Case Study of a Solar Photovoltaic Elementary Lighting System for a Poor and Remote Mountain Village in Nepal

Alexander Zahnd

This Thesis is presented for the Degree of Master of Science in Renewable Energy Technology of Murdoch University
Perth, Western Australia

31st October 2004
Declaration

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university.

To the best of my knowledge and belief this thesis contains no material previously published by any other person except where due acknowledgment has been made.

Signature:Alexander Zahnd
ABSTRACT

Nepal is situated in the lap of the Himalayas and landlocked between China to the north, and India to the south. The country is known for its natural beauty, and as the land of the highest mountains in the world. 88% of Nepal’s population live in remote and difficult to access mountain areas. It is one of the only countries in the world with a lower female life expectancy rate than the male. While in the cities it has become “normal” to have access to energy services, 85% of Nepal’s rural communities are deprived of even the most basic energy services. 99% of the 2 billion people in the world that are without access to electricity, live in developing countries. Nepal is one of these countries, and four out of five live in rural areas. Furthermore, over 90% of the population of Nepal belongs to the 2.4 billion people relying on traditional biomass such as firewood, agricultural residues and dung, for their day to day cooking, heating and lighting purposes.

The village of Chauganphaya, in the northwestern district of Humla, belongs to the poorest villages of Nepal. Here, as elsewhere in Nepal, the forests are gradually being stripped bare, to meet the minimum energy needs of cooking, heating and lighting for the village folk. Unfortunately this is being done without any sustainable reforestation efforts. Furthermore, cooking and heating indoors on open fire places has had a direct chronic impact on the health of village folk, resulting in the low life expectancy for women, and the high death rate of children under 5.

This thesis goes into detail about various lighting technologies available for the remote mountain communities and suggests that the WLED lights are a real option for elementary rural electrification. This conclusion has been drawn on the basis of an electrification project undertaken in the above mentioned village of
Chauganphaya. Efforts made through a solar PV village electrification project with low wattage WLED technology, were successful, in that all 63 homes of the village of Chauganphaya are now able to have three lights each in their homes. This was made possible with each light consuming only 1 Watt and with a locally developed and manufactured 2-axis self-tracking frame for the four 75-Watt solar PV modules. The powerhouse with the self-tracking frame, battery bank and its charging and discharging units are centrally located in the village. The whole village has been divided into four clusters, with 15-18 homes per cluster. The central powerhouse is connected to the main house of each of the clusters by means of an underground power line distribution network through armored cables. Likewise, each house in a cluster is connected to the main cluster home by means of an underground armored cable. In this way the power distribution is approximately equal and in the case of one cluster distribution line facing a problem, the other homes in that cluster are not effected and will still have power.

This rural electrification project was not undertaken in a vacuum but as one part of a wider holistic grass root community development project. In the initial stage, a detailed survey, with questions specifically designed for this community was conducted, in order to assess the living conditions of the people. In the next stage, with the help of the outcome of the survey, four integrated projects were developed to improve the living conditions of the people. These projects aim to address the most urgent needs of the people as identified by themselves. Following is a gist of these projects:

- The rural electrification project with low wattage WLED technology.
- Each family from the Chauganphaya village has been able to purchase an improved smokeless metal stove at a subsidized rate. This has been specially designed to accommodate their cooking and eating habits, based on locally
available foods. It also heats their rooms for most of the year, and has provisions for boiling water.

- In order to be able to purchase such a stove at a subsidised rate, each household had to build a pit latrine, after undergoing a simple training in building such a latrine.
- The whole village community participated in the repair, and rebuilding of their village drinking water system, with the result that there are several tap stands to be found in the village.

The survey undertaken before any of these projects were carried out will be repeated once a year, to assess the actual impact these projects have, on a long-term basis.

Developing and carrying out these projects in the challenging environment we find ourselves in, with the ongoing political unrest and the continuing war between the Government troops and the rebels, and the ever present caste system has been an enormous task. Nonetheless, at the time of writing this, the electrification project should have been fully installed and operational. There are some minor improvements still needed, such as, the unexpected voltage drop in one cluster due to extended underground cable installation. Mitigation of that is planned as early as the political situation allows it.

The thesis goes into details about various lighting technologies for remote mountain communities, arguing that WLED lights are a real option for this purpose. In order to design a solar PV system according to the local conditions, it is crucial to understand the available solar energy resource. As no solar irradiation data for Chauganphaya or Humla are available, a study was undertaken to gather data from the NASA web site, and to generate solar irradiation data through the
METEONORM software tool. As both these methods rely only on satellite data, a solar radiation monitoring and data recording system was designed, built and installed in the KU HARS in Simikot. Since May 2004, the daily solar radiation is being recorded on a horizontal, a 30° south inclined, and on a 2-axis self-tracking solar PV frame.

The Simikot HARS and Chauganphaya solar PV systems are designed with a back of the envelope, as well as with a professional solar PV system design software tool, called PVSyst3.31. All the different equipment used in both PV systems are looked at in detail in this thesis. In comparison to the HARS and the Chauganphaya village PV systems, the Tangin village SHS project, installed by a private company through the Government solar PV subsidy program, serves as a comparative case study.

Sustainability and appropriateness are crucial factors, which have to be considered in any rural community development project. What is appropriate technology and how one can strive towards more sustainable projects, is looked at on the basis of the experience of the Chauganphaya village project.

“What can be Learned” tries to highlight the most important lessons learned form this project, up to the present stage. The thesis concludes, that the installed solar PV village system in Chauganphaya is an appropriate way to enable the poorest of the poor to bring light into their dark homes. It also reiterates the fact that additional to the lights, the smokeless metal stove, the pit latrine, and access to clean and pure drinking water, are important integrated parts of an appropriate holistic community development endeavour. It is expected that their synergetic effect will multiply the final impact upon the improved living conditions of the local community as opposed to their individual benefits.
ACKNOWLEDGEMENTS

I would like to express my thanks to the following stakeholders and people who participated and supported in one-way or the other this dissertation and the Chauganphaya Village Project.

ISIS Foundation, based in the Bermuda Island, for funding the holistic Chauganphaya Village project, including the central installed solar PV system, the smokeless metal stoves, the pit latrines and the drinking water system, as well as the funding for the High Altitude Research Station (HARS) Simikot, including the solar PV system and all the needed AC infrastructure and hardware.

NHAM (Nepal Himalayan Mission) for funding the whole HARS Simikot monitoring and data recording system.

Kathmandu University for providing me with the needed extra time and support for all the research, survey, project implementation, follow-up, project visits, the various field projects and the dissertation demanded.

Prof. Dr. Trevor Pryor from Murdoch University, for valuable advice, encouragement and clear guidance throughout the dissertation period from December 2003 – October 2004.

Dr. Peter Freere from the Kathmandu University, for his inspiration and advise throughout the dissertation, and for his constant encouragements.

The HARS Simikot staff, Govinda Nepali, Haripal Nepali, Bam Bahadur Rokhaya, Sunita Budha, Sarita Shahi, Sher Bahadur Rokhaya and Gogan Rokhaya, the Kathmandu University RDC staff Biraj Shresta, Kanchan Rai and Yessu Shresta for their friendship and supporting me through their dedication to work for the poorest of the poor.

All the people of Chauganphaya, who participated enthusiastically in the detailed survey, providing us with valuable information about their family living conditions,
as well as for their willing hands to participate in this new approach of a holistic community development project.

Muni Upadhaya Raj, the owner of Pico Power Nepal (PPN), who relentlessly worked on the implementation of all new ideas I put forward for the improvement of the WLED lights, the 2-axis self-tracking solar PV frame, the solar charge and discharge controller, electronic fuse system, lightning protection system, underground and house wiring cables etc., till a satisfactory level of quality and sustainability was reached.

Prof. Dr. Suresh Raj Sharma (KU Vice Chancellor), Prof. Dr. Sitaram Adhikari (KU Registrar), Prof. Dr. Badraman Tuladhar, Prof. Dinesh Chapagaun, (KU Dean of Engineering), Prof. Dr. John Cannell, Prof. Dr. Ole Gunnar Dahlhaug, who all supported my renewable energy technology and community development research projects. They have always been supportive of these projects and helpful with advice, encouragement and guidance on specific topics.

Prof. Dr. David Irvine-Halliday, and Rodolfo Peon from the Light Up The World team, for providing us with affordable WLEDs.

Most of all my dear wife Sheila, who has always been my strong moral support with never ending patience and love, and my dear children Joel and Jessica, who showed kind understanding in times of extreme stress and time constrains.
Preface

From 1996 – end of 2000 the writer has lived and worked in Jumla, one of the most remote, impoverished and underdeveloped mountain areas of western Nepal, developing and leading an extensive holistic grass root village community development project. More and more projects included the application of renewable energy technologies (RETs), in particular solar photovoltaic home systems, for elementary electrification for light. The designed and installed solar PV systems have undergone constant development, testing and follow-up, in order to become more appropriate and sustainable for the communities’ context.

Since 2001, the writer has been working with the KU-RDC (Kathmandu University - Research, Development and Consultancy) Unit. As part of RDC’s consultancy work various projects in the area of applied RETs, such as solar PV systems for whole villages in the remote and impoverished district of Humla have started with the local communities, and in collaboration with local INGOs/NGOs.

It is paramount to these projects to constantly improve the RETs applied, in order to better serve the poor and remotely located mountain communities in more appropriate and sustainable ways. At the same time it is important to continue the ongoing research in these fields of expertise as a University. In this way newly gained knowledge is put into practice through prototype testing. This provides a good foundation for the wider dissemination of practical applications in the local communities, addressing their enormous development needs in more holistic and sustainable ways.
Objective

The objective of this dissertation is the investigation of the design and design process, implementation and the social impact and technical lessons learned of an elementary solar photovoltaic lighting system in a remote and impoverished mountain village in Nepal.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Declaration</th>
<th>ii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iii</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>vii</td>
</tr>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Objective</td>
<td>x</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>xi</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xxii</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxvii</td>
</tr>
<tr>
<td>List of Links to Excel Spreadsheets</td>
<td>xxix</td>
</tr>
<tr>
<td>Abbreviations and Acronyms</td>
<td>xxx</td>
</tr>
</tbody>
</table>

1. Inspiration for the Dissertation 1
2. Introduction to Nepal 2
3. Energy and Poverty in general and in Chauganphaya Humla 3
 3.1. Introduction 3
 3.2. Energy and Poverty with a more global Perspective 4
 3.2.1. Energy, Poverty and Gender 5
 3.2.2. Energy Services and Poverty 7
 3.2.3. Financing Models for Energy Service Projects 13
3.3. The Humla and Chauganphaya Village Situation 14
 3.3.1. Humla District 14
 3.3.2. Chauganphaya Village 16
4. Electrification in Nepal

4.1. World Wide Electricity Scenario at a Glance

4.2. Nepal’s Energy Scenario at a Glance

4.3. Electricity through Hydro Power in Nepal

4.4. Remote Area Power Supply

4.5. Electricity through Solar Photovoltaic in Nepal
 4.5.1. Central Solar PV Array Systems
 4.5.2. Solar Home System Programme in Nepal

4.6. Possible Ways for Rural Electrification Systems

5. Lighting Technologies

5.1 Introduction

5.2 Primary Functions of a Lighting System

5.3 Light, How it is Measured and Identified

5.4 Applicable Lighting Options
 5.4.1. Incandescent Bulb
 5.4.2. CFL (Compact Fluorescent Light)
 5.4.3. WLED (White Light emitting Diode) Lights

6. Comparison of Incandescent, CFL, and WLED Lights

6.1. Comparative Investment Analysis of the Incandescent, CFL and WLED Lights
 6.1.1. HARS in Simikot generated electricity cost of 1.027 US$/kWh
 6.1.2. Chauganphaya Village generated electricity cost of 2.781 US$/kWh

6.2. Laboratory Light Tests Set-Up
6.3. Light Test 1: Central Vertical Light Output Measurement 51
6.4. Light Test 2: 30 cm Horizontal Radius from Light Source, Vertical Light Output Measurement 53
6.5. Incandescent Bulb Summary 55
6.6. CFL Bulb Summary 57
6.7. WLED Light Summary 59
6.8. Recommendations for an Elementary Lighting Technology for Remote Communities 63

7. Solar Irradiation Monitoring and Data Recording 66
7.1. Introduction to Solar Irradiation 66
7.2. Solar Irradiation Data for Simulation and Calculation Tools 69
7.3. Solar Irradiation Monitoring and Data Recording in Nepal 70
7.4. Solar Irradiation Monitoring and Data Recording Parameters and Equipment for Humla 73
 7.4.1. Solar Irradiation Measurement 73
 7.4.2. Data Monitoring Parameters 74
 7.4.3. Data Monitoring and Recording Equipment 74
7.5. Solar Irradiation Monitoring and Data Recording Equipment Set Up and Installation 75
 7.5.1. Pyranometer Installation 75
7.6. Data Handling 76
7.7. Aim of Data Interpretation 79
7.8. Presentation of the measured Data 80
 7.8.1. The Meteorological Graphs 81
 7.8.2. The Power Graphs 84
 7.8.3. The WLED Graphs 85
7.9. Applying HARS Data for the Chauganphaya Village 86
7.10. Five months Data Results and Discussion 91
8. Solar Irradiation and related Data from the NASA Web site 95

8.1. Introduction 95

8.2. NASA Solar Irradiation and Related Data for Simikot and Chauganphaya 97

9. Solar Irradiation Simulation with METEONORM V5 for Humla 100

9.1. METEONORM V5 Global Meteorological Database Software Introduction 100

9.2. Assumptions for the Simikot HARS Solar PV System 100

9.3. Summary of the METEONORM meteorological data Simulation for Simikot 102

9.4. Comparison of simulated METEONORM Solar Irradiation Data for the Simikot HARS Solar PV System with the NASA Satellite Data as well as with the Monitored and Recorded HARS Data. 103

9.5. Results and Discussion for Simikot 103

9.6. Assumptions for the Chauganphaya Village Solar PV System 104

9.7. Summary of the METEONORM meteorological data Simulation for Chauganphaya 106

9.8. Comparison of simulated METEONORM Solar Irradiation Data for the Chauganphaya Village Solar PV System with the NASA Satellite Data as well as with the Monitored and Recorded HARS Data 107

9.9. Results and Discussion for Chauganphaya 107
10. Solar PV System Simulation with PVsyst3.31

10.1. Introduction

10.2. The HARS Solar PV System Definition

10.2.1. Energy Service Demands

10.2.2. Load Demand Definition

10.2.3. Solar Irradiation

10.2.4. 2-Axis Self-Tracking Solar PV Frame

10.2.5. Geographical Data Definition

10.2.6. Battery Bank and Solar PV Array Sizing

10.2.7. Life Cycle Cost

10.2.8. Additional Main Parameters

10.3. The HARS PV System Simulation Results

10.4. Chauganphaya Village Solar PV System Simulation

11. Social Village Survey

11.1. Social Village Survey Questionnaire

11.2. Summary of the First Detailed Data Survey in Chauganphaya Village

11.2.1. How do the people make light in their home?

11.2.2. Changes do they expect from solar energy powered lights?

11.2.3. How the people cooked before the smokeless metal stove project started?

11.2.4. What do they like in their cooking method before the smokeless metal stove was installed?

11.2.5. Why do they want a smokeless metal stove?

11.2.6. What do they perceive to be the disadvantages of the smokeless metal stove?

11.2.7. How many hours a week do the women and girls collect firewood?
11.2.8. How many “bari” of firewood do they consume a week? 123
11.2.9. How many have a pit latrine before the pit latrine project? 123
11.2.10. How many boil their drinking water? 124
11.2.11. Out of what material is their house built? 124

11.3. Ongoing Data Collection 124

12. Chauganphaya Village Solar PV System 125
12.1. Design Approach 125
12.1.1. Guidelines for System Designing 126
12.2. Lighting Level 128
12.3. Daily Load 128
12.4. Days of Independency 128
12.5. Solar Irradiation 129
12.6. Chauganphaya Village Solar PV System Approximate Calculation 129
12.6.1. Solar PV Array Size 129
12.6.2. Battery Bank 130
12.7. Geographical Data Definition 130
12.8. Solar PV System Equipment 132
12.8.1. Solar PV System Layout 132
12.8.2. Solar PV Modules 132
12.8.3. 2-axis Self-Tracking Solar PV Module Frame 133
12.8.4. Solar Charge Controller 134
12.8.5. Solar Discharge Controller 135
12.8.6. Battery Bank 136
12.8.7. Underground Cables and house wiring 137
12.8.8. WLED Lights 138
12.8.9. Fuse Protection 139
12.8.10. Lightning Protection 139

12.9. Chauganphaya Village Solar PV System Mini-Grid 140
12.10. Chauganphaya Village Solar PV System Installation 142
12.11. Solar PV System Performance and Cost Calculation 144
12.13. Fee Payment 146
12.15. Community Participation 149

13. Case Study of the Tangin Solar PV Home System Project 151
13.1. Tangin Solar PV Home System Equipment and Project Implementation 151
13.2. Interview about the Tangin Solar PV Home System 1 ½ years after its Implementation 152
13.3. Other SHS installation experiences 154
13.4. Conclusion and Recommendation 155

14. Chauganphaya Village Solar PV System Performance and Experience 157
14.1. Chauganphaya Village Solar PV System Experience after 8 Months 158
14.2. Main Impact and Changes experienced in the Chauganphaya Village Community 160
18.3. Appendix to Chapter 7 Solar Irradiation and Data Recording

18.3.1. Comparative Curve of a 80SPC and Kipp-Zonen CM21 Pyranometer 194

18.3.2. Details about the Data Monitoring and Recording System 194

18.3.3. Summery List of Data Monitoring and Recording Equipment 195

18.3.4. Measured and Recorded Data Parameters 196

18.3.5. Ambient Temperature Installation 198

18.3.6. Solar PV Module Temperature Measurement 199

18.3.7. Battery Bank Temperature 201

18.3.8. HARS Power Consumption Measurement and Data Recording 204

18.3.9. DT605 dataTaker plus CEM 206

18.3.10. Additional Monitoring Parameters 207

18.3.11. Monitored and Identified Parameters Connected to the Data Logger 209

18.3.12. Excel Spreadsheets with 4 Different Monitoring Time Schedules 213

18.3.13. Definition and Identification of the 10 Sessions 220

18.4. Appendix to Chapter 8 Solar Irradiation and related Data from the NASA Web site 226

18.4.2. Average Surface Albedo for 1983 – 1993 for Nepal 227

18.4.5. Various NASA Data for the Simikot HARS Solar PV System and the Chauganphaya Village Solar PV System 230
18.4.6. Extrapolated NASA Surface Meteorology and Solar Energy Data 237

18.5. **Appendix to Chapter 9 METEONORM** 238
18.5.1. Accuracy of METEONORM 238
18.5.2. Data Input for Simikot 239
18.5.3. Simulation for the Simikot HARS Solar PV System 240
18.5.4. Hourly Simulation Data for the Simikot HARS 240
18.5.5. METEO Simulation Data for the Simikot HARS 244
18.5.6. Simulation for the Chauganphaya Village Solar PV System 248
18.5.7. Hourly Simulation Data for the Chauganphaya Village 249
18.5.8. METEO Simulation Data for the Chauganphaya Village 250

18.6. **Appendix to Chapter 10 Solar PV System Simulation with PVSyst3.31** 253
18.6.1. HARS Simikot Solar PV System Simulation Report 253

18.7. **Appendix to Chapter 11 Social Village Survey** 258
18.7.1. Household and Health Improvement with Solar Energy powered Lights, Smokeless Metal Stoves, Pit Latrines and Drinking Water 258
18.7.2. Additional Village Survey Data 262

18.8. **Appendix to Chapter 12 Chauganphaya Village Solar PV System** 264
18.8.1. A Formal initial Meeting with the Community’s Eldership/Representatives 264
18.8.2. Geographical Conditions and Solar Irradiation Data 265
18.8.3. BP275F Solar PV Module 269
18.8.4. 2-axis Self-Tracking Solar PV Module Frame 272
18.8.5. Solar Charge Controller 275
18.8.6. Solar Discharge Controller 277
18.8.7. Battery Bank 278
18.8.8. Underground Cables and House Wiring 281
18.8.9. WLED Lights 283
18.8.10. Holistic Project Approach 284
18.8.11. PVSyste3.31 Chauganphaya Village PV System Simulation Report 289
18.8.12. Excel Spreadsheet Chauganphaya Village PV System Cost Simulation 294

18.9. Appendix to Chapter 13 Case Study of the Tangin Solar PV Home System Project 297
18.9.1. Detailed Interview Questions and Answers provided by Mr. Lama from Tangin 297

19. References 303
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure Number</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Nepal Map</td>
<td>2</td>
</tr>
<tr>
<td>3-1</td>
<td>Distribution of the estimated 1.635 billion people without access to electricity, and the estimated 2.39 billion people relying on biomass</td>
<td>4</td>
</tr>
<tr>
<td>3-2</td>
<td>Grid Electricity Transmission lines but still no Power in the Home</td>
<td>11</td>
</tr>
<tr>
<td>3-3</td>
<td>Nepal’s National Electricity Grid in 1998</td>
<td>12</td>
</tr>
<tr>
<td>4-1</td>
<td>Simikot Humla 50 kW PV Array</td>
<td>25</td>
</tr>
<tr>
<td>4-2</td>
<td>Simikot Humla 50 kW PV Array south view</td>
<td>25</td>
</tr>
<tr>
<td>4-3</td>
<td>Bombed Simikot PV Array</td>
<td>25</td>
</tr>
<tr>
<td>4-4</td>
<td>PV Module close-up</td>
<td>25</td>
</tr>
<tr>
<td>4-6</td>
<td>Open fire place cooking</td>
<td>31</td>
</tr>
<tr>
<td>4-7</td>
<td>Open fire place cooking and “jharro” burning</td>
<td>31</td>
</tr>
<tr>
<td>5-1</td>
<td>Ultralamp High Power Factor CFL Bulb</td>
<td>43</td>
</tr>
<tr>
<td>5-2</td>
<td>CFL Light Output Measurement</td>
<td>43</td>
</tr>
<tr>
<td>5-3</td>
<td>Nichia NSPW510BS 50° WLED Radiation angle</td>
<td>44</td>
</tr>
<tr>
<td>5-4</td>
<td>LED Physical Structure</td>
<td>44</td>
</tr>
<tr>
<td>5-5</td>
<td>Environmental Impact of Kerosene Lamps</td>
<td>45</td>
</tr>
<tr>
<td>5-6</td>
<td>Solid State Lighting – Trends</td>
<td>46</td>
</tr>
<tr>
<td>6-1</td>
<td>Light Measurement Box 1</td>
<td>49</td>
</tr>
<tr>
<td>6-2</td>
<td>Light Measurement Box 2</td>
<td>49</td>
</tr>
<tr>
<td>6-3</td>
<td>WLED Measurement 1</td>
<td>49</td>
</tr>
<tr>
<td>6-4</td>
<td>WLED Measurement 2</td>
<td>49</td>
</tr>
<tr>
<td>6-5</td>
<td>Variable Voltage Transformer</td>
<td>50</td>
</tr>
<tr>
<td>6-6</td>
<td>Light Box</td>
<td>50</td>
</tr>
<tr>
<td>6-7</td>
<td>Plotted Graph for the Central Vertical Light Illuminance measured in Lux (Lumens/m²)</td>
<td>51</td>
</tr>
<tr>
<td>6-8</td>
<td>Plotted Graph for the 30 cm Horizontal Radius Light Illuminance measured in Lux (Lumens/m²)</td>
<td>53</td>
</tr>
<tr>
<td>6-9</td>
<td>Home with Open Fire Place</td>
<td>65</td>
</tr>
<tr>
<td>6-10</td>
<td>Home with Smokeless Metal Stove</td>
<td>65</td>
</tr>
</tbody>
</table>
Figure 7-1: The Solar Constant Measurement from 1980 – 2000
Figure 7-2: Average Yearly Solar Irradiation
Figure 7-3: 32 Meteorological Stations Distributed all over Nepal
Figure 7-4: Mean Daily Hours of Bright Sunshine April/July/Oct./Jan.
Figure 7-5: Estimated Global Annual Solar Radiation for Nepal
Figure 7-6: Block Diagram for Data Taker 605 Monitoring and Recording System with the Incoming Parameters and Periphery Equipment
Figure 7-7: The Installations of the 3 SolData 80SPC Pyranometers
Figure 7-8: 80SPC SolData Pyranometer
Figure 7-9: Minute Global Solar Irradiation Data Recording at the HARS in Simikot for the 3rd April 2004
Figure 7-10: Hourly Global Solar Irradiation Data Recording at the HARS in Simikot for the 3rd April 2004
Figure 7-11: Weekly Hourly Solar Irradiation Data Recording at the HARS in Simikot 15th -21st May 2004
Figure 7-12: Map Simikot – Chauganphaya
Figure 8-1: METEONORM V5 Pop-Up Menu for the Meteorological Data Extrapolation
Figure 8-2: Average 30° towards Equator Tilted Solar Irradiation from 1983 –1993 for Nepal
Figure 9-1: Sunrise and Sunset over Simikot HARS Diagram
Figure 9-2: METEONORM V5 Meteorological Data generation for Simikot HARS
Figure 9-3: Sunrise and Sunset over Chauganphaya Village Diagram
Figure 9-4: METEONORM V5 Meteorological Data generation for the Chauganphaya Village
Figure 10-1: PVSystem3.31 Daily Energy Demand Profile Input Menu for the HARS Energy Demand
Figure 10-2: PVSystem3.31 2-Axis Self-Tracking Frame, Tilt Angles and Azimuth Input
Figure 10-3: PVSystem3.31 Input Simikot’s 360° Horizon
Figure 10-4: PVSystem3.31 Sizing of the Battery Bank and the Solar PV Array
Figure 12-1: Chauganphaya Village Humla
Figure 12-2: Chauganphaya Solar PV System Block Schemata
Figure 7-22: DT605 with CEM
Figure 7-23: Solar Water Heater
Figure 7-24: Parabolic Solar Cooker SK 14
Figure 7-25: Air Pollution Sampler
Figure 7-26: HARS Simikot Humla

Figure 8-3: Monthly Average Horizontal Solar Irradiation from 1983 – 1993 for Nepal
Figure 8-4: Average Surface Albedo from 1983 –1993 for Nepal
Figure 8-5: Maximum Monthly NO-SUN Day from 1983 –1993 for Nepal
Figure 8-6: Various Average Annual NASA Data from 1983 –1993 for Nepal
Figure 8-7: World Annual Average Irradiation on Equator-Pointed Tilted Surface July 1983 – 1993

Figure 9-5: METEONORM Pop-Up Menu for the Meteorological Data Extrapolation
Figure 9-6: METEONORM V5 Plane Parameter Input Menu for Simikot
Figure 9-7: Tabled Monthly Solar Irradiation Data for the Simikot HARS
Figure 9-8: Monthly Mean Global and Diffuse Radiation in W/m² on a Horizontal Surface and Ambient Temperature
Figure 9-9: Daily Mean Global and Diffuse Radiation in W/m² on a Horizontal Surface
Figure 9-10: Daily Values of Mean, Minimum and Maximum Temperature Variations
Figure 9-11: Tabled Monthly METEO Format Data for Simikot
Figure 9-12: Daily Sunshine and Ambient Temperature according to the Month in Simikot
Figure 9-13: The Amount of Days per Month it Rains and the Precipitation (in mm) during that Month
Figure 9-14: Excel Graph for the Average Monthly Precipitation and Average Monthly Days of Precipitation in Simikot
Figure 9-15: The METEONORM Pop-Up Menu for the Extrapolation of the Chauganphaya Village Meteorological Data
Figure 9-16: METEONORM Pane Parameter Input Menu for Chauganphaya
Figure 9-17: Tabled Monthly Solar Irradiation Data for the Chauganphaya
Figure 9-18: Tabled Monthly METEO Format Data for the Chauganphaya
Figure 9-19: Excel Graph for the Average Monthly Precipitation and Average Monthly Days of Precipitation in Chauganphaya

Figure 10-5: PVsyst3.31 Simikot Simulation Report page 1
Figure 10-6: PVsyst3.31 Simikot Simulation Report page 2
Figure 10-7: PVsyst3.31 Simikot Simulation Report page 3
Figure 10-8: PVsyst3.31 Simikot Simulation Report page 4
Figure 10-9: PVsyst3.31 Simikot Simulation Report page 5
Figure 12-19: Sandia Photovoltaic Performance Model I-V Curve Tracer Software
Figure 12-20: 2-Axis Self-Tracking Frame 2
Figure 12-21: 2-Axis Self-Tracking Frame 3
Figure 12-22: Battery Temperature and Capacity Curve
Figure 12-23: Armored Cable 2.5 mm²
Figure 12-24: Armored Cable 1.5 mm²
Figure 12-25: Installation WLED Light 2
Figure 12-26: WLED Light On
Figure 12-27: Smokeless Metal Stove in Chetri Family
Figure 12-28: Smokeless Metal Stove in Tibetan Family
Figure 12-29: Ready Pit Latrine 1
Figure 12-30: Ready Pit Latrine 2
Figure 12-31: Drinking Water Tap Stand 1
Figure 12-32: Drinking Water Tap Stand 2
Figure 12-33: PVsyst3.31 Chauganphaya Simulation Report page 1
Figure 12-34: PVsyst3.31 Chauganphaya Simulation Report page 2
Figure 12-35: PVsyst3.31 Chauganphaya Simulation Report page 3
Figure 12-36: PVsyst3.31 Chauganphaya Simulation Report page 4
Figure 12-37: PVsyst3.31 Chauganphaya Simulation Report page 5
Figure 13-1: Tangin Village Solar Home System Project
LIST OF TABLES

Table 5-1: Recommended Illuminance 37
Table 5-2: CFL Bulb versa Incandescent Bulb energy demand 42
Table 5-3: CFL Bulb and Incandescent Bulb Light Output Comparison 42
Table 5-4: Lighting Sources Comparison 46
Table 6-1: Approximate Lumens/Watt Illuminance Range for the Various Lighting Technologies on the International Market 63
Table 7-1: Bright Sunshine Hours for 29 Meteorological Stations in Nepal 72
Table 7-2: Simikot Solar Irradiation Dependent on Different Altitude Simulations 88
Table 7-3: Chauganphaya Solar Irradiation Dependent on Different Altitude Simulations 89
Table 7-4: Simikot and Chauganphaya Solar Irradiation with Real Altitude Simulation 89
Table 7-5: Simikot and Chauganphaya Solar Irradiation with Real Altitude and Horizon Simulation 90
Table 7-6: HARS Horizontal Weekly and Monthly Solar Irradiation in kWh/m² 92
Table 7-7: HARS 30° Weekly and Monthly Solar Irradiation in kWh/m² 93
Table 7-8: HARS 2-Axis Self-Tracking Frame Weekly and Monthly Solar Irradiation in kWh/m² 93
Table 7-9: Sun Angle between Horizontal and 30° South Surface for the Months May and June for Simikot, Humla 94
Table 7-10: DT605 Channel Details 209
Table 7-11: CEM Channel Details 209
Table 7-12: Physical Range, Sensor Range, Sensor Units and Output Units of each Equipment used to program the DT605 Data Logger Software 210
Table 7-13: Monitoring Schemata for the Data Taker DT605 according to the Sessions 225
Table 8-1: Simikot and Chauganphaya NASA Graphical Monthly Solar Irradiation 30° South Tilted 99
Table 8-2: Simikot and Chauganphaya NASA Graphical Monthly Horizontal Solar Irradiation 226
Table 8-3: Simikot and Chauganphaya NASA Graphical Monthly Surface Albedo 227
Table 8-4: Simikot and Chauganphaya NASA Graphical Maximum Monthly NO – SUN Days 228
Table 9-1: METEONORM Simikot, NASA, HARS Solar Irradiation Compared 103
Table 9-2: Comparative Solar Irradiation May – September for HARS Simikot 104
Table 9-3: METEONORM Chauganphaya, NASA, HARS Solar Irradiation Compared 107
Table 9-4: Adjusted Chauganphaya Solar Irradiation Values for the Months May – September 108
Table 10-1: HARS Average Daily Load Demand 110
Table 11-1: Lighting Methods before WLED Lights 119
Table 11-2: Expected Changes with Solar powered Lights 120
Table 11-3: Cooking Methods before the Smokeless Metal Stove 120
Table 11-4: What People like about the current Cooking/Heating Method 121
Table 11-5: Expectations of the Smokeless Metal Stove 121
Table 11-6: Perceived Advantages of the Smokeless Metal Stove 122
Table 11-7: Average Weekly Firewood Collection Time for Women 122
Table 11-8: Average Amount of “baris” of Firewood Consumption per Family per Week 123
Table 11-9: How many Families have a Pit Latrine before the Project Start 123
Table 11-10: How many Boil their Drinking Water 124
Table 11-11: Material out of which they Build their Homes 124
Table 11-12: Social Economic Status of the Chauganphaya Village 262
Table 11-13: Morning Activities of the Women 262
Table 11-14: Morning Activities of the Men 262
Table 11-15: Evening Activities of the Women 263
Table 11-16: Evening Activities of the Men 263
Table 12-1: Solar PV Module Efficiencies 270
Table 12-2: Armored Underground Cables used in the Chauganphaya Elementary Electrification Village Solar PV System 282
Table 13-1: Issues to address and Recommendations for Solar Home Systems 156
LIST OF LINKS TO EXCEL SPREADSHEETS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.1:</td>
<td></td>
</tr>
<tr>
<td>HARS CFL 11W – Inc. Bulb 55 W</td>
<td>47</td>
</tr>
<tr>
<td>HARS CFL 11W – WLED 1 W</td>
<td>47</td>
</tr>
<tr>
<td>HARS Inc. Bulb 25 W – WLED 1 W</td>
<td>47</td>
</tr>
<tr>
<td>HARS Inc. Bulb 55 W – WLED 1 W</td>
<td>47</td>
</tr>
<tr>
<td>6.1.2:</td>
<td></td>
</tr>
<tr>
<td>Chaug CFL 11W – Inc. Bulb 55 W</td>
<td>47</td>
</tr>
<tr>
<td>Chaug CFL 11W – WLED 1 W</td>
<td>47</td>
</tr>
<tr>
<td>Chaug Inc. Bulb 25 W – WLED 1 W</td>
<td>47</td>
</tr>
<tr>
<td>Chaug Inc. Bulb 55 W – WLED 1 W</td>
<td>47</td>
</tr>
<tr>
<td>12.11:</td>
<td></td>
</tr>
<tr>
<td>Chaug Excel Simulation</td>
<td>144</td>
</tr>
</tbody>
</table>
ABBREVIATIONS AND ACRONYMS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC / DC</td>
<td>Alternating current / Direct Current</td>
</tr>
<tr>
<td>AEPC</td>
<td>Alternative Energy Promotion Centre (under the Nepali Government)</td>
</tr>
<tr>
<td>Ah</td>
<td>Amp-hour</td>
</tr>
<tr>
<td>AM</td>
<td>Air Mass</td>
</tr>
<tr>
<td>AMP</td>
<td>Amperes</td>
</tr>
<tr>
<td>A.P.C.S.</td>
<td>Analog Process Control Services ltd in NSW Australia</td>
</tr>
<tr>
<td>BOS</td>
<td>Balance of System</td>
</tr>
<tr>
<td>BTU</td>
<td>British Thermal Unit (1 BTU = 1.06 kJ, or 0.293 Wh)</td>
</tr>
<tr>
<td>°C</td>
<td>Degrees Celcius</td>
</tr>
<tr>
<td>CEM</td>
<td>Channel Extension Module</td>
</tr>
<tr>
<td>CFL</td>
<td>Compact Fluorescent Lamp</td>
</tr>
<tr>
<td>DANIDA</td>
<td>Danish International Development Agency</td>
</tr>
<tr>
<td>DDC</td>
<td>District Development Committee</td>
</tr>
<tr>
<td>DoD</td>
<td>Depth of Discharge</td>
</tr>
<tr>
<td>DT605</td>
<td>dataTaker 605</td>
</tr>
<tr>
<td>EPA</td>
<td>Environmental Protection Agency (a USA Government Agency)</td>
</tr>
<tr>
<td>ESAP</td>
<td>Energy Sector Assistance Project (run by DANIDA and AEPC)</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>HARS</td>
<td>High Altitude Research Station</td>
</tr>
<tr>
<td>HDI</td>
<td>Human Development Index</td>
</tr>
<tr>
<td>HMG</td>
<td>His Majesty Government of Nepal</td>
</tr>
<tr>
<td>IEA</td>
<td>International Energy Agency</td>
</tr>
<tr>
<td>ISPs</td>
<td>Institutional Solar PV Systems</td>
</tr>
<tr>
<td>KLDP</td>
<td>Karnali Local Development Program, Jumla, Nepal</td>
</tr>
<tr>
<td>KU</td>
<td>Kathmandu University</td>
</tr>
<tr>
<td>km</td>
<td>kilometer</td>
</tr>
<tr>
<td>kW</td>
<td>kilowatt</td>
</tr>
<tr>
<td>kWh</td>
<td>kilowatt-hour</td>
</tr>
<tr>
<td>LOL</td>
<td>Loss of Load</td>
</tr>
<tr>
<td>l/s</td>
<td>Litres per second</td>
</tr>
<tr>
<td>LED/WLED</td>
<td>Light-Emitting Diode / White Light Emitting Diode</td>
</tr>
<tr>
<td>LUTW</td>
<td>Light Up The World, Calgary, Canada</td>
</tr>
<tr>
<td>m</td>
<td>Meter</td>
</tr>
<tr>
<td>MHP</td>
<td>Micro Hydropower Plant/Project</td>
</tr>
<tr>
<td>MJ</td>
<td>Mega Joule (1 MJ = 0.278 kWh)</td>
</tr>
<tr>
<td>MOLD</td>
<td>Ministry of Local Development</td>
</tr>
<tr>
<td>MOST</td>
<td>Ministry of Science and Technology</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>MOVCD</td>
<td>Metal Organic Chemical Vapor Deposition</td>
</tr>
<tr>
<td>MPP</td>
<td>Maximum Power Point</td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean Time Between Failures</td>
</tr>
<tr>
<td>MW</td>
<td>Mega Watt (1 MW = 1,000 kW, or 10^6 W)</td>
</tr>
<tr>
<td>MWh</td>
<td>Megawatt hour (1 MWh = 3.6 GJ)</td>
</tr>
<tr>
<td>NEA</td>
<td>Nepal Electricity Authority (Government-owned), Kathmandu</td>
</tr>
<tr>
<td>NGO</td>
<td>Non-Governmental organization</td>
</tr>
<tr>
<td>NOTC</td>
<td>Nominal Operation Collector Temperature</td>
</tr>
<tr>
<td>NM</td>
<td>Nano Meter (1 nm = 10^{-9} meters)</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>NREL</td>
<td>National Renewable Energy Laboratories, USA</td>
</tr>
<tr>
<td>OECD</td>
<td>Organisations for Economic Cooperation and Development</td>
</tr>
<tr>
<td>O&M</td>
<td>Operation and Maintenance</td>
</tr>
<tr>
<td>PPN</td>
<td>Pico Power Nepal</td>
</tr>
<tr>
<td>PSH</td>
<td>Peak Sun Hours</td>
</tr>
<tr>
<td>PV</td>
<td>Photovoltaic</td>
</tr>
<tr>
<td>PVSOL</td>
<td>Solar Photovoltaic System design software (Germany)</td>
</tr>
<tr>
<td>PVSyst3.31</td>
<td>Solar Photovoltaic System design software version 3.31 (Switzerland)</td>
</tr>
<tr>
<td>RAPS</td>
<td>Remote Area Power Supply</td>
</tr>
<tr>
<td>RDC</td>
<td>Research Development & Consultancy</td>
</tr>
<tr>
<td>RET</td>
<td>Renewable Energy Technology</td>
</tr>
<tr>
<td>RETScreen</td>
<td>Renewable Energy Technology Screening software (Canada)</td>
</tr>
<tr>
<td>RTD</td>
<td>Resistance Temperature Detector</td>
</tr>
<tr>
<td>SHS</td>
<td>Solar Home System</td>
</tr>
<tr>
<td>STC</td>
<td>Standard Testing Conditions</td>
</tr>
<tr>
<td>TWh</td>
<td>Tera Watt Hour (1 TWh = 1,000 GWh, or 10^{12} Wh)</td>
</tr>
<tr>
<td>UN</td>
<td>United Nations</td>
</tr>
<tr>
<td>US</td>
<td>United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>V</td>
<td>Volts</td>
</tr>
<tr>
<td>VAT</td>
<td>Value Added Tax</td>
</tr>
<tr>
<td>VDC</td>
<td>Village Development Committee</td>
</tr>
<tr>
<td>W</td>
<td>Watt</td>
</tr>
<tr>
<td>Wh</td>
<td>Watt-hour</td>
</tr>
<tr>
<td>WECS</td>
<td>Water and Energy Commission Secretariat</td>
</tr>
<tr>
<td>WLG</td>
<td>Wisdom Light Group</td>
</tr>
<tr>
<td>Wp</td>
<td>Watt peak power output</td>
</tr>
</tbody>
</table>

US$1 = 70 NRp (Nepali rupees) / AU$1 = 50 NRp
1. Inspiration for the Dissertation

This dissertation is an integrated part of an ongoing applied KU-RDC research project, the Chauganphaya village solar photovoltaic (PV) system, running from June 2003 – into 2005.

The following points inspired the dissertation:

- To understand the conditions of the village through a detailed survey before the project started.
- What an appropriate lighting technology for the context could be.
- To design and install a solar radiation monitoring and data recording station in the HARS office in Humla.
- Monitoring, recording and interpreting actual solar irradiation data for Humla.
- Changes that were brought about in the community/families after the first 8 months of experience with light in their homes.
- Evaluation of the installed solar village PV system after 8 months in use.
- Crucial issues for such a PV system project with regard to sustainability and appropriateness.
- Lessons that can be learned from the solar village PV system project.