Engeneering Thesis

Tjuntjuntjara Groundwater Desalination

Simon Digby
12/31/2012

Submitted to the Murdoch University School of Engineering and Energy to partially fulfil the requirements of a Bachelor of Engineering.
1 Abstract

The Tjuntjuntjara Groundwater Desalination Thesis was conceived to solve the operational faults of a Vacuum-Multi-Effect-Membrane-Distillation (VMEMD) Pilot Plant. The National Centre for Excellence in Desalination (NCED), Murdoch University and other contributing parties intend to power the plant with renewable energies in order to supply the Tjuntjuntjara indigenous community with water.

The thesis involved research into VMEMD technology and an assessment of the control system and instrumentation that operated it. During the assessment process, operational faults as well as potential improvements in the operation of the plant were recorded. It was found that the control system had a number of software based faults. The design and implementation of a new Programmable Logic Controller (PLC) operating code was undertaken to correct these faults. In parallel to this work, the design and implementation of systems to improve the operation of the plant was also undertaken.

When all upgrades to the plant were complete, the vigorous process of validating the new additions commenced. As well as testing the new code and system improvements, a series of continuous trial periods was conducted. These proved that the plant can now operate continuously and at varying system temperatures for over 100 hours. During the trial periods, operating point data was collected and methods for increasing distillate output were found.

The plant has been brought up to a stable operating standard and the additional systems installed to improve the plant have further increased its reliability. A number of recommendations have been provided to stimulate further development of the VMEMD pilot plant.
2 Acknowledgments

The writer would like to thank Murdoch University, the National Centre of Excellence in Desalination, friends and family for the continuing support of this thesis project.
3 Terminology and Abbreviations

NCED – National Centre for Excellence in Desalination
VMED – Vacuum-Multi-Effect-Membrane-Distillation
MEMSYS – VMEMD module manufacturer
P&I – Piping and Instrumentation Diagram
PLC – Programmable Logic Controller
HMI – Human-Machine Interface, a computer display for monitoring and control
CV – Control Valve
SV – Solenoid Valve
B&R – Bernecker and Rainer, a German based Automation Company
Code – Written on a PLC to operate various instrumentation
Flash – Change of state from fluid to vapour
JSA – Job Safety Analysis
KNF – Vacuum pump manufacturer
Gemu – Valve manufacturer
DRAM – Dynamic random-access memory
SCADA – Supervisory Control and Data Acquisition
VNC – Virtual Network Connection
I/O – PLC electrical inputs and outputs
Table of Contents

1. Abstract .. 1
2. Acknowledgments ... 2
3. Terminology and Abbreviations ... 3
4. Table of Contents ... 4
5. Table of Figures ... 7
6. Background .. 8
7. Problem Definition ... 9
 7.1 Problem Scope ... 9
 7.2 Problem Details ... 9
 7.3 Resources ... 10
8. Proposed Work .. 10
 8.1 Assessment of the B&R Code ... 10
 8.2 Re-coding or New Design .. 10
 8.3 Automating the Start-Up Procedures ... 10
 8.4 Instrumentation and Control Standards ... 10
9. VMEMD Technology .. 11
 9.1 Functional Description ... 11
 9.1.1 MEMSYS Module ... 11
 9.1.2 Supporting Instrumentation ... 13
10. Plant Assessment ... 14
 10.1 Piping and Instrumentation ... 15
 10.1.1 Process Piping .. 15
 10.1.2 Pumps .. 15
 10.1.3 Valves .. 16
 10.1.4 Sensors ... 16
 10.1.5 PLC and Electrical .. 17
 10.2 Plant Operation ... 18
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.2.1</td>
<td>Trials</td>
<td>..</td>
<td>18</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Plant Faults</td>
<td>.......................................</td>
<td>18</td>
</tr>
<tr>
<td>10.3</td>
<td>MEMSYS Consultation</td>
<td>..</td>
<td>20</td>
</tr>
<tr>
<td>11</td>
<td>B&R Program Assessment</td>
<td>......................................</td>
<td>20</td>
</tr>
<tr>
<td>11.1</td>
<td>Automation Studio</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>11.2</td>
<td>General Code</td>
<td>...</td>
<td>20</td>
</tr>
<tr>
<td>11.3</td>
<td>HMI</td>
<td>..</td>
<td>21</td>
</tr>
<tr>
<td>12</td>
<td>Re-Code of the B&R Program</td>
<td>.....................................</td>
<td>22</td>
</tr>
<tr>
<td>12.1</td>
<td>Design</td>
<td>..</td>
<td>22</td>
</tr>
<tr>
<td>12.2</td>
<td>Implementation</td>
<td>...</td>
<td>24</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Higher Level Code</td>
<td>......................................</td>
<td>24</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Pump, Valve and Level Control</td>
<td>...............</td>
<td>24</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Automatic Operation and Shut-down</td>
<td>............</td>
<td>26</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Alarming and Interlocks</td>
<td>..</td>
<td>27</td>
</tr>
<tr>
<td>12.3</td>
<td>Code Assessment</td>
<td>...</td>
<td>28</td>
</tr>
<tr>
<td>13</td>
<td>Plant Improvements</td>
<td>.......................................</td>
<td>28</td>
</tr>
<tr>
<td>14</td>
<td>Continuous Operation Trial</td>
<td>..............................</td>
<td>30</td>
</tr>
<tr>
<td>14.1</td>
<td>Planning</td>
<td>..</td>
<td>30</td>
</tr>
<tr>
<td>14.2</td>
<td>Trial Operation</td>
<td>..</td>
<td>32</td>
</tr>
<tr>
<td>14.3</td>
<td>Results</td>
<td>..</td>
<td>34</td>
</tr>
<tr>
<td>15</td>
<td>Recommendations</td>
<td>...</td>
<td>37</td>
</tr>
<tr>
<td>15.1</td>
<td>Tjuntjuntjara Research</td>
<td>......................................</td>
<td>37</td>
</tr>
<tr>
<td>15.2</td>
<td>System Flush Capabilities</td>
<td>......................</td>
<td>38</td>
</tr>
<tr>
<td>15.3</td>
<td>Stable Coolant</td>
<td>..</td>
<td>38</td>
</tr>
<tr>
<td>15.4</td>
<td>Supervisory Control and Data Acquisition</td>
<td>..........</td>
<td>39</td>
</tr>
<tr>
<td>15.5</td>
<td>Testing</td>
<td>..</td>
<td>39</td>
</tr>
<tr>
<td>16</td>
<td>Conclusion</td>
<td>..</td>
<td>41</td>
</tr>
<tr>
<td>17</td>
<td>Appendices</td>
<td>...</td>
<td>43</td>
</tr>
</tbody>
</table>
17.1 Appendix A – MEMSYS Plant Photo .. 43
17.2 Appendix B - Trial Operation of the VMEMD Plant 44
 17.2.1 28/8/12 Trial ... 44
 17.2.2 29/8/12 Trial ... 44
 17.2.3 30/8/12 System Flush .. 44
 17.2.4 31/8/12 Trial ... 44
 17.2.5 4/09/12 Trial ... 45
 17.2.6 17/9/12 Trial (after re-code) ... 45
17.3 Appendix C - Alarm and Shut-down Test (3/10/12) 46
 17.3.1 High Pressure P1.2 ... 46
 17.3.2 High Temperature T1.1 .. 46
 17.3.3 Low Flow F1.1 ... 46
 17.3.4 Low Flow F2.1 ... 46
 17.3.5 Low Flow F6.1 ... 46
 17.3.6 High Temperature T6.1 .. 46
 17.3.7 Pump 4 Fault ... 46
17.4 Appendix D – Electronic Documents .. 47
18 Bibliography .. 48
5 Table of Figures

Figure 1 - VMEMD module flow diagram [3]..11
Figure 2 - Infra-red photo taken of the VMEMD module at the NCED..........................12
Figure 3 - Composition of a single effect in a VMEMD module [3]..................................13
Figure 4 - B&R Power Panel 45 PLC [4]..13
Figure 5 - PVC process piping and polyurethane vacuum tubing.................................15
Figure 6 - 4 green lwaki pumps and KNF vacuum pump (with cover removed).........16
Figure 7 - Control cabinet externals and internals ...17
Figure 8 - VMEMD plant HMI..21
Figure 9 - State-Machine design of MEMSYS plant..22
Figure 10 - Automatic Operation state-flow ..23
Figure 11 - Shutdown state-flow ..23
Figure 12 - Pump (left) and Valve (right) ladder logic control code...........................25
Figure 13 - Level control of Vessel 1 and corresponding timer26
Figure 14 - State-machine coding for automatic operation ..26
Figure 15 - Alarming code written in Automation Basic ..27
Figure 16 - Condensate dump system...29
Figure 17 - Continuous trial setup at the NCED...31
Figure 18 - Correlation between distillate output and H/E water temperature35
Figure 19 - Distillate output compared with system operating temperature [6]35
Figure 20 - Effect pressure and temperatures for an operating temp of 70 °C36
Figure 21 - Heating loop top up trend..37