via the HLA-B*52:01-restricted CTLs would be weaker than that via the HLA-B*51:01-restricted CTLs. Indeed, the prevalence of I135X mutations in HLA-B*51:

1. Different Selection Pattern of RT135 Mutant
individuals. The difference in the pattern of escape mutant selection by these CTLs between the HLA-B*51:01- and HLA-B*52:01-selected individuals might also have been due to the difference in their abilities to suppress HIV-1 replication. However, it still remains unclear why the B5 mutant was predominantly selected in the HLA-B*51:01 but not in the HLA-B*52:01 individuals. Further studies are expected to clarify the mechanism to explain how these CTLs selected different patterns of mutations at RT135.

Previous studies showed that the T242N mutant was selected by HLA-B*58:01-restricted and HLA-B*57-restricted CTLs specific for TW10 epitope in HIV-1 clade B-infected and clade C-infected individuals (25–27). Herein we also showed that N135X was selected by Pol283-specific CTLs restricted by two different HLA class I molecules. However, the strength and the pattern of the selection of N135X was different between HLA-B*51:01 and HLA-B*52:01. The present study suggests that this difference in the selection pattern was associated with that between the HLA-B*51:01- and HLA-B*52:01-selected individuals in terms of the ability of Pol283-specific CTLs to suppress HIV-1 replication. Thus, we characterized and experimentally validated distinct HIV-1 escape patterns of CTLs with the same epitope specificity and provided evidence that the extremely high prevalence of 135X in circulating Japanese sequences is likely driven not by one but by two HLA-B alleles.

ACKNOWLEDGMENTS

We thank Sachiko Sakai for her secretarial assistance, as well as Richard Harrigan and the BC Centre for Excellence in HIV/AIDS for data access. The assistance of Jennifer Listgarten and Carl Kadie (Microsoft Research) with HLA allele interpretation is also gratefully acknowledged.

N.K. is a JSPS Research Fellow. Z.L.B. is a recipient of a Canadian Institutes of Health Research (CIHR) New Investigator Award and a Michael Smith Foundation for Health Research (MSFHR) Scholar award. This research was supported by the Global COE program Global Education and Research Center Aiming at the Control of AIDS, launched as a project commissioned by the Ministry of Education, Science, Sports, and Culture, Japan, and by grants-in-aid for scientific research from the Ministry of Education, Sciences, Sport and Culture, Japan (18390141 and 20390134). We have no financial conflicts of interest.

REFERENCES

21. Rousseau CM, Daniels MG, Carlson JM, Kadie C, Crawford H, Pren-


43. Yamamoto J, Hiraiwa M, Hayashi H, Tanabe M, Kano K, Takiguchi M. 1991. Two amino acid substitutions at residues 63 and 67 between HLA-B*3501 and -B*3502 result in different phenotype of anchor residues of peptides in their binding to HLA-B*3501 molecules. Immunogenetics 35:677–682.

