SOIL SEED BANK DYNAMICS IN TRANSFERRED TOPSOIL

EVALUATING RESTORATION POTENTIALS

William M. Fowler

Bachelor of Science in Environmental Science and Environmental Restoration

School of Environmental Science

October 2012

Acknowledgements

Thanks to my supervisors Dr. Joe Fontaine and Prof. Neal Enright for all the advice and support given over the last year. I would also like to thank the members of the Murdoch University, Terrestrial Ecology Research Group (TERG) for their valuable assistance and guidance, especially Willa Veber and Dr. Philip Ladd, as well as the Murdoch University Environmental Science Association (MUEnSA) for helping find enthusiastic volunteer field assistants. I wish to thank the Department of Environment and Conservation (DEC) for providing technical and financial assistance in addition to information and resources that were vital to this projects success. Finally I would like to thank the Environmental Weeds Action Network (EWAN) for awarding me a scholarship to help me complete this valuable research.
DECLARATION

I declare that this thesis is my own original work and has not been submitted for any other unit for academic credit.

William Michael Fowler
ABSTRACT

Global change, increasing human population growth and urbanisation represent increasing pressures on biodiversity and ecosystem function. It is now widely recognised that conservation of existing natural fragments will not be sufficient to maintain extant biodiversity or meet conservation goals. Thus there is a major and rapidly expanding need for the practice of ecological restoration whereby degraded lands are managed to increase and maintain indigenous species.

A soil seed bank germination experiment was conducted over a period of 13 weeks. This aimed to evaluate restoration values of topsoil transfer, by investigating soil seed bank similarity to standing vegetation, and exploring mechanisms to improve restoration outcomes on the Swan Coastal Plain, Western Australia. This was experimentally designed to make comparisons between the soil seed bank pre and post-transfer, an aspect of topsoil transfer that has not been looked at previously. In addition sampling was conducted at two depths, with treated (smoke and heat) and non-treated trials. This study examined the similarity of the soil seed bank to standing vegetation, the effect of soil transfer, and the influence of soil spreading depth and fire related germination cues.

Seventy-three per cent of germinants were found in the top 5 cm of natural (pre-transfer), soil transfer leading to mixing (no depth effect) and a reduction in germinant densities (-2472.00 germinants m\(^{-2}\)). Treatment with germination cues (heat and smoke in concert) increased germinant densities by 1537.80 germinants m\(^{-2}\), however no increase in transferred soils was observed. Native annuals dominated species composition of transferred soils, contributing 68% of observed richness, with woody species only accounting for 9% overall. The similarity of the soil seed bank to the standing vegetation ranged from 15% to 19%, the higher similarity found when treatment was used. Overall topsoil transfer is a useful tool for restoration; however it must be used in conjunction with other methods, such as planting and direct seeding, to return a representative set of species to a site.
TABLE OF CONTENTS

DECLARATION... II

ABSTRACT.. III

TABLE OF CONTENTS.. IV

LIST OF FIGURES.. VI

LIST OF TABLES .. VII

CHAPTER 1 – INTRODUCTION ... 1

1.1 RESEARCH AIMS ... 5
1.2 THESIS OUTLINE .. 6

CHAPTER 2 – STUDY AREA AND METHODS ... 7

2.1 STUDY SETTING ... 7
2.2 FIELD SAMPLING AND DATA COLLECTION .. 9

CHAPTER 3 – RESULTS ... 18

3.1 SEED BANK DYNAMICS .. 18
3.2 SIMILARITY .. 27
3.3 COMMUNITY ANALYSIS .. 27

CHAPTER 4 - DISCUSSION ... 31

4.1 INFLUENCE OF DEPTH OF TOPSOIL ON RESTORATION OUTCOMES 31
4.2 THE EFFECT OF TOPSOIL TRANSFER ON GERMINANT COMPOSITION 34
4.3 GERMINATION SIMULATION WITH COMMON GERMINATION CUES 34
4.4 SOIL SEED BANK AND ITS RELATIONSHIP TO THE STANDING VEGETATION .. 35

CHAPTER 5 – CONCLUSIONS AND RECOMMENDATIONS 38
Soil seed bank dynamics of transferred topsoil: evaluating restoration potentials

5.1 CONCLUSIONS.. 38

5.2 RECOMMENDATIONS FOR MANAGEMENT OF TOPSOIL TRANSFER ON THE SWAN COASTAL PLAIN 38

5.3 RECOMMENDATIONS FOR FUTURE RESEARCH .. 39

REFERENCES ... 40

APPENDICES .. 50

APPENDIX A – STATISTICAL SUMMARIES OF ALL NORMAL PARAMETRIC ANALYSIS 50

APPENDIX B – SPECIES LISTS ... 51
LIST OF FIGURES

Figure 1 – Diagramatic representation of the change in seed gradient as a result of mixing due to the transfer process...5
Figure 2 – Site locations relative to Perth, Western Australia. The cross indicating the location of Jandakot Airport from which soil was striped. Triangles indicating the recipient sites of Forrestdale Lake and Anketell RD. Adapted from the Nokia map service (Nokia 2012). 8
Figure 3 - Position of transects and plots at Jandakot Airport. The area which soil was stripped from is enclosed by the solid black lines. Plots are represented by the dots; with series of dots forming transects which are labelled accordingly. ...10
Figure 4 - Main: Image of the loader used to harvest topsoil from Jandakot Airport by Urban Resources. Insert: side view of the wing-like bucket modifications used to prevent over harvesting of topsoil. ...11
Figure 5 – Site and plot locations at Forrestdale Lake. Dots representing plots, clustered in the deep areas of transferred soil at the three smaller sites within the greater area of Forrestdale Lake (Nature Reserve). ..11
Figure 6 – Site and plot locations and Anketell Road. Dots representing plots, clustered in the deep areas of transferred soil at the three smaller sites within the greater Anketell Rd site............12
Figure 7 - Diagram of the soil sampling tube (not to scale) used for sampling topsoil in this study. . .12
Figure 8 – Sampling arrangement within each plot (not to scale), the circles representing the locations of soil samples which were composited. ..12
Figure 9 – Diagram of seeding marking procedure, bands indicating colour code progression as identification became more developed. ...15
Figure 10 – Proportion of total germinants the study over time (weeks). ...18
Figure 11 – Mean germinants m⁻² by treatment across depth and site. ..19
Figure 12 – Mean species richness by treatment across depth and site. ..20
Figure 13 – Diversity using the Shannon-Wiener index, by treatment across depth and site.21
Figure 14 – Mean germinants m⁻² by treatment, across depth and site, comparing growth forms. ...22
Figure 15 – Mean germinants m⁻² of invasive species and native species split into longevity categories, across treatment and depth (unknown species removed). ..23
Figure 16 – Density of native perennial species and their proportion of woody and non-woody.25
Figure 17 – Density of germinants m⁻² of seeders and resprouters across treatments, depths and sites. ..26
Figure 18 – Mean density germinants m⁻² of categories of Proteoid roots (0=0, 1=0-25%, 2=25-50%, 3=50-75%, 4=75-100%). ..26
Figure 19 – Ordination of all trays using NMS. Axis 1 correlated with site, from transfer to natural. Axis 2 correlated with depth, 5-10cm to 0-5cm. ...28
Figure 20 – Panel of three joint plot analyses, with correlations. A – Growth form and invasive status, B – Richness and diversity, C – species. Only those vectors with r² values > 0.20 are displayed. ...29
Figure 21 – Graphical representation of the potential influence of compaction in the soil stripping process. Effect of over harvesting is for illustrative purposes only...32
Figure 22 – Photo of proteoid roots on site at Jandakot Airport..33
LIST OF TABLES

Table 1 – Criteria used by DEC and their relative importance in recipient site selection. Adapted from Brundrett (2012). ... 9
Table 2 – Ranking system for the allocation of cover rankings consistent with Braun-Blanquet (1932). ... 10
Table 3 - Top 5 species by abundance for each treatment on natural and transferred soils. Blanks indicate that the species was not in the top 5 most abundant for that treatment. 24
Table 4 – Average number of species found in the soil seed bank (SSB) and above ground vegetation (AGV), and the average similarity between the SSB and AGV, using Sorenson’s similarity index. .. 27