Gastro-intestinal parasites of red foxes

(*Vulpes vulpes*) and feral cats (*Felis catus*)
in southwest Western Australia

This thesis is presented for the Honours degree in Biomedical Science at

Murdoch University

Narelle Dybing

2010

BSc Biomedical Science

BSc Conservation Biology
Declaration

I declare that this thesis is my own account of my research and contains at its main content, work which has not been previously submitted for a degree at any tertiary educational institution.

Narelle Dybing
Acknowledgements

After such a long and gruelling year, it is finally time to thank all the people that have pulled me through.

First of all, I would like to thank my supervisors, Dr Peter Adams and Dr Trish Fleming. I’m sorry if I nagged and asked too many questions. You have been so helpful throughout this year in so many ways. Thank you for all your suggestions, comments and encouragement. Thank you Trish for all your formatting and statistical skills, I wouldn’t have done nearly as much without your help. Thank you Peter for being as excited as I was when I found a new parasite and for constantly making yourself available when I had questions (which was often).

I would also like to thank Aileen Elliot and Russ Hobbs for their endless hours helping me with identify my parasites and for answering any questions I had. To Heather Crawford and Jesse Forbes-Harper. Thank you so much for all your help this year and for making the long hours with this project even more enjoyable.

To the people of the dungeon and bat cave. Thank you for keeping me sane, for all your help and great conversations we’ve had. And thanks for letting me vent, sorry for the tears at times. You guys are awesome.

John McCooke, you are a legend and i have told this over and over. Thank you so much for helping me with my PCR stuff, I would not have gotten my head around it myself. I’m sorry I took up most of your time
To Katherine Edwards, Cielito Marbus and Erica MacIntyre for the beer and nacho sessions which I desperately needed at the end of the week. Kat, thanks for letting me use your office as sprawl space during my writing period and getting me dinner when I didn’t have time, you rock.

I’d also like to thank my family for being so understanding during the year. I couldn’t have done it without your support and for your belief in me.

There are so many more people to thank but I have limited space but you all know who you are. Thank you all. I would also like to thank the numerous volunteers that have come out with us for collecting samples and to the Red Card for the Red Fox volunteers. Without you this project would not have been possible

Last but not least, I would like to thank ‘V’ and Redbull. Without you I would not have made it through the days.
Abstract

Red foxes (Vulpes vulpes) and feral cats (Felis catus) are present throughout a wide range of habitats and landscapes across much of Australia. In addition to the competition and predatory impacts of these two pest species, red foxes and feral cats harbour a wide range of parasites, many of which may have important conservation, agricultural and zoonotic repercussions. This project investigated the occurrence of helminth parasites from the intestines of 147 red foxes and 47 feral cats collected from 14 and 11 locations respectively, throughout southwest Western Australia.

Helminth parasites were detected in 58% of foxes and 81% of cats. Helminth species identified from red foxes were: Dipylidium caninum (27.7% of individual foxes examined), Uncinaria stenocephala (18.2%), Toxocara canis (14.9%), Spirometra erinaceieuropaei (5.4%), Toxascaris leonina (4.7%), Taenia spp. (4.1%), Taenia serialis (1.4%), Taenia hydatigena (0.7%), Brachylaima cribbi (0.7%), Plagiorchis maculosus (0.7%) and an Acanthocephalan identified to family Centrorhynchidae (2.1%). Helminth species identified from feral cats were: Taenia taeniaeformis (39.1% of individual cats examined), Toxocara cati (34.8%), Spirometra erinaceieuropaei (19.6%), Oncicola pomatostomii (15.2%), Toxascaris leonina (6.5%), Dipylidium caninum (6.5%), Ancylostoma spp (2.2%) and the Acanthocephalan Centrorhynchidae (2.2%).

Infracommunity richness varied from 1-3 and 1-4 species per host in red foxes and feral cats respectively. Average parasite burdens varied from 1-39 worms
across all helminth species. Several environmental factors were significantly related to the presence of some parasites in red foxes. For red foxes, the percentage remnant vegetation cover at each sampling location was significantly positively correlated with the presence of *T. canis* and *U. stenocephala* (p<0.001). Average relative humidity was significantly positively correlated with the presence of *S. erinaceieuropaei* (p<0.001), *T. leonina* (p<0.01) and *U. stenocephala* (p<0.01). Five year average minimum temperature had an effect on *S. erinaceieuropaei* and *U. stenocephala* (p<0.001). For feral cats, a significant positive correlation was detected between the presence of *T. cati* and five year annual rainfall (p<0.001) as well as individual head/body length and *T. taeniaeformis* (p<0.001).

Helminth species associations were detected between *U. stenocephala* and *D. caninum, S. erinaceieuropaei, T. canis* and *T. leonina* in red foxes. A significant association was also detected between *S. erinaceieuropaei* and *T. leonina* in red foxes. In feral cats helminth species associations were detected between *T. taeniaeformis* and *O. pomatostomi* as well as between *T. taeniaeformis* and *T. cati*. The only parasite that was positively correlated with body condition (assessed by body mass) was *S. erinaceieuropaei* in foxes. The species richness within a host was not observed to affect body condition in either foxes or cats.

In conclusion, red foxes and feral cats in southwest Western Australia harbour a wide range of helminth parasites, which are of veterinary significance for wildlife and livestock. Control of red foxes and feral cats in this region may
therefore provide an important mechanism of control of these parasites.

Importantly, *Echinococcus granulosus*, a parasite of major zoonotic concern, was not recorded in this study.
Table of Contents

Declaration ... ii

Acknowledgements ... iii

1 Introduction .. 1
 1.1 History of introduced animals ... 1
 1.2 Impacts of feral animals .. 2
 1.3 Red foxes and feral cats .. 3
 1.3.1 Predation .. 4
 1.3.2 Disease transmission .. 5
 1.3.3 Management and control .. 6
 1.4 Helminths parasites of red foxes in Australia 8
 1.5 Helminth parasites of feral cats in Australia 11
 1.6 Importance of transmission routes and life cycles 13
 1.7 What factors influence parasite presence? ... 15
 1.7.1 Prey abundance and availability .. 18
 1.7.2 Host density .. 19
 1.7.3 Host Immunity and Nutritional status .. 19
 1.7.4 Host demographics .. 20
 1.7.5 Host habitats .. 16
 1.7.6 Climatic factors .. 17
 1.8 Objectives ... 21

2 Methods .. 23
 2.1 Sample Locations ... 23
 2.2 Sample collection ... 28
 2.3 Lab methods: .. 30
 2.4 Parasites identification and preservation ... 31
 2.4.1 Trematodes .. 31
 2.4.2 Acanthocephala .. 32
 2.4.3 Nematodes ... 33
 2.4.4 Cestodes: .. 36
 2.4.5 Artefact from food .. 38
 2.5 Molecular techniques .. 38
 2.5.1 DNA extraction ... 38
 2.5.2 Primer design ... 39
 2.5.3 Optimisation of PCR conditions .. 41
Table of Figures

Figure 1-1. Distribution of (a) red foxes and (b) feral cats in Australia (sourced from West, 2008). .. 4

Figure 1-2. Red fox with native mammal prey (West, 2008).. 5

Figure 1-3. Diagrammatic representation of the links between food availability leading to disease vulnerability, adapted from Chandra, 1981. 19

Figure 2-1. IBRA bioregions for the sampling location within the south west Western Australia (sourced from Environment Australia, 2000). 24

Figure 2-2. Remnant vegetation within the southwest Western Australia. Figure indicates position of sample locations (Department of Agriculture, 2002) .. 25

Figure 2-3. Pictorial example of tied off sections of the samples (Marieb, 2009)..... 28

Figure 2-4. a) Intestine stretched out on tray to be cut longitudinally b) Sections of intestine on a crystallising dish ready for microscope search. 30

Figure 2-5. *Brachylaima cribbi* with HH1 stain from a red fox......................... 31

Figure 2-6. *Plagiorchis maculosus* from a red fox. .. 32

Figure 2-7. *Oncicola pomatostomi* longitudinal rows of hooks with characteristic barbs (indicated by arrow) (sourced from Schmidt, 1983). 33

Figure 2-8. Demonstrates different teeth structures of hookworms. Arrows show position of teeth or cutting plates A) *Ancylostoma caninum* with 3 pairs of teeth B) *Uncinaria stenocephala* with cutting plates (images sourced from Murdoch University Parasitology website, 2007). .. 34

Figure 2-9. Distinguishing features of *Toxocara* spp. A) *Toxocara canis* note 3 distinctive lips and narrow cervical alae compared to B) *Toxocara cati* arrow shaped, broad cervical alae... 34

Figure 2-10. A) *Toxocara canis* egg with pitted shell. B) *Toxascaris leonina* egg with a smooth shell (images sourced from Murdoch University). ... 35

Figure 2-11. Tails of male *Toxocara canis* and *Toxascaris leonina* A) The arrow depicts the finger-like projection that a male *Toxocara canis* has and B) shows the gradual tapering of the *Toxascaris leonina* tail......... 35

Figure 2-12. *Spirometra erinaceieuropaei* is characterised by a single central genital pore per segment. ... 36

Figure 2-13. a) *Taenia* spp. showing single pores per segment and irregularly arranged b) *Dipylidium caninum* showing two genital pores per segment.. 37

Figure 2-14. A hook squash of *T. taeniaeformis* from a cat, arrow indicates large rostellum hooks that were measured............................... 37

Figure 3-1. Presence/absence of helminth in foxes from each sampling location. .. 45

Figure 3-2. Species accumulation curves for red foxes from all sampling locations with ≥5 individuals.. 46

Figure 3-3. Parasite images from red foxes. A) *Uncinaria stenocephala* anterior end showing cutting plates, B) *Taenia serialis* head segment C)

Figure 3-4. Frequency distribution of infracommunity richness of helminths found within red foxes. .. 48

Figure 3-5. Percentage occurrence of Toxascaris leonina vs. average relative humidity for previous six months. ... 51

Figure 3-6. Percentage occurrence of Spirometra erinaceieuropaei compared with A) average humidity for previous six months and B) average minimum temp for previous five years. ... 52

Figure 3-7. Percentage occurrence of Uncinaria stenocephala compared with A) average relative humidity for previous 6 months B) % year average minimum temperature and C) % remnant vegetation cover .. 53

Figure 3-8. Percentage occurrence of Toxocara canis compared with % remnant vegetation cover. ... 53

Figure 3-9. Scatterplot of fox body measurement residuals to determine body condition that were calculated using individual measures (i.e. head length, head/body length and pes length). ... 56

Figure 3-10. Number of cats that had parasite presence/absence at each sampling location. .. 58

Figure 3-11. Species accumulation curves for feral cats as location that had ≥5 individuals examined... 59

Figure 3-12. Parasites found in feral cats in this study. A) Taenia taeniaeformis mature proglottids, B) Ancylostoma spp demonstrating 3 pairs of teeth, C) Copulatory bursa of Ancylostoma spp, D) Numerous Toxocara cati in the stomach of a cat, E) Toxocara cati specimens in cat stomach in situ, F) Taenia taeniaeformis showing suckers and rostellum hooks from scolex, G) Oncicola pomatostomi in situ, H) Trichostrongylus spp put down to artefact in food.. 61

Figure 3-13. Infracommunity richness in feral cats from all sampling locations..... 62

Figure 3-14. Percentage occurrence of Toxocara cati vs. annual rainfall for the previous 5 years. ... 63

Figure 3-15. Significant relationship between average (±1SD) head body length and presence/absence of Taenia taeniaeformis revealed by backward stepwise multiple regression analysis. ... 64

Figure 3-16. Optimisation test 1 reaction with temperature range 56°C-58°C with forward primer T60f .. 67

Figure 3-17. Designed primers A) Forward and reverse primer 1, B) Forward and reverse primer 2, C) forward and reverse primer 3, D) forward and reverse primer 4, E) forward and reverse primer 5, F) forward and reverse primer 6, G) forward and reverse primer 7, H) forward and reverse primer 8 (sequences in Table 2-5) .. 68
Figure 4-1. Map showing presence of *Uncinaria stenocephala* and *Dipylidium caninum* in locational groupings.
List of Tables

Table 1-1. Findings of past research of red fox helminth parasite surveys conducted in Australia... 9

Table 1-2. Previous studies recording helminth parasites of feral and domestic cats in Australia. .. 12

Table 2-1. Environmental and climatic measures from each sampling location. 27

Table 2-3. Accession numbers of *Taenia* species sequences sourced from Genbank.. 40

Table 2-4. Published primer sequences and modified reverse primer sequence...... 40

Table 2-5. Primers designed in Geneious 5.0 by aligning known *Taenia* species sequences spanning the COX gene to the 12S gene in the mitochondrial genome.. 41

Table 3-1. Prevalence (%) of the ten parasite species found in red foxes. 47

Table 3-3. Correlation matrix between parasites in red foxes.......................... 54

Table 3-4. Total parasite load data for 147 red foxes from all sampling locations. ... 55

Table 3-6. Multiple regression factors with body mass as the dependent variable testing the effect of infracommunity richness on body mass.. 57

Table 3-7. Prevalence (%) from the 47 individual feral cats. Photos of parasites in Figure 3-12 .. 59

Table 3-8. Summary of results from backwards stepwise multiple regression analyses carried out to determine factors that were correlated with the presence/absence of the most prevalent parasite species. 63

Table 3-9. Correlation matrix between parasites found in feral cats. 64

Table 3-10. Worm burden statistics for feral cat parasites............................... 65

Table 3-11. Summary of multiple regression factors to determine which factors may be associated with body mass of the feral cat (dependent variable)... 65

Table 4-1. Parasite prevalence in red foxes in Australia from published studies in comparison to this study... 71

Table 4-2. Parasite prevalence in feral cats in Australia from published studies in comparison to this study... 72