
http://dx.doi.org/10.1016/j.virusres.2012.10.003
Accepted Manuscript

Title: Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (Diuris species) in Australia

Authors: Stephen J. Wylie, Hua Li, Kingsley W. Dixon, Helen Richards, Michael G.K. Jones

PII: S0168-1702(12)00373-5
DOI: doi:10.1016/j.virusres.2012.10.003
Reference: VIRUS 95842

To appear in: Virus Research

Received date: 6-7-2012
Revised date: 2-10-2012
Accepted date: 3-10-2012

Please cite this article as: Wylie, S.J., Li, H., Dixon, K.W., Richards, H., Jones, M.G.K., Exotic and indigenous viruses infect wild populations and captive collections of temperate terrestrial orchids (Diuris species) in Australia, Virus Research (2010), doi:10.1016/j.virusres.2012.10.003

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Exotic and indigenous viruses infect wild populations and captive collections of
temperate terrestrial orchids (*Diuris* species) in Australia

Stephen J. Wylie¹*, Hua Li¹, Kingsley W. Dixon², Helen Richards³, Michael G.K. Jones¹

¹ Plant Virology Section, Plant Biotechnology Research Group, Western Australian State
Agricultural Biotechnology Centre, School of Biological Sciences and Biotechnology,
Murdoch University, Perth, Western Australia 6150, Australia.

² Botanic Gardens and Parks Authority, Kings Park and Botanic Garden, West Perth,
Western Australia 6005, Australia.

³ Australian Orchid Foundation, PO Box 322, Essendon North, Victoria 3041, Australia.

*corresponding author

Stephen J. Wylie

Plant Virology Section, Plant Biotechnology Research Group, Western Australian State
Agricultural Biotechnology Centre, School of Biological Sciences and Biotechnology,
Murdoch University, Perth, WA 6150, Australia.

Phone: +61 8 9360 6600

Fax: +61 8 9360 6303

Email: s.wylie@murdoch.edu.au
Abstract

Four species of *Diuris* temperate terrestrial orchids from wild and captive populations were tested for the presence of polyadenylated RNA viruses. The genomes of three exotic viruses were determined: two potyviruses, *Bean yellow mosaic virus* and *Ornithogalum mosaic virus*, and the polerovirus *Turnip yellows virus*. The genomes of five indigenous viruses were detected, including four novel species. They were the potyvirus Blue squill virus A, another potyvirus, two proposed capilloviruses, and a partitivirus. Partitivirus infection is of interest as this group of viruses is also associated with endophytic fungi (mycorrhizae) that are necessary for the germination, growth, development of many terrestrial orchids. Sequence divergence data indicate post-european, pre-european, and endemic origins for these viruses via inoculum from introduced and native plants. The implications of the findings of this study for orchid conservation, and particularly reintroduction programs where viruses may be spread inadvertently to wild populations from infected propagation sources, are discussed.

1. Introduction

The family *Orchidaceae* is one of the three largest groups of flowering plants in the world, with more than 25,000 species described from over 800 genera with orchid hybrids being major horticultural crops (Roberts and Dixon, 2008). While most tropical
and subtropical orchids are epiphytic, some are soil dwelling, and southern Australia is a
centre of biodiversity for temperate terrestrial (geophytic) species (Jones, 1993; Brown et
al., 2008).

Research in Australia revealed that a range of viruses, both indigenous and exotic, infect
native orchids (Mackenzie et al., 1998; Gibbs et al., 2000). In the most comprehensive
study, 850 individual Australian native orchid plants representing 72 genera were tested
using generic primers (Gibbs et al., 2000). A mixture of exotic and indigenous viruses
from five genera (Potexvirus, Potyvirus, Rhabdovirus, Tobamovirus, Tospovirus) was
found. Some exotic viruses of commercial orchids (Orchid fleck virus, Cymbidium
mosaic virus, and others) were found infecting native orchids, but other viruses (Diuris
virus Y, Ceratobium mosaic virus, Pterostylis virus Y) were previously unknown and may
represent endemic Australian groups (Mackenzie et al., 1998; Gibbs et al., 2000).

The terrestrial orchid genus Diuris was named after the long lateral sepals on the flowers,
although the distinctive ear-like petals have given them their common name of Donkey
Orchid. Over 50 species of Diuris orchids have been described, and all but one are
endemic to Australia. While some Diuris species are relatively common, others are
threatened, often as a result of habitat loss. Activities such as land clearing, browsing by
introduced herbivores, competition by weeds, and infection by introduced pathogens all
threaten some populations and species.
Here, we describe investigations to identify viruses infecting *Diuris* orchid plants growing in natural habitats and those propagated in *ex situ* collections by non-government organizations and conservation agencies for re-introduction programs into populations where plants are diminished in number or have become extinct. We describe the viruses found, consider whether they represent recent or long-standing associations with their hosts, and speculate on implications for orchid conservation. The *Diuris* species studied were *D. magnifica* D.L.Jones (pansy orchid) (Jones, 1991), *D. corymbosa* Lindl. (common donkey orchid) (Lindley, 1840), and *D. laxiflora* Lindl. (bee orchid) (Lindley, 1840), which are not considered threatened in the southwest of Western Australia where they are endemic (Hoffman and Brown 2011). The fourth species, *D. pendunculata* R.Br. (small snake orchid) (Brown, 1810) is endemic to two regions in the north-east and south-east of New South Wales, where it is listed as endangered under the Federal Environment Protection and Biodiversity Conservation Act 1999, the New South Wales Threatened Species Conservation Act 1995, and under Appendix II of CITES (Convention on International Trade in Endangered Species).

2. Materials and Methods

2.1. Plant materials and RNA extraction

Total RNA was extracted from samples of eighteen *Diuris* plants: five *D. magnifica* from a major *ex situ* conservation orchid collection in Western Australia, three *D.
plants from a private conservation collection from Victoria, Australia, and five each of *D. corymbosa* and *D. laxifolia* plants from two remnant forest sites near the town of Brookton, Western Australia. Total RNA was extracted using an RNeasy Plant RNA kit (Qiagen). Total RNA was quantified and its quality measured (RNA integrity number >6.5) using a Nanodrop ND-1000 spectrophotometer (NanoDrop Technologies) and Bioanalyszer 2100 (Agilent) before 5 µg RNA from each plant was pooled.

2.2. **Sequencing and analysis**

Purification of polyadenylated RNA from total RNA using Oligo-dT labeled beads, nebulization of RNA prior to adaptor ligation, library construction, amplification, and single-end sequencing of 101 nt reads using Illumina HiSeq2000 technology was done by Macrogen Inc, Seoul, South Korea, and paired-end sequencing of 90 nt reads using the same technology by Beijing Genomics Institute (BGI), Shenzhen, China. Three Illumina sequencing reactions were done. Reaction KP (Macrogen Inc) was with two *D. magnifica* plants from the *ex situ* population in Perth, Western Australia. Reaction SW3.1 (BGI) was with one wild *D. laxiflora* and three wild *D. corymbosa* plants sampled from a remnant forest site near Brookton township, Western Australia. Sequencing reaction SW3.3 (BGI) was done with one wild *D. laxiflora* plant sampled from a remnant forest site near Brookton, and one *D. pendunculata* plant from an *ex situ* population in Victoria, Australia (Table 1).
De novo assembly of contigs was carried out using CLC Genomics Workbench v4.8 (www.clcbio.com) and Geneious Pro v5.5.6 (Drummond et al., 2012). Parameters for the assembly of contigs were minimum overlap of 50% of read length (50 nt), 10% maximum gaps per read, and independent assemblies were done using 85%, 90% and 95% minimum overlap identity. Resulting contigs were sorted according to length and those less than 2 kb were removed. Batches of remaining contigs were subjected to Blastn, Blastx and Blastp analysis against appropriate GenBank databases. Putative virus sequences identified were edited manually where necessary to remove gaps and determine where aberrant reads were sequencing errors, i.e. when aberrant bases occurred 1-5% of the time. Final virus consensus sequences were constructed using contigs from both assemblers. Open reading frames and identities of deduced proteins, mature peptides, and domains encoded by them were predicted within Geneious Pro, the NCBI Conserved Domain Database (CDD), InterProScan (http://www.ebi.ac.uk/Tools/pfa/iprscan), and by identity after alignment with characterized virus sequences. Pairwise identities were calculated after alignment of nucleotide (nt) and amino acid (aa) sequences using ClustalW in Geneious Pro. Phylogenetic trees of aa sequences were constructed using Neighbor-joining (NJ), Maximum Likelihood (ML), and Maximum Parsimony (MP) methods in MEGA5 [16] after ClustalW pairwise alignment of sequences with a Gonnet protein weight matrix, a gap open penalty of 10, a gap separation distance of 4, and a gap extension penalty of 0.2. Tests of phylogeny were done using 1000 bootstrap replications. Host plants were
matched with viruses using RT-PCR assays with virus-specific primers, as described previously (Wylie et al., 2012a), followed by Sanger sequencing of amplicons. Primers (5’→3’; F = forward; R = reverse) used to detect viruses in plants were as follows:

- **BSVAF**, AGCGGCAGTAGGGGCTCA
- **BSVAR**, AACATCTCTTGCCCAACCCACCA
- **BYMVF**, GCCGTGAGCAACAGAAGCG
- **BYMVR**, CCTCCCACGGCGCGC
- **DiVAF**, CCCCAACCTTGAGGCTCT
- **DiVAR**, TTCCGAAACCCGGGGCCGG
- **DiVBF**, ACAGTCGGATATCCCCGCGCGA
- **DiVBR**, AGCTTCCGCGGACAGGGACT
- **DOVAF**, CGAACCGACACGACCGCTGG
- **DOVAR**, TTGCACCAGTGCCCTGAGCC
- **DPCVF**, CGCTGTCGCCCGGTTCCT
- **DPCVR**, GACGCCCAATGGTTCGCA
- **OrMVF**, TTTCGAGGCCTTCGTGCGGC
- **OrMVR**, TTCAGCGACCAACTCGCC
- **TuYVF**, AGAGTTTTACTATCCCGCAAAGC
- **TuYVR**, TGCTTCTGCGTAGAGATTCTCG

Total RNA was extracted from plants as described above. First strand cDNA synthesis was done using the reverse primer in the presence of Improm-II™ reverse transcriptase (Promega). PCRs were carried out over 40 cycles in the presence of GoTaq® polymerase (Promega) using an annealing temperature of 60°C. Amplicons were sequenced with the primers used to create them using the Sanger method (AB 3730) after purification through MinElute® columns (Qiagen).

3. Results

Three sequence data sets were obtained after Illumina sequencing. Two datasets of
26,753,454 and 26,468,430 reads were of 90 nt paired-end reads, and one dataset of 18,668,558 was of 101 nt single-end reads. De novo assembly of each dataset was done independently using two software packages and contig size was limited to >2,000 nt. Contig sets for each assembly were assembled against one another to identify duplicate sequences that could be removed. After this analysis, 18,661 contigs remained. When these were analysed through Blastn and Blastx against appropriate databases, the majority (18,499) had >60% identity with sequences of eukaryotic origin, usually plants, or transposable elements. The remainder matched prokaryotic sequences, had no matches on GenBank (orphans), or matched plant viral sequences. Orphan sequences were analysed for conserved virus-like motifs such as RNA-dependent RNA polymerases (RdRp), but none was identified.

Eleven contigs had virus-like motifs or sequence identity with described plant viruses. After manual editing to remove sequencing errors at the ends of reads where necessary, the genomic architecture of each sequence was predicted by identifying possible open reading frames (ORF), analysis against the NCBI Conserved Domain Database (CDD), and InterProScan. Eleven viral sequences belonging to distinct isolates of eight species belonging to four families were identified from the eight Diuris plants tested. Using specific primers in RT-PCR assays followed by sequencing of amplicons, one virus isolate was identified in each of seven plants tested, and four virus isolates were identified in one plant (Table 1).
3.1. *Potyvirus*

The genome sequences of seven isolates of four potyvirus species were detected from three *Diuris* species in both *ex situ* and wild populations (Table 1).

3.1.1 *Blue squill virus A*

A sequence representing the complete genome of Blue squill virus A (BSVA) isolate SW3.1 was from a wild plant of *D. corymbosa* (Table 1). The consensus sequence was assembled from 155,838 reads (0.582% total reads) with a coverage range of 66-6,263X across the genome and mean coverage of 1,425X. It was subsequently detected in another plant in the same population using an RT-PCR-based assay with specific primers. Both plants had mild leaf mottling visible on young leaves. There were no flowers or immature flower spikes on infected plants. Of the uninfected *D. corymbosa* plants growing nearby, only approximately one third of them had flowers or flower spikes. The BSVA sequence shared 87% nt and 95% aa identities with the near-complete genome sequence of BSVA-KP1 described previously from the Australian non-orchidaceous monocot plant *Chamaescilla corymbosa* (Blue Squill) (*Asparagaceae*) (Wylie et al., 2012a). These high sequence identities confirm that the new isolate is a member of the BSVA species (Adams et al., 2005). BSVA is closely aligned with other potyviruses within the *Bean common mosaic virus* (BCMV) subgroup that are identified only from Australia, *Hardenbergia mosaic virus*, *Passionfruit woodiness virus* (Fig. 1) (Gibbs et al., 2008;
The new isolate shared 71-77% aa identity with them across their complete polyprotein sequences (Table 2). Genome organization of BSVA was typical of potyviruses. There was one large ORF encoding a polyprotein of 3064 aa and calculated mass of 349.6 kDa. The ORF begins at AUG (nt 260-262) and terminates at UAA (nt 9521-9523). The polyprotein is processed into 10 mature proteins, and an ORF within the P3 domain +2 frame encoded the PIPO (Table 3) (Chung et al., 2008). This represents the first complete genome sequence of an isolate of BSVA.

3.1.2. Bean yellow mosaic virus

Two similar sequences were detected in wild D. corymbosa and ex situ D. magnifica plants that exhibited quite severe leaf and flower spike distortion and patches of dead cells on the leaves (Fig. 2; Table 1). Blastn and Blastx analyses showed that the sequences closely resembled the genomes of Bean yellow mosaic virus (BYMV) isolates from international locations and from a range of host species, including orchids (Wylie et al., 2008). The genomes of the two new BYMV isolates shared 97% aa identity and 95% nt identity with one another (Table 2). The sequence of the genome of BYMV isolate SW3.1 was constructed from 2,523 reads (0.009% total reads) with a coverage range of 3-49X and mean coverage of 24X. The sequence of BYMV isolate KP2 was constructed from 11,121 reads (0.059% total reads), with a coverage range of 12-388X and mean coverage was 118X. When the complete polyprotein sequences were aligned with those
of the six other BYMV isolates for which complete genomes were available, the new isolates shared closest aa identity (94-97%) with isolate Fr (GenBank accession FJ492961) from *Freesia* plants collected in South Korea. They shared least aa identity (76-77%) with isolate CS (AB373203) from *Pisum sativum* in Japan. The coat protein (CP) sequences shared 98-99% identity with isolates of BYMV from an Australian legume *Kennedia prostrata* (GenBank accessions DQ901434, DQ901435), the agricultural legume *Lupinus angustifolius* (narrow-leafed lupin) originally from the Mediterranean but cultivated in Australia (GenBank accessions AF192781, AF192782, EU082121), and *Gladiolus* plants from India (GenBank accession AM398198) and Japan (GenBank accession AB041972). Genomic organization was typical of that of BYMV isolates and potyviruses generally (Table 3). The wild plant of *D. corymbosa* in which BYMV isolate SW3.1 was detected grew in a patch of remnant native vegetation on a road verge surrounded by clover pastures and lupin crops, both of which are reservoirs of BYMV (Wylie et al., 2008). The captive *D. magnifica* plant where BYMV isolate KP2 was detected showed characteristic leaf mottling and patches of necrosis. When species-specific primers were used to screen five other *D. magnifica* plants in the population that exhibited similar symptoms, and five that did not show symptoms, the virus was present in all of the symptomatic plants and three of the asymptomatic plants.

3.1.3. *Ornithogalum mosaic virus*
Three sequences shared 98.0% nt and 98.2% aa identity with one another. They were identified as genomes of isolates of OrMV (Table 1) by their sequence identity (81-82%) with a near-complete genome sequence of OrMV from *Iris* in Australia (JN127345) (Fig. 1, Table 2). The isolates were detected in wild *D. corymbosa* and *D. laxifolia* plants and in a captive *D. magnifica* plant, all of which had symptoms typical of virus infection (Table 1). The number of reads that corresponded to OrMV isolates KP1, SW3.1, and SW3.3 were 9,002 (0.048% total reads), 23,256 (0.086%) and 6,333 (0.023%) respectively. The coverage ranges were 7-433X, 18-1,144X, and 7-321X, respectively. Mean coverage was 96X, 222X, and 60X respectively. A screening of other captive plants of the same species using virus-specific primers showed that the virus was present in 5/5 symptomatic and 0/5 asymptomatic plants tested. Blastp analysis of the CP sequences revealed they shared high aa identity (98-99%) with partial genome sequences of isolates of *Pterostylis* virus Y (PtVY), a virus first described from *Pterostylis* and *Eriochilus* orchids endemic to southeastern Australia (Gibbs et al., 2000). The sequences shared high % identity to *Ornithogalum* mosaic virus (OrMV) isolates from around the world, including those from orchids such as *Vanilla*. When all 32 available complete OrMV and PtVY coat protein (CP) sequences were aligned, highest aa identities (96-97%) were with OrMV isolates from *Lachnalia* in South Africa (GenBank accession FJ159371) and USA (GenBank accession FJ159373), and from *Ornithogalum* in Japan (GenBank accession AB079647). Least aa identities (65%) were with CPs of isolates from *Gladiolus* in India (e.g. GenBank accession JN692498), the low identity indicating
these "OrMV" sequences probably belong to another species. Genome organization of the three new OrMV isolates was almost identical to one another and typical of potyvirus genomes. The deduced polyprotein was 3016 aa with a calculated mass of 341.5 kDa. The ORF began at an AUG start codon (nt 125-127) and terminated at UGA (nt 9167-9169). The PIPO was in the +2 frame at nt 2747-2967 within the P3 and encoded a putative protein of 73 aa with a mass of 8.5 kDa (Table 3). These represent the first complete genome sequences of isolates of OrMV.

3.1.4. Donkey orchid virus A

A sequence of 9,867 nt representing the complete or near-complete genome of a novel potyvirus was identified from a wild plant of *D. laxiflora* that did not exhibit symptoms (Table 1). The genome sequence was determined by assembly of 2,286 reads (0.008% of total reads) with a range of coverage of 2-65X and with mean coverage of 21X. The deduced polyprotein sequence was approximately equidistant from other potyviruses for which a complete polyprotein sequence was available, it shared 38-41% aa identity with them (Fig. 1, Table 2). The name Donkey orchid virus A (DOVA), isolate SW3.1 was applied. Its predicted genome organization was typical of those of other potyviruses, consisting of 10 gene products within the polyprotein, and a small ORF encoding the PIPO protein located in the +2 frame within the P3. The polyprotein encoded a polyprotein of 3183 aa with a calculated mass of 360 kDa. The ORF began at an AUG start codon (nt 118-120) and terminated at UGA (nt 9664-9666). Mature protein positions
and sizes within the polyprotein were typical of potyviruses (Table 3). The putative PIPO ORF encoded a protein of 72 aa with a calculated mass of 8.4 kDa. The PIPO gene began at the conserved GGAAAAAA motif (nt 3186-3193) (Chung et al., 2008) and terminated at a UGA stop codon (nt 3404-3406). There was no AUG translation initiation codon present in the PIPO gene. The aa sequence of the DOVA CP shared highest identity, 56-61%, with isolates of BYMV (e.g. AB041971), tobacco vein banding virus (e.g. GU904046), and potato virus Y (e.g. AY742733). Although the viral vector was not identified, the highly conserved aphid transmission motifs of RITC (nt 1204-1214) and PTK (nt 2290-2298) at the N- and C-terminal regions, respectively, of the HC-Pro, and the DAG motif (nt 8890-8898) at the N-terminus of the CP were present, indicating that it is most likely transferred from plant to plant via aphids. Unlike most other potyviruses thought to have evolved in Australia (Gibbs et al., 2008; Webster et al., 2008), DOVA is not closely aligned with potyviruses of the BCMV subgroup (Fig. 1).

3.2. Betaflexivirus

Analysis of two virus-like sequences from two captive-grown D. pendunculata plants determined they shared 65% nt identity. Blast analyses suggested they were genomes of betaflexiviruses. Nucleotide identity between the sequences was below the species demarcation point (72%) for flexiviruses (Adams et al., 2004), so they were given the species names Diuris virus A (DiVA) and Diuris virus B (DiVB). The genome sequences of DiVA and DiVB were assembled from 125,394 (0.473% total reads) and 25,133 reads
(0.094%), respectively. Coverage range was 29-6,852X and 12-1,385X and mean coverage was 1,626X and 323X, respectively. Each of the genomes shared a similar degree of nt identity, 62-63%, with that of Hardenbergia virus A (HarVA, GenBank accession NC_015395). HarVA is an unassigned member of the family *Betaflexiviridae* recently identified from an Australian endemic legume, *Hardenbergia comptoniana* (Wylie and Jones 2011c). Although HarVA is not currently assigned a genus, its genome organization and phylogeny aligns it closely with *Cherry virus A* (CVA), a member of the genus *Capillovirus* (Jelkman 1995), and more distantly to *Apple stem grooving virus* (ASGV), the type species of the genus (Wang et al., 2010). The genomic organizations of DiVA and DiVB were predicted through comparison with the genomes of HarVA, CVA and ASGV, and by analysis with InterProScan and CDD. DiVA and DiVB shared highly similar genome architectures with one another and with HarVA (Fig. 3). In common with HarVA and the two capilloviruses, the DiVA and DiVB genomes were distinctive in that they lacked an in-frame stop codon at the C-terminus of the replicase. The extent of the replicases of both DiVA and DiVB genomes were estimated to be from nt 39-5003, encoding a protein of 1655 aa with a calculated mass of 192.5 kDa. Like HarVA and capilloviruses, in DiVA and DiVB replicases there were four domains: methyltransferase (Met); papain-like protease (P-Pro); UvrD helicase (Hel); and an RNA-dependent RNA polymerase (RdRp). Conserved motifs were present in the same positions for each of the new viruses, and they were highly similar to those of HarVA (Wylie and Jones, 2011c). As with HarVA, the conserved Met motif DEAD/H was present as DECH (nt 561-572)
(Rozanov et al., 1992; Hirata et al., 2010). The catalytic Cys residue (Koonin and Dolja, 1993) in the P-Pro domain was present at nt 2073-2075. Conserved Hel motifs A (GKS) and B (DE) (Koonin and Dolja, 1993) were identified at nt positions 2631-2639 and 2826–2831, respectively. The conserved RdRp core motif S/TGx3 Tx3 NS/Tx22 GDD (Koonin, 1991) was present as TGx3 Tx3 NTx22 GDD at nt 4548-4655. Replicase sequences of DiVA and DiVB shared 66% nt and 61% aa identities, confirming they are distinct species. Complete replicase aa sequences were aligned with homologous sequences of isolates of alpha-, beta-, and gamma- flexiviruses, and NJ, MP and ML analyses were done. All phylogenetic methods placed DiVA, DiVB, and HarVA closely together, and the capillovirus CVA clustered nearby (Fig. 4). Closest aa identities with the replicase sequences of DiVA and DiVB were with those of CVA (28%), ASGV (26%), Cherry mottle leaf virus (Trichovirus) (26% DiVA, 28% DiVB), Apple chlorotic leaf virus (Trichovirus) (26% DiVA, 27% DiVB) and Banana mild mosaic virus (unassigned a genus) (26% DiVA, 28% DiVB), and the lowest of 14% identity was with the fungal alpha- and gammaflexiviruses Sclerotinia sclerotiorum debilitation-associated RNA virus (Sclerodarnavirus) and Botrytis virus F (Mycoflexivirus), respectively. The extent of the CPs of DiVA and DiVB were predicted by comparison with CPs of betaflexiviruses, and by analysis on CDD. The start codons for CPs were predicted to begin at the methionine located at nt 6018-6020 (DiVA) and nt 6021-6023 (DiVB) in the contexts AGCCAUUGGU and GAACAUGG, respectively. Translation from there yields a protein of 232 aa with a calculated mass of 26 kDa for each virus, which closely
matches the masses of CPs of ASGV strains (26.3-27.1 kDa). CP sequences of DiVA and DiVB shared 70% nt and 76% aa identities. CPs of HarVA shared 68% nt and 74% aa identity with DiVA and 71% nt and 78% aa identity with DiVB. These figures are close to the flexivirus species demarcation point for CPs (<72% nt and <80% aa identities for CPs or replicases) proposed by Adams et al. (2004), and confirm that DiVA, DiVB, and HarVA are distinct, although closely related virus species.

A 30K-like movement protein (MP) occurred in the +2 reading frame where its C-terminus overlapped the N-terminal region of the predicted CP (Fig. 4). In both DiVA and DiVB the protein was initiated with AUG at nt 5045-5047. In DiVA the extent of the MP was 389 aa with a predicted mass of 43.8 kDa, terminating at UGA. In DiVB it was slightly smaller at 380 aa with a predicted mass of 42.7 kDa, terminating at UAA (Fig. 4). The conserved MP motif DxR was present at nt 5381-5389 as DGR in both viruses. The MPs of DiVA and DiVB shared 64% nt and 53% aa identity with one another. The MP of DiVA shared 56% identity with that of HarVA, and DiVB shared 48% identity with it. They shared low identity with capilloviruses CVA (DiVA 23%, DiVB 18%) and ASGV (DiVA 16%, DiVB 22%). Type members of the betaflexivirus genera Citrivirus, Tepovirus, Trichovirus and Vitivirus, that also have 30K-like MPs, shared 17-24% aa identity with the MPs of DiVA and DiVB.

3.3. Partitivirus
Two sequences of 2,010 and 1,806 nt were detected from the plant of *D. pendunculata* tested, the same plant co-infected with DiVA and DiVB. The consensus sequence of the larger sequence was assembled from 3,346 reads (0.012% total reads) with a range of coverage of 12-398X and mean coverage of 150X. The smaller sequence was assembled from 2,805 reads (0.010% total reads) with a range of coverage of 15-305X and mean coverage of 140X. Blastx analysis revealed that the large segment shared highest aa identity (64%) with the complete replicase segment of an unclassified member of the *Partitiviridae, Heterobasidion RNA virus 5* (HetRV5) (GenBank accession HQ541326), and lower identity with other partitiviruses (Fig. 5). The nt sequence of the smaller segment shared very little identity with any available sequence, but the aa sequence of the single putative ORF shared 30% identity with the CP of *Heterobasidion RNA virus 1* (Genbank accession HQ541324), and 24% identity with the CP of *Amaysa cherry disease-associated mycovirus* (GenBank accession NC_006440). Partitiviruses are bisegmented double-stranded RNA viruses, with one segment encoding a coat protein and the other a replicase. The large segment of the new virus encodes the putative replicase and the smaller the CP. The replicase sequence had one predicted ORF of 1866 nt that started at AUG (nt 83-85) and ended at UGA (nt 1946-1948). The ORF encodes a RdRp-like protein of 622 aa with a calculated mass of 73 kDa. The RdRp core motif S/TGx3 Tx3 NS/Tx22 GDD (Koonin, 1991) was present as SGx3 Tx3 DSx26 GDD (nt 1283-1402). This RdRp motif was conserved amongst the 14 partitiviruses analyzed with the exceptions of *Sclerotinia sclerotiorum partitivirus S* and *Raphanus sativus cryptic*
virus 1, where there were 27 and 28 aa residues between the DS and GDD motifs, respectively. A polyadenylation signal as such was not present. Instead, the 3’ end of the genome segment has an AU-rich sequence (nt 1965-2010) where adenosines accounted for 61% of the nucleotides and uracils 24%. This AU-rich sequence, called the ‘interrupted’ poly (A) tail, is reported in other partitiviruses (e.g. Lim et al., 2005). The putative CP segment has one predicted ORF flanked on either side by a 5’ UTR of 103 nt and a 3’ UTR of 212 nt. The 3’ UTR of the CP segment has an interrupted poly (A) tail, in this case of 60 nt (nt 1747-1806). The ORF of 1,491 nt begins at AUG (nt 104-106) and ends at UGA (nt 1592-1594). It encodes a protein of 497 aa with MW 54.7 kDa. Hence the sequence identities and predicted gene functions of these two segments of RNA indicate that they represent the complete genome of a partitivirus, designated as Diuris pendunculata cryptic virus (DPCV) (Table 1).

3.4. Polerovirus

A sequence of 5629 nt was isolated from the D. pendunculata plant co-infected with DiVA, DiVB and DPCV. The whole nt sequence shared 89% identity with the complete genome sequence of the type isolate of Turnip yellows virus (TuYV-FL1), and 80% nt identity with complete genome sequences of Brassica yellows virus (BrYV). The consensus sequence was assembled from 2,031 reads (0.007% total reads) with a coverage range of 4-224X and mean coverage of 150X. The sequence is approximately the same size as the genome of TuYV-FL1 (5641 nt). As with isolate TuYV-FL, the new
sequence is predicted to have six ORFs (ORF0-ORF5), a 5’UTR of 31 nt, an intergenic non-coding region of 203 nt (nt 3209-3411) between ORF2 and ORF3, and a 3’ UTR of 85 nt. The 5’-terminal nts were ACAAAA, identical to those of many poleroviruses. One of the species demarcation criteria for viruses of the family Luteoviridae is that differences in aa sequences of any gene product should be greater than 10% (D’Arcy and Domier, 2005). Five deduced protein sequences encoded by the new TuYV genome shared greater than 90% aa identity with homologous sequences of TuYV-FL1, but the read-through protein (ORF5) shared slightly less, at 87% identity. With the exception of the read-through domain (RTD), all proteins in this isolate met the species identity criterion, so it is proposed that this new sequence represents the genome of an isolate of TuYV. The isolate was designated as TuYV-SW3.1 (Table 1).

4. Discussion

Eleven complete or partial genome sequences of eight virus species from four Diuris species, both wild and captive plants, were identified. Of the virus species discovered, three - BYMV, OrMV, TuYV - are clearly recent arrivals into Australia because they have international distribution in other hosts. The other five species represent endemic taxa that may have evolved in Australia. BSVA was recently described from a non-orchidaceous indigenous plant (Wylie et al., 2012a). Four others had not been described, although they concur with established families with members distributed internationally. Some infected plants exhibited symptoms typical of virus infection, whilst others
remained symptomless. Notably, a plant of the rare species *D. pendunculata* was co-infected with four viruses from three families, including one exotic virus, yet appeared asymptomatic.

4.1. *Exotic and indigenous potyviruses*

Potyviruses are an extremely successful genus, having global distribution from a wide phylogenetic spread of host plants. Many aphid species are vectors. It is suggested that potyviruses adapted to agricultural expansion over 7000 years ago in the fertile crescent and subsequently spread and evolved as humans carried plant propagules with them to new lands (Gibbs and Ohshima, 2010). Several potyviruses are described only from Australia, including HarMV and BSVA, and phylogeny places most in the BCMV subgroup. Nucleotide identities of these “Australian BCMV-like potyviruses” is usually within the range of 75-77% (Wylie and Jones, 2011a), figures that hover very close to the species demarcation point for potyviruses (<75-76%) (Adams et al., 2005), indicating they have a recent common ancestor that evolved as it encountered new hosts (Gibbs et al., 2008). Recent plant-virus associations generally induce more severe symptoms than older associations, which may be of a mutualistic nature (Roossinck, 2011). It is estimated from nucleotide substitution rates in potyviruses that BCMV-like potyviruses arrived in Australia only about 2000 years ago, possibly transported by Austronesians on their crop plants as they colonized the Pacific (Gibbs et al., 2010). Indeed, both HarMV and BSVA induce symptoms in natural host species, suggestive that these are quite recent
associations (Wylie and Jones, 2011a, Wylie et al., 2012a). The potyvirus DOVA is unusual because its nucleotide sequence reveals that it does not belong to the BCMV subgroup and it did not induce symptoms on the host plant. It is not closely allied to any known potyvirus group, signifying that it has evolved in isolation. Its polyprotein sequence is approximately equidistant (38-41% aa identity) from all other known potyviruses, signifying that it has probably evolved in isolation for a long period. Along with another Australian orchid virus in the Potyviridae, the proposed poacevirus Caladenia virus A (Wylie et al. 2012b), its presence is an indication that potyviruses may have invaded Australia on more than one occasion during pre-history, and perhaps at a much earlier time than previously speculated (Gibbs et al., 2010), thereby enabling more mature (asymptomatic) relationships between host and virus to develop. Conversely, it may represent a recent incursion by an unknown potyvirus. Obtaining sequence data from further DOVA isolates should address this question because greatest sequence diversity exists in the region where a species evolved (Thresh, 1980; Gibbs et al., 2008).

In our study, exotic viruses BYMV and OrMV induced severe symptoms typical of virus infection, including necrotic patches on the leaves, whereas the other exotic virus, TuYV, did not. The presumed indigenous viruses did not induce visible symptoms.

The presence of the exotic potyviruses BYMV and OrMV infecting both wild and captive orchid populations is of concern, and further studies to determine host ranges and
incidences amongst other orchid species should be undertaken. BYMV has been isolated from several orchid species internationally, including the Australian species *Pterostylis curta* (GenBank accession AF185960) (Gibbs et al., 2000), and from a wide range of non-orchidaceous species (Wylie et al., 2008). The new isolates closely resemble those described from introduced leguminous crops in the region, and these are the likely origin of the virus. Infected *Diuris* plants exhibited quite severe symptoms of infection (leaf and flower stem distortion, chlorosis) that may reduce host fecundity and lifespan, but this has not been proven experimentally. Less clear is the origin of OrMV isolates. The virus was recently identified for the first time in Western Australia from cultivated (introduced) *Iris* plants growing in a home garden (Wylie et al., 2012a). Other members of the *Iridaceae* are also hosts (Wei et al., 2006), notably *Gladiolus* (e.g. GenBank accession FJ573184). Several iridaceous genera including *Gladiolus, Homeria, Ixia*, and *Freesia* are naturalized weeds of African origin widespread in Australian forests and shrubland, but these have not been tested as hosts of OrMV. The presence of highly identical OrMV sequences from widely distributed *Diuris* populations indicates that a single introduction into the region has occurred. Isolates with high % identity from *Pterostylis* and *Eriochilus* orchids in eastern Australia were given the name *Pterostylis virus Y* (Gibbs et al., 2000), and this name should be changed to *Ornithogalum mosaic virus*.

4.2. *Australian flexiviruses*
High sequence identity and similar genome organizations of DiVA, DiVB and HarVA place them together with members of the genus *Capillovirus*, especially to CVA. We propose that Diuris virus A, Diuris virus B, and Hardenbergia virus A are placed together with ASGV and CVA in the genus *Capillovirus*. The Australian capilloviruses are genetically equidistant from one another, suggesting simultaneous divergence from a common ancestor. Together with Scaevola virus A, a member of the closely related genus *Trichovirus* (Martelli et al., 2007; Hirata et al., 2010) described from a non-orchidaceous species of the Australian flora (Wylie et al., 2012a), these viruses hint at a long presence of flexiviruses on the Australian continent.

4.3. Partitiviruses and orchids

To our knowledge, the partitivirus DPCV is the first to be identified in Australia and the first from orchids. Partitiviruses are persistent dsRNA viruses with bisegmented genomes that are vertically transmitted through the gametes, but not *via* grafts, manual inoculations or vectors (Blanc, 2007). Partitiviruses infect fungi, plants and protozoa. Phylogenetic analysis of the partitivirus RdRp genes suggests that they have been transmitted between plants and fungi (Roossinck, 2010). This is of particular interest in orchids as they are dependent on fungal associations to germinate and grow. Many Australian terrestrial orchids have reduced root systems and so are highly dependent on mycorrhizal associations for mineral nutrition (Brundrett, 2007). In most cases, orchids associate with basidiomycetes (Smith and Read, 2008). The DPCV sequence clustered closest to that of
the basidiomycete fungus virus HetRV5. In another plant/fungus/dsRNA virus system, all three partners were required in a mutualistic association that imparted heat tolerance to a grass that grew in an active thermal area (Marquez et al., 2007). Partitivirus-like partial CP and RdRp sequences are found stably integrated in some plant genomes (Chiba et al., 2011), but we consider it unlikely that DPCV is an example of integration because its sequence was transcribed and the complete replicase RNA segment was obtained.

4.4. Exotic polerovirus

TuYV is an exotic virus described from Tasmania, Australia, in cultivated brassicas and peas, but until now has not been described from orchids. Luteovirids are restricted to the phloem tissue of host plants and are transmitted by aphids in a persistent manner (Grey and Gidow, 2003). This virus’s presence is alarming because the host is a rare species and any impact on plant growth by the virus may adversely affect the long-term survival of the species.

4.5 Method used

Although detection of only polyadenylated RNA viruses was expected using this method (oligo-dT bead purification of mRNAs prior to library construction), the partitivirus RdRp sequence was determined despite its lack of a poly (A) tail sensu stricto. It is probable that non-polyadenylated RNA viruses, viroids, and DNA viruses also co-infect the tested plants, but these could not be detected with the method used. Others have
enriched samples for viral sequences before library construction by extracting dsRNA (e.g. Roossinck et al., 2010), partially purifying virus particles (e.g. Thapa et al., 2012), and sequencing short-interfering RNAs (siRNAs) (e.g. Kreuze et al., 2009). Addition of genetic tags (barcodes) to sample sequences before pooling (e.g. Roossinck et al., 2010) would simplify the process of matching viruses with host plants, although in this case where there were a small number of samples sequenced per sequencing reaction, the method used of designing specific primers to match virus with host in RT-PCR and Sanger sequencing assays was simple and efficient.

Sequence coverage was generally lowest at the 5’ and 3’ ends of the genomes. Peaks of coverage occurred in places along the genomes, seemingly independent of the genome sequence. For example in the three ORMV isolates sequenced no pattern of coverage was observed, suggesting that the patterns of peaks and troughs of coverage observed is an artefact of library preparation or sequencing.

4.6 Implications for conservation

This study of only eight Diuris orchid plants of four species revealed a surprising number and variety of RNA viruses, indicative that a rich indigenous viral flora, as well as an aggressive exotic viral flora, exists in Australia’s temperate terrestrial orchids, and in its flora generally.
The presence of exotic viruses is of particular concern. BYMV and OrMV were present in wild and captive populations, so the source of infection to the captive population was probably via infected wild tubers. This study highlights the need to quarantine newly collected propagules until plants are examined for symptoms, and ideally assayed for viruses before introducing them to ex situ conservation or horticultural collections. In captive populations where plants are grown in pots on benches, conditions exist for rapid spread of viruses by vectors. The case of TuYV is of particular concern because the virus is probably exotic and visible symptoms of infection were not apparent.

Elimination of exotic viruses from threatened orchid populations is certainly desirous for their long-term survival. Except in the probable case of the partitivirus, it is uncertain whether any of the identified viruses are transmitted through seed (Wong et al., 1994), and this should be examined, as seed is a possible route to generate virus-free plants. Heat and chemical treatments and in-vitro meristem culture have also been used to establish virus-free orchid stocks (Lim et al., 1993).

It is not known what impacts the newly found indigenous viruses have on plant growth and development. Indeed, it is possible some represent beneficial associations (Marquez et al., 2007; Roossinck, 2011), and as such should be maintained. This study highlights the need to gain a greater understanding of the roles viruses play in long-term partnerships with plants, particularly for plants of conservation concern.
Importantly, conservation programs for orchids have considered virus infection, but usually only associated with epiphytic taxa. This research highlights the need to study the ecological roles of indigenous and exotic viruses as well as assess phyto-health risks to conservation of *ex situ* and wild orchid populations.

Acknowledgements

This study was funded by Australian Research Council Linkage Grant LP110200180 with support from the Western Australian Botanic Gardens and Parks Authority and the Australian Orchid Foundation.

References

Drummond, A.J., Ashton, B., Cheung, M., Heled, J., Kearse, M., Moir, R., Stones-Havas,

Gibbs, A., Mackenzie, A., Blanchfield, A., Cross, P., Wilson, C., Kitajima, E.,
Nightingale, M., Clements, M., 2000. Viruses of orchids in Australia: their identification,

Phytopathol. 48, 205-223.

Hirata, H., Yamaji, Y., Komatsu, K., Kagiwada, S., Oshima, K., Okano, Y., Takahashi, S., Ugaki, M., Namba, S., 2010. Pseudo-polyprotein translated from the full-length ORF1 of a capillovirus is important for pathogenicity, but a truncated ORF1 protein without variable and CP regions is sufficient for replication. Virus Res. 152, 1–9.

vitro pear shoots. Crop Prot. 29, 1447-1451.

Figure Legends

Figure 1 Neighbor-joining tree of amino acid sequences of complete polyproteins of potyviruses found in *Diuris* orchids (boxed) with other complete or near-complete potyvirus polyproteins. GenBank accessions, virus name and isolate (if given) are shown. Branch robustness was assessed by 1000 bootstraps shown as percentages. Those with confidence values below 60% are not shown. Relationships calculated using Maximum Parsimony and Maximum Likelihood methods gave essentially the same tree. The tree is drawn to scale, with evolutionary distance used to infer the branch length in nucleotide substitutions per site.

Figure 2 Potted plants of *Diuris magnifica*. The plant on the right is infected with Bean yellow mosaic virus isolate KP2. Visible is leaf distortion on the whole plant, and chlorotic leaf mottle and necrotic streaks on the leaf (inset).

Figure 3 Predicted genome organization of proposed species (A) Diuris virus A (DiVA) and Diuris virus B (nucleotide positions that differ from DiVA in parentheses) compared to (B) the genome organization of Hardenbergia virus A. Predicted nucleotide positions of the borders of the regions described are given above or below the blocks representing domains or genes, and the lengths of the untranslated regions (UTR) are given. Replicase
and coat protein (CP) genes of open reading frame 1 (ORF1) are represented by the upper block. Shaded regions within ORF1 represent the methyltransferase (Met), papain-like protease (P-pro), helicase (Hel), and RNA-dependent RNA polymerase (RdRp) domains of the replicase gene (its predicted extent indicated by arrow). The movement protein (MP) gene of ORF2 is represented in the lower block.

Figure 4 Neighbor-joining tree of amino acid sequences of complete replicase proteins of type isolates of 26 species within the families Alpha-, Beta-, and Gammaflexivirus. The positions of the proposed species Diuris virus A and Diuris virus B (boxed) are shown in relation to other species. GenBank accessions, species and genus names are shown. Branch robustness was assessed by 1000 bootstraps shown as a percentage. Those with confidence values below 60% are not shown. Relationships calculated using Maximum Parsimony and Maximum Likelihood methods gave essentially the same tree. The tree is drawn to scale, with evolutionary distance used to infer the branch length in nucleotide substitutions per site.

Figure 5 Neighbor-joining tree of amino acid sequences of complete replicase proteins of 14 partitiviruses isolated from plants and fungi. The proposed Diuris pendunculata cryptic virus is boxed. GenBank accessions, species, and genus names are shown if given. Branch robustness was assessed by 1000 bootstraps shown as a percentage. Those with confidence values below 60% are not shown. Relationships calculated using
Maximum Parsimony and Maximum Likelihood methods gave essentially the same tree.

The tree is drawn to scale, with evolutionary distance used to infer the branch length in nucleotide substitutions per site.
Table 1 Virus species and isolates identified in *Diuris* orchids.

<table>
<thead>
<tr>
<th>Virus</th>
<th>Isolate</th>
<th>Sequence length (nt)</th>
<th>Classification Family, Genus</th>
<th>Diuris host species (plant/pot number)</th>
<th>Symptoms</th>
<th>Host situation</th>
<th>Host location</th>
<th>GPS location</th>
<th>GenBank Accession number</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYMV</td>
<td>KP2</td>
<td>9533</td>
<td>Potyviridae, Potyvirus</td>
<td>D. magnifica (pot K43)</td>
<td>CLM, LD, FSD, NPL</td>
<td>Captive</td>
<td>Perth, WA</td>
<td>-31.955976, 115.842469</td>
<td>JX173278</td>
</tr>
<tr>
<td>BYMV</td>
<td>SW3.1</td>
<td>9530</td>
<td>Potyviridae, Potyvirus</td>
<td>D. corymbosa (plant B11)</td>
<td>CLM</td>
<td>Wild</td>
<td>Brookton, WA</td>
<td>-32.397438, 116.880024</td>
<td>JX156423</td>
</tr>
<tr>
<td>DOVA</td>
<td>SW3.1</td>
<td>9867</td>
<td>Potyviridae, Potyvirus</td>
<td>D. laxiflora (plant B9)</td>
<td>NVS</td>
<td>Wild</td>
<td>Brookton, WA</td>
<td>-32.397175, 116.880653</td>
<td>JX156422</td>
</tr>
<tr>
<td>BSVA</td>
<td>SW3.1</td>
<td>9842</td>
<td>Potyviridae, Potyvirus</td>
<td>D. corymbosa (plant B8)</td>
<td>MM</td>
<td>Wild</td>
<td>Brookton, WA</td>
<td>-32.397148, 116.880618</td>
<td>JQ807999</td>
</tr>
<tr>
<td>OrMV</td>
<td>KP1</td>
<td>9445</td>
<td>Potyviridae, Potyvirus</td>
<td>D. magnifica (pot K44)</td>
<td>CLM, FSD</td>
<td>Captive</td>
<td>Perth, WA</td>
<td>-31.955976, 115.842469</td>
<td>JQ807997</td>
</tr>
<tr>
<td>OrMV</td>
<td>SW3.1</td>
<td>9445</td>
<td>Potyviridae, Potyvirus</td>
<td>D. corymbosa (plant B10)</td>
<td>CLM</td>
<td>Wild</td>
<td>Brookton, WA</td>
<td>-32.397481, 116.879478</td>
<td>JQ807995</td>
</tr>
<tr>
<td>OrMV</td>
<td>SW3.3</td>
<td>9447</td>
<td>Potyviridae, Potyvirus</td>
<td>D. laxifolia (plant B22)</td>
<td>CLM</td>
<td>Wild</td>
<td>Brookton, WA</td>
<td>-32.396921, 116.881236</td>
<td>JQ807996</td>
</tr>
<tr>
<td>DiVA</td>
<td>SW3.3</td>
<td>6941</td>
<td>Betaflexiviridae, Capillovirus</td>
<td>D. pendunculata (pot 2081)</td>
<td>NVS</td>
<td>Captive</td>
<td>Yarra Glen, Vic</td>
<td>unknown</td>
<td>JX173276</td>
</tr>
<tr>
<td>DiVB</td>
<td>SW3.3</td>
<td>7001</td>
<td>Betaflexiviridae, Capillovirus</td>
<td>D. pendunculata (pot 2081)</td>
<td>NVS</td>
<td>Captive</td>
<td>Yarra Glen, Vic</td>
<td>unknown</td>
<td>JX173277</td>
</tr>
<tr>
<td>DPCV</td>
<td>SW3.3</td>
<td>2010</td>
<td>Partitiviridae, unclassified, Capillovirus</td>
<td>D. pendunculata (pot 2081)</td>
<td>NVS</td>
<td>Captive</td>
<td>Yarra Glen, Vic</td>
<td>unknown</td>
<td>JX173278</td>
</tr>
<tr>
<td>DPCV</td>
<td>SW3.3</td>
<td>1806</td>
<td>Partitiviridae, unclassified, Luteoviridae, Polerovirus</td>
<td>D. pendunculata (pot 2081)</td>
<td>NVS</td>
<td>Captive</td>
<td>Yarra Glen, Vic</td>
<td>unknown</td>
<td>JX156423</td>
</tr>
<tr>
<td>TuVY</td>
<td>WA-1</td>
<td>5629</td>
<td>Luteoviridae, Polerovirus</td>
<td>D. pendunculata (pot 2081)</td>
<td>NVS</td>
<td>Captive</td>
<td>Yarra Glen, Vic</td>
<td>unknown</td>
<td>JQ862472</td>
</tr>
</tbody>
</table>

a BYMV, bean yellow mosaic virus; DOVA, donkey orchid virus A; BSVA, blue squill virus A; OrMV, ornithogalum mosaic virus; DiVA, *Diuris* virus A; DiVB, *Diuris* virus B, DPCV (Rep), *Diuris* pendunculata cryptic virus, replicase segment; DPCV (CP), *Diuris* pendunculata cryptic virus, coat protein segment; TuVY, turnip yellows virus

b Complete genome sequence length excluding poly (A) tail if present

c. CLM, chlorotic leaf mottle; FSD, flower spike distortion; LD, leaf distortion; MM, mild mottle; NPL, necrotic patches on leaves; NVS, no visible symptoms

d. Location of plants used in this study. WA, Western Australia; Vic, Victoria, Australia
e. Original locations of samples provided from an *ex situ* collection in Victoria could not be determined
Table 2 Pairwise identities (%) between amino acid sequences of complete and near-complete polyproteins of the potyviruses donkey orchid virus A, ornithogalum mosaic virus, blue squill virus A, and bean yellow mosaic virus found infecting *Diuris* orchids, and those of other potyviruses.

<table>
<thead>
<tr>
<th>Virus*</th>
<th>DOV A</th>
<th>OrMV Bate9 SW3.1</th>
<th>OrMV SW3.3A</th>
<th>OrMV V Bate9 SW3.1</th>
<th>BSV A KPI8</th>
<th>BYM SW3.1</th>
<th>HarMV V</th>
<th>PW V</th>
<th>BCM V</th>
<th>SM V</th>
<th>WVM V</th>
<th>WM V</th>
<th>HiMV V</th>
<th>PsbM V</th>
<th>SrM V</th>
<th>PenMV V</th>
<th>PLM V</th>
<th>TNS V</th>
</tr>
</thead>
<tbody>
<tr>
<td>OrMV</td>
<td>41.2</td>
<td>41.1</td>
<td>41.3</td>
<td>40.8</td>
<td>40.8</td>
<td>40.2</td>
<td>39.5</td>
<td>40.1</td>
<td>39.8</td>
<td>40.3</td>
<td>68.6</td>
<td>68.7</td>
<td>67.7</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
</tr>
<tr>
<td>SW3.1</td>
<td></td>
</tr>
<tr>
<td>OrMV</td>
<td>41.2</td>
<td>41.1</td>
<td>41.3</td>
<td>40.8</td>
<td>40.8</td>
<td>40.2</td>
<td>39.5</td>
<td>40.1</td>
<td>39.8</td>
<td>40.3</td>
<td>68.6</td>
<td>68.7</td>
<td>67.7</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
</tr>
<tr>
<td>SW3.3A</td>
<td></td>
</tr>
<tr>
<td>OrMV Bate9</td>
<td>40.1</td>
<td>81.9</td>
<td>82.3</td>
<td>81.6</td>
<td>40.3</td>
<td>40.8</td>
<td>39.5</td>
<td>40.1</td>
<td>39.8</td>
<td>40.3</td>
<td>68.6</td>
<td>68.7</td>
<td>67.7</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
</tr>
<tr>
<td>BSA</td>
<td>40.3</td>
<td>44.9</td>
<td>44.8</td>
<td>45.8</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td>SW3.1</td>
<td></td>
</tr>
<tr>
<td>BSA</td>
<td>40.3</td>
<td>44.9</td>
<td>44.8</td>
<td>45.8</td>
<td>46.9</td>
<td></td>
</tr>
<tr>
<td>KP1</td>
<td></td>
</tr>
<tr>
<td>SW3.1</td>
<td>40.1</td>
<td>81.9</td>
<td>82.3</td>
<td>81.6</td>
<td>40.3</td>
<td>40.8</td>
<td>39.5</td>
<td>40.1</td>
<td>39.8</td>
<td>40.3</td>
<td>68.6</td>
<td>68.7</td>
<td>67.7</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
<td>67.1</td>
</tr>
<tr>
<td>HiMV</td>
<td>39.8</td>
<td>45.4</td>
<td>45.3</td>
<td>47.4</td>
<td>76.9</td>
<td>76.9</td>
<td>76.9</td>
<td>43.3</td>
<td></td>
</tr>
<tr>
<td>PWV</td>
<td>40.2</td>
<td>44.4</td>
<td>44.5</td>
<td>46.6</td>
<td>71.2</td>
<td>71.1</td>
<td>44.3</td>
<td>71.3</td>
<td></td>
</tr>
<tr>
<td>BCMV</td>
<td>39.5</td>
<td>45.2</td>
<td>45.2</td>
<td>47.1</td>
<td>64.2</td>
<td>66.4</td>
<td>45.3</td>
<td>64.3</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMV</td>
<td>41.1</td>
<td>45.8</td>
<td>45.7</td>
<td>47.5</td>
<td>67.7</td>
<td>68.4</td>
<td>44.5</td>
<td>68.1</td>
<td>68.8</td>
<td>67.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WVMV</td>
<td>40.5</td>
<td>45.1</td>
<td>45.1</td>
<td>47.2</td>
<td>68.2</td>
<td>68.6</td>
<td>44.7</td>
<td>67.7</td>
<td>68.4</td>
<td>67.1</td>
<td>80.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMV</td>
<td>39.1</td>
<td>45.1</td>
<td>44.9</td>
<td>47.1</td>
<td>65.3</td>
<td>67.7</td>
<td>44.2</td>
<td>64.9</td>
<td>65.2</td>
<td>68.6</td>
<td>81.8</td>
<td>76.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HiMV</td>
<td>37.8</td>
<td>42.9</td>
<td>43.4</td>
<td>43.5</td>
<td>45.8</td>
<td>40.7</td>
<td>41.2</td>
<td>41.3</td>
<td>41.5</td>
<td>41.4</td>
<td>41.6</td>
<td>39.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PsbMV</td>
<td>39.1</td>
<td>44.3</td>
<td>43.9</td>
<td>43.5</td>
<td>41.3</td>
<td>41.2</td>
<td>43.9</td>
<td>41.9</td>
<td>41.7</td>
<td>41.1</td>
<td>41.1</td>
<td>41.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SrM</td>
<td>39.7</td>
<td>42.3</td>
<td>42.4</td>
<td>42.0</td>
<td>44.6</td>
<td>42.1</td>
<td>43.1</td>
<td>42.2</td>
<td>41.8</td>
<td>41.9</td>
<td>41.9</td>
<td>41.9</td>
<td>43.2</td>
<td>42.9</td>
<td>42.9</td>
<td>42.6</td>
<td>39.5</td>
<td></td>
</tr>
<tr>
<td>PenMV</td>
<td>40.4</td>
<td>43.8</td>
<td>43.7</td>
<td>45.5</td>
<td>42.4</td>
<td>43.2</td>
<td>42.2</td>
<td>42.4</td>
<td>42.7</td>
<td>43.1</td>
<td>44</td>
<td>42.2</td>
<td>42.4</td>
<td>43.5</td>
<td>43.9</td>
<td>43.3</td>
<td>71.8</td>
<td></td>
</tr>
<tr>
<td>PLMV</td>
<td>40.7</td>
<td>46.2</td>
<td>46.1</td>
<td>46.8</td>
<td>49.2</td>
<td>49.5</td>
<td>44.8</td>
<td>49.5</td>
<td>49.2</td>
<td>48.2</td>
<td>49.7</td>
<td>49.5</td>
<td>47.6</td>
<td>40.6</td>
<td>43.2</td>
<td>43</td>
<td>43.2</td>
<td></td>
</tr>
<tr>
<td>TNSV</td>
<td>40.6</td>
<td>44.6</td>
<td>44.4</td>
<td>44.5</td>
<td>47.4</td>
<td>44</td>
<td>43.9</td>
<td>45.3</td>
<td>43.4</td>
<td>42.8</td>
<td>44.9</td>
<td>45.3</td>
<td>43</td>
<td>41.1</td>
<td>43.5</td>
<td>41.7</td>
<td>43.1</td>
<td></td>
</tr>
<tr>
<td>PepMoV</td>
<td>39.8</td>
<td>44.3</td>
<td>44.3</td>
<td>44.2</td>
<td>46.5</td>
<td>43.9</td>
<td>43.9</td>
<td>44.8</td>
<td>43</td>
<td>43.5</td>
<td>42</td>
<td>43.3</td>
<td>44.1</td>
<td>41.8</td>
<td>42.5</td>
<td>41.5</td>
<td>41.7</td>
<td></td>
</tr>
</tbody>
</table>

* DOVA SW3.1 JX156422, Donkey orchid virus A isolate SW3.1; OrMV SW3.1, JQ807995 ornithogalum mosaic virus isolate SW3.1; OrMV SW3.3A, JQ807996 ornithogalum mosaic virus isolate 3.3A; OrMV-KP1, JQ807997 ornithogalum mosaic virus isolate KP1; OrMV Bate9, JN127345 Ornithogalum mosaic virus isolate Bate9; BSA SW3.1, JQ807999 Blue Squill virus isolate SW3.1; BSA KP1, JN052072 Blue Squill virus isolate SW3.1 HarMV, HQ161081 Hardenbergia mosaic virus isolate 57.2; PWV, HQ122652 Passion fruit woodiness virus isolate MU-2; BCMV, AJ312437 Bean common mosaic
virus cowpea isolate R; SMV, FJ640972 Soybean mosaic virus isolate WS160; WVMV, AY656816 Wisteria vein mosaic virus isolate Beijing; WMV, HQ384216 Watermelon mosaic virus isolate Dendrobium; PSbMV, X89997 Pea seed-borne mosaic virus; HiMV, JQ395040 Hippeastrum mosaic virus isolate Marijiniup 1; TNSV, JQ314463 Tomato necrotic stunt virus isolate MX9354; PLMV, DQ851494 Peace lily mosaic virus isolate Haiphong; SrMV, AJ310198 Sorghum mosaic virus; PepMoV, EU586131 Pepper mottle virus isolate 205137; PenMV, DQ977725 Pennisetum mosaic virus isolate C
b near-complete polyprotein sequence
Table 3 Genome organization, predicted protein sizes and masses of new isolates of donkey orchid virus A, blue squill virus A, ornithogalum mosaic virus and bean yellow mosaic virus from *Diuris* orchids

<table>
<thead>
<tr>
<th>Virus¹ Genome feature²</th>
<th>nt</th>
<th>DOVA size aa</th>
<th>mass kDa</th>
<th>nt</th>
<th>BSVA size aa</th>
<th>mass kDa</th>
<th>nt</th>
<th>OrMV-KP1, SW3.1 size aa</th>
<th>mass kDa</th>
<th>nt</th>
<th>OrMV-SW3.3 size aa</th>
<th>mass kDa</th>
<th>nt</th>
<th>BYMV-KP1 size aa</th>
<th>mass kDa</th>
<th>nt</th>
<th>BYMV-SW3.1 size aa</th>
<th>mass kDa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyprotein</td>
<td>118-9666</td>
<td>3182</td>
<td>360.5</td>
<td>260-9523</td>
<td>3088</td>
<td>352.0</td>
<td>127-9174</td>
<td>3106</td>
<td>441.5</td>
<td>125-9169</td>
<td>3106</td>
<td>341.5</td>
<td>192-3056</td>
<td>347.3</td>
<td>189-9440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5'UTR</td>
<td>1-117</td>
<td>-</td>
<td>-</td>
<td>1-126</td>
<td>-</td>
<td>-</td>
<td>1-124</td>
<td>-</td>
<td>-</td>
<td>1-125</td>
<td>-</td>
<td>-</td>
<td>1-191</td>
<td>-</td>
<td>1-188</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
P1 | 118-1050 | 311 | 34.7 | 260-1210 | 317 | 36.4 | 127-292 | 267 | 29.6 | 125-925 | 267 | 29.6 | 192 | - | 284 | - |
|HC-Pro | 1051-2736 | 562 | 64.0 | 1211-2581 | 457 | 51.9 | 928-2292 | 455 | 51.3 | 926-2290 | 455 | 51.3 | 1043 | - | 284 | - |
P3 | 2737-3777 | 347 | 40.2 | 2582-3628 | 349 | 40.3 | 2293-336 | 348 | 40.5 | 2291-3331 | 347 | 40.2 | 2415 | 3458 | 2411 |
|PIPO | 3186-3404 | 72 | 8.4 | 3034-3255 | 74 | 8.8 | 2752-2972 | 73 | 8.4 | 2747 | 73 | 8.5 | 2876 | 3118 | 2873 | 80 | |
|6K1 | 3778-3933 | 52 | 5.8 | 3629-3784 | 52 | 5.8 | 3337-3487 | 50 | 5.6 | 3332-3487 | 52 | 5.8 | 3495 | 3459 | 3456 | 53 |
|CI | 3934-5850 | 639 | 71.6 | 3785-5686 | 634 | 71.4 | 3488-3539 | 635 | 70.9 | 3488-3539 | 634 | 70.7 | 3617 | 3618 | 3615 | 635 |
|6K2 | 5851-6009 | 53 | 5.8 | 5687-5845 | 53 | 6.1 | 5398-5553 | 50 | 5.6 | 5390-5548 | 53 | 5.9 | 5522 | 5523 | 5519 | 53 |
|Nla-VPg | 6010-6588 | 193 | 21.8 | 5846-6415 | 190 | 21.8 | 5554-6129 | 192 | 21.5 | 5549-6124 | 192 | 21.5 | 5682-6254 | 191 | 22.1 | 5679 | 6251 |
|Nla-Pro | 6589-7314 | 242 | 27.4 | 6416-7144 | 243 | 27.8 | 6130-6858 | 243 | 27.5 | 6125 | 243 | 27.4 | 6255 | 6983 | 6252 | 243 |
|Nilb | 7315-8871 | 519 | 59.3 | 7145-8695 | 517 | 59.5 | 6859-8412 | 518 | 59.4 | 6854 | 518 | 59.4 | 6984 | 8540 | 6980 | 519 |
|CP | 8872-9666 | 265 | 29.6 | 8696-9523 | 276 | 30.7 | 8413-9174 | 254 | 28.9 | 8408 | 254 | 28.9 | 8541 | 9362 | 8538 | 273 |
|3'UTR | 9667-9867 | - | - | 9524-9842 | - | - | 9175-9445 | - | - | 9170 | - | - | 9363 | - | 9357 | - |

¹ DOVA, donkey orchid virus A; BSVA, blue squill virus A; OrMV, ornithogalum mosaic virus; BYMV, bean yellow mosaic virus

² Isolates OrMV-KP1 and OrMV-SW3.3 had identical genome organization so are presented together

³ UTR, untranslated region; P1, protein 1; HC-Pro, helper component protease; P3, protein 3; PIPO, pretty interesting potyvirus ORF; 6K1, six kilodalton peptide 1; CI, cylindrical inclusion; 6K2, six kilodalton peptide 2; Nla-VPg, nuclear inclusion A, viral protein genome-linked; Nla-Pro, nuclear inclusion A protease; Nilb, nuclear inclusion B; CP, coat (capsid) protein